2023年哈爾濱幼兒師范高等??茖W(xué)校高職單招(數(shù)學(xué))試題庫含答案解析_第1頁
2023年哈爾濱幼兒師范高等??茖W(xué)校高職單招(數(shù)學(xué))試題庫含答案解析_第2頁
2023年哈爾濱幼兒師范高等專科學(xué)校高職單招(數(shù)學(xué))試題庫含答案解析_第3頁
2023年哈爾濱幼兒師范高等??茖W(xué)校高職單招(數(shù)學(xué))試題庫含答案解析_第4頁
2023年哈爾濱幼兒師范高等專科學(xué)校高職單招(數(shù)學(xué))試題庫含答案解析_第5頁
已閱讀5頁,還剩44頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

長風(fēng)破浪會有時,直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年哈爾濱幼兒師范高等??茖W(xué)校高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.在極坐標(biāo)系中,過點p(3,)且垂直于極軸的直線方程為()

A.Pcosθ=

B.Psinθ=

C.P=cosθ

D.P=sinθ答案:A2.參數(shù)方程(θ為參數(shù))表示的曲線是()

A.直線

B.圓

C.橢圓

D.拋物線答案:C3.已知向量=(1,2),=(2,x),且=-1,則x的值等于()

A.

B.

C.

D.答案:D4.在極坐標(biāo)系中,極點到直線ρcosθ=2的距離為______.答案:直線ρcosθ=2即x=2,極點的直角坐標(biāo)為(0,0),故極點到直線ρcosθ=2的距離為2,故為2.5.選修4-2:矩陣與變換

已知矩陣A=33cd,若矩陣A屬于特征值6的一個特征向量為α1=11,屬于特征值1的一個特征向量為α2=3-2.求矩陣A的逆矩陣.答案:由矩陣A屬于特征值6的一個特征向量為α1=11,可得33cd11=611,即c+d=6;由矩陣A屬于特征值1的一個特征向量為α2=3-2可得,33cd3-2=3-2,即3c-2d=-2,解得c=2d=4,即A=3324,A逆矩陣是23-12-1312.6.設(shè)是的相反向量,則下列說法一定錯誤的是()

A.∥

B.與的長度相等

C.是的相反向量

D.與一定不相等答案:D7.已知點O為△ABC外接圓的圓心,且有,則△ABC的內(nèi)角A等于()

A.30°

B.60°

C.90°

D.120°答案:A8.已知某幾何體的三視圖如圖,畫出它的直觀圖,求該幾何體的表面積和體積.答案:由三視圖可知:該幾何體是由下面長、寬、高分別為4、4、2的長方體,上面為高是2、底面是邊長分別為4、4的矩形的四棱錐,而組成的幾何體.它的直觀圖如圖.∴S表面積=4×2×4+4×4+4×12×4×22=48+162.V體積=4×4×2+13×4×4×2=1283.9.以雙曲線x24-y216=1的右焦點為圓心,且被其漸近線截得的弦長為6的圓的方程為______.答案:雙曲線x24-y216=1的右焦點為F(25,0),一條漸近線為2x+y=0.∴所求圓的圓心為(25,0).∵所求圓被漸近線2x+y=0截得的弦長為6,∴圓心為(25,0)到漸近線2x+y=0的距離d=455=4,圓半徑r=9+16=5,∴所求圓的方程是(x-25)2+y2=25.故為(x-25)2+y2=25.10.參數(shù)方程x=cosαy=1+sinα(α為參數(shù))化成普通方程為

______.答案:∵x=cosαy=1+sinα(α為參數(shù))∴x2+(y-1)2=cos2α+sin2α=1.即:參數(shù)方程x=cosαy=1+sinα(α為參數(shù))化成普通方程為:x2+(y-1)2=1.故為:x2+(y-1)2=1.11.管理人員從一池塘中撈出30條魚做上標(biāo)記,然后放回池塘,將帶標(biāo)記的魚完全混合于魚群中.10天后,再捕上50條,發(fā)現(xiàn)其中帶標(biāo)記的魚有2條.根據(jù)以上收據(jù)可以估計該池塘有______條魚.答案:設(shè)該池塘中有x條魚,由題設(shè)條件建立方程:30x=250,解得x=750.故為:750.12.不等式的解集

.答案:;解析:略13.從1,2,…,9這九個數(shù)中,隨機(jī)抽取3個不同的數(shù),則這3個數(shù)的和為偶數(shù)的概率是()A.59B.49C.1121D.1021答案:基本事件總數(shù)為C93,設(shè)抽取3個數(shù),和為偶數(shù)為事件A,則A事件數(shù)包括兩類:抽取3個數(shù)全為偶數(shù),或抽取3數(shù)中2個奇數(shù)1個偶數(shù),前者C43,后者C41C52.∴A中基本事件數(shù)為C43+C41C52.∴符合要求的概率為C34+C14C25C39=1121.14.已知圓臺的上下底面半徑分別是2cm、5cm,高為3cm,求圓臺的體積.答案:∵圓臺的上下底面半徑分別是2cm、5cm,高為3cm,∴圓臺的體積V=13×3×(4π+4π?25π+25π)=39πcm3.15.如圖,在△ABC中,BC邊上的高所在的直線方程為x-2y+1=0,∠A的平分線所在的直線方程為y=0,若點B的坐標(biāo)為(1,2),求點A和點C的坐標(biāo).答案:點A為y=0與x-2y+1=0兩直線的交點,∴點A的坐標(biāo)為(-1,0).∴kAB=2-01-(-1)=1.又∵∠A的平分線所在直線的方程是y=0,∴kAC=-1.∴直線AC的方程是y=-x-1.而BC與x-2y+1=0垂直,∴kBC=-2.∴直線BC的方程是y-2=-2(x-1).由y=-x-1,y=-2x+4,解得C(5,-6).∴點A和點C的坐標(biāo)分別為(-1,0)和(5,-6)16.拋物線y2=4x的焦點坐標(biāo)是()

A.(4,0)

B.(2,0)

C.(1,0)

D.答案:C17.若雙曲線的漸近線方程為y=±34x,則雙曲線的離心率為______.答案:由題意可得,當(dāng)焦點在x軸上時,ba=34,∴ca=a2+b2a=a2+(3a4)2a=54.當(dāng)焦點在y軸上時,ab=34,∴ca=a2+b2a=a2+(4a3)2a=53,故為:53

或54.18.已知點P是拋物線y2=2x上的一個動點,則點P到點(0,2)的距離與P到該拋物線準(zhǔn)線的距離之和的最小值為()

A.

B.3

C.

D.答案:A19.圓x2+y2=1上的點到直線x=2的距離的最大值是

______.答案:根據(jù)題意,圓上點到直線距離最大值為:半徑+圓心到直線的距離.而根據(jù)圓x2+y2=1圓心為(0,0),半徑為1∴dmax=1+2=3故為:320.已知平面向量=(3,1),=(x,3),且⊥,則實數(shù)x的值為()

A.9

B.1

C.-1

D.-9答案:C21.下列圖象中不能作為函數(shù)圖象的是()A.

B.

C.

D.

答案:根據(jù)函數(shù)的概念:如果在一個變化過程中,有兩個變量x、y,對于x的每一個值,y都有唯一確定的值與之對應(yīng),這時稱y是x的函數(shù).結(jié)合選項可知,只有選項B中是一個x對應(yīng)1或2個y故選B.22.雙曲線x225-y29=1的兩個焦點分別是F1,F(xiàn)2,雙曲線上一點P到F1的距離是12,則P到F2的距離是()A.17B.7C.7或17D.2或22答案:由題意,a=5,則由雙曲線的定義可知PF1-PF2=±10,∴PF2=2或22,故選D.23.已知向量a=(1,1)與b=(2,3),用坐標(biāo)表示2a+b為______.答案:根據(jù)題意,a=(1,1)與b=(2,3),則2a+b=2(1,1)+(2,3)=(4,5);故為(4,5).24.已知向量=(2,4,x),=(2,y,2),若||=6,

⊥,則x+y的值是()

A.-3或1

B.3或1

C.-3

D.1答案:A25.若函數(shù)f(x)=x+1的值域為(2,3],則函數(shù)f(x)的定義域為______.答案:∵f(x)=x+1的值域為(2,3],∴2<x+1≤3∴1<x≤2故為:(1,2]26.若圓O1方程為(x+1)2+(y+1)2=4,圓O2方程為(x-3)2+(y-2)2=1,則方程(x+1)2+(y+1)2-4=(x-3)2+(y-2)2-1表示的軌跡是()

A.經(jīng)過兩點O1,O2的直線

B.線段O1O2的中垂線

C.兩圓公共弦所在的直線

D.一條直線且該直線上的點到兩圓的切線長相等答案:D27.已知平面向量a=(0,1),b=(x,y),若a⊥b,則實數(shù)y=______.答案:由題意平面向量a=(0,1),b=(x,y),由a⊥b,∴a?b=0∴y=0故為028.已知隨機(jī)變量ξ服從二項分布ξ~B(6,),則E(2ξ+4)=()

A.10

B.4

C.3

D.9答案:A29.已知直線l1:(k-3)x+(4-k)y+1=0,與l2:2(k-3)x-2y+3=0,平行,則k的值是______.答案:當(dāng)k=3時兩條直線平行,當(dāng)k≠3時有2=-24-k≠3

所以

k=5故為:3或5.30.已知正數(shù)x,y,且x+4y=1,則xy的最大值為()

A.

B.

C.

D.答案:C31.通過隨機(jī)詢問110名不同的大學(xué)生是否愛好某項運動,得到如下的列聯(lián)表:

男女總計愛好402060不愛好203050總計6050110為了判斷愛好該項運動是否與性別有關(guān),由表中的數(shù)據(jù)此算得k2≈7.8,因為P(k2≥6.635)≈0.01,所以判定愛好該項運動與性別有關(guān),那么這種判斷出錯的可能性為______.答案:由題意知本題所給的觀測值,k2≈7.8∵7.8>6.635,又∵P(k2≥6.635)≈0.01,∴這個結(jié)論有0.01=1%的機(jī)會說錯,故為:1%32.一個路口的紅綠燈,紅燈的時間為30秒,黃燈的時間為5秒,綠燈的時間為40秒,一學(xué)生到達(dá)該路口時,見到紅燈的概率是()A.25B.58C.115D.35答案:由題意知本題是一個那可能事件的概率,試驗發(fā)生包含的事件是總的時間長度為30+5+40=75秒,設(shè)紅燈為事件A,滿足條件的事件是紅燈的時間為30秒,根據(jù)等可能事件的概率得到出現(xiàn)紅燈的概率P(A)=構(gòu)成事件A的時間長度總的時間長度=3075=25.故選A.33.先后拋擲兩枚均勻的正方體骰子(它們的六個面分別標(biāo)有點數(shù)1、2、3、4、5、6),骰子朝上的面的點數(shù)分別為X、Y,則log2XY=1的概率為()A.16B.536C.112D.12答案:∵log2XY=1∴Y=2X,滿足條件的X、Y有3對而骰子朝上的點數(shù)X、Y共有36對∴概率為336=112故選C.34.直線3x+4y-12=0和3x+4y+3=0間的距離是

______.答案:由兩平行線間的距離公式得直線3x+4y-12=0和3x+4y+3=0間的距離是|-12-3|5=3,故為3.35.不等式﹣2x+1>0的解集是(

).答案:{x|x<}36.(考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評分)

A.(不等式選做題)不等式|x-5|+|x+3|≥10的解集是______.

B.(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,圓ρ=-2sinθ的圓心的極坐標(biāo)是______.

C.(幾何證明選做題)如圖,已知圓中兩條弦AB與CD相交于點F,E是AB延長線上一點,且DF=CF=22,BE=1,BF=2,若CE與圓相切,則線段CE的長為______.答案:A:當(dāng)x<-3時不等式|x-5|+|x+3|≥10可化為:-(x-5)-(x+3)≥10解得:x≤-4當(dāng)-3≤x≤5時不等式|x-5|+|x+3|≥10可化為:-(x-5)+(x+3)=8≥10恒不成立當(dāng)x>5時不等式|x-5|+|x+3|≥10可化為:(x-5)+(x+3)≥10解得:x≥6故不等式|x-5|+|x+3|≥10解集為:(-∞,-4]∪[6,+∞).B:圓ρ=-2sinθ即ρ2=-2ρsinθ,即x2+y2+2y=0,即x2+(y+1)2=1.表示以(0,-1)為圓心,半徑等于1的圓,故圓心的極坐標(biāo)為(1,3π2).C:由題意,DF=CF=22,BE=1,BF=2,由DF?FC=AF?BF,得22?22=AF?2,∴AF=4,又BF=2,BE=1,∴AE=7;由切割線定理得CE2=BE?EA=1×7=7.∴CE=7.故為:(-∞,-4]∪[6,+∞);(1,3π2)(不唯一);7.37.一個口袋內(nèi)有4個不同的紅球,6個不同的白球,

(1)從中任取4個球,紅球的個數(shù)不比白球少的取法有多少種?

(2)若取一個紅球記2分,取一個白球記1分,從中任取5個球,使總分不少于7分的取法有多少種?答案:解(1)由題意知本題是一個分類計數(shù)問題,將取出4個球分成三類情況取4個紅球,沒有白球,有C44種取3個紅球1個白球,有C43C61種;取2個紅球2個白球,有C42C62,∴C44+C43C61+C42C62=115種(2)設(shè)取x個紅球,y個白球,則x+y=5(0≤x≤4)2x+y≥7(0≤y≤6)∴x=2y=3或x=3y=2或x=4y=1∴符合題意的取法種數(shù)有C42C63+C43C62+C44C61=186種38.設(shè)O為坐標(biāo)原點,F(xiàn)為拋物線的焦點,A是拋物線上一點,若·=,則點A的坐標(biāo)是

)A.B.C.D.答案:B解析:略39.若向量=(1,λ,2),=(-2,1,1),,夾角的余弦值為,則λ等于()

A.1

B.-1

C.±1

D.2答案:A40.已知a=5-12,則不等式logax>loga5的解集是______.答案:∵0<a<1,∴f(x)=logax在(0,+∞)上單調(diào)遞減∵logax>loga5∴0<x<5故為:(0,5)41.直線m的傾斜角為30°,則此直線的斜率等于()A.12B.1C.33D.3答案:因為直線的斜率k和傾斜角θ的關(guān)系是:k=tanθ∴傾斜角為30°時,對應(yīng)的斜率k=tan30°=33故選:C.42.如圖,F(xiàn)1,F(xiàn)2分別為橢圓x2a2+y2b2=1的左、右焦點,點P在橢圓上,△POF2是面積為3的正三角形,則b2的值是______.答案:∵△POF2是面積為3的正三角形,∴S=34|PF2|2=3,|PF2|=2.∴c=2,∵△PF1F2為直角三角形,∴a=3+1,故為23.43.函數(shù)數(shù)列{fn(x)}滿足:f1(x)=x1+x2(x>0),fn+1(x)=f1[fn(x)]

(1)求f2(x),f3(x);

(2)猜想fn(x)的表達(dá)式,并證明你的結(jié)論.答案:(1)f2(x)=f1(f1(x))=f1(x)1+f21(x)=x1+2x2f3(x)=f1(f2(x))=f2(x)1+f22(x)=x1+3x2(2)猜想:fn(x)=x1+nx2(n∈N*)下面用數(shù)學(xué)歸納法證明:①當(dāng)n=1時,f1(x)=x1+x22,已知,顯然成立②假設(shè)當(dāng)n=K(K∈N*)4時,猜想成立,即fk(x)=x1+kx2則當(dāng)n=K+1時,fk+1(x)=f1(fk(x))=fk(x)1+f2k(x)=x1+kx21+(x1+kx2)2=x1+(k+1)x2即對n=K+1時,猜想也成立.結(jié)合①②可知:猜想fn(x)=x1+nx2對一切n∈N*都成立.44.從拋物線y2=4x上一點P引拋物線準(zhǔn)線的垂線,垂足為M,且|PM|=5,設(shè)拋物線的焦點為F,則△MPF的面積為()

A.6

B.8

C.10

D.15答案:C45.設(shè)四邊形ABCD中,有DC=12AB,且|AD|=|BC|,則這個四邊形是

______.答案:由DC=12AB知四邊形ABCD是梯形,又|AD|=|BC|,即梯形的對角線相等,所以,四邊形ABCD是等腰梯形.故為:等腰梯形.46.如圖,O為直線A0A2013外一點,若A0,A1,A2,A3,A4,A5,…,A2013中任意相鄰兩點的距離相等,設(shè)OA0=a,OA2013=b,用a,b表示OA0+OA1+OA2+…+OA2013,其結(jié)果為______.答案:設(shè)A0A2013的中點為A,則A也是A1A2012,…A1006A1007的中點,由向量的中點公式可得OA0+OA2013=2OA=a+b,同理可得OA1+OA2012=OA2+OA2011=…=OA1006+OA1007,故OA0+OA1+OA2+…+OA2013=1007×2OA=1007(a+b)故為:1007(a+b)47.已知兩定點F1(5,0),F(xiàn)2(-5,0),曲線C上的點P到F1、F2的距離之差的絕對值是8,則曲線C的方程為()A.x29-y216=1B.x216-y29=1C.x225-y236=1D.y225-x236=1答案:據(jù)雙曲線的定義知:P的軌跡是以F1(5,0),F(xiàn)2(-5,0)為焦點,以實軸長為8的雙曲線.所以c=5,a=4,b2=c2-a2=9,所以雙曲線的方程為:x216-y29=1故選B48.在同一個坐標(biāo)系中畫出函數(shù)y=ax,y=sinax的部分圖象,其中a>0且a≠1,則下列所給圖象中可能正確的是()

A.

B.

C.

D.

答案:D49.我們稱正整數(shù)n為“好數(shù)”,如果n的二進(jìn)制表示中1的個數(shù)多于0的個數(shù).如6=(110):為好數(shù),1984=(11111000000);不為好數(shù),則:

(1)二進(jìn)制表示中恰有5位數(shù)碼的好數(shù)共有______個;

(2)不超過2012的好數(shù)共有______個.答案:(1)二進(jìn)制表示中恰有5位數(shù)碼的二進(jìn)制數(shù)分別為:10000,10001,10010,10011,10100,10101,10110,10111,11000,11001,11010,11011,11100,11101,11110,11111,共十六個數(shù),再結(jié)合好數(shù)的定義,得到其中好數(shù)有11個;(2)整數(shù)2012的二進(jìn)制數(shù)為:11111011100,它是一個十一位的二進(jìn)制數(shù).其中一位的二進(jìn)制數(shù)是:1,共有C11個;其中二位的二進(jìn)制數(shù)是:11,共有C22個;

其中三位的二進(jìn)制數(shù)是:101,110,111,共有C12+C22個;

其中四位的二進(jìn)制數(shù)是:1011,1101,1110,1111,共有C23+C33個;

其中五位的二進(jìn)制數(shù)是:10011,10101,10110,11001,11010,11100,10111,11011,11101,11110,11111,共有C24+C34+C44個;

以此類推,其中十位的二進(jìn)制數(shù)是:共有C49+C59+C69+C79+C89+C99個;其中十一位的小于2012二進(jìn)制數(shù)是:共有24+4個;一共不超過2012的好數(shù)共有1164個.故1065個50.某學(xué)校為了解該校1200名男生的百米成績(單位:秒),隨機(jī)選擇了50名學(xué)生進(jìn)行調(diào)查.如圖是這50名學(xué)生百米成績的頻率分布直方圖.根據(jù)樣本的頻率分布,估計這1200名學(xué)生中成績在[13,15](單位:秒)內(nèi)的人數(shù)大約是______.答案:∵由圖知,前面兩個小矩形的面積=0.02×1+0.18×1=0.2,即頻率,∴1200名學(xué)生中成績在[13,15](單位:s)內(nèi)的人數(shù)大約是0.2×1200=240.故為240.第2卷一.綜合題(共50題)1.已知向量=(1,1,-2),=(2,1,),若≥0,則實數(shù)x的取值范圍為()

A.(0,)

B.(0,]

C.(-∞,0)∪[,+∞)

D.(-∞,0]∪[,+∞)答案:C2.在區(qū)間[0,1]產(chǎn)生的隨機(jī)數(shù)x1,轉(zhuǎn)化為[-1,3]上的均勻隨機(jī)數(shù)x,實施的變換為()

A.x=3x1-1

B.x=3x1+1

C.x=4x1-1

D.x=4x1+1答案:C3.若三角形的內(nèi)切圓半徑為r,三邊的長分別為a,b,c,則三角形的面積S=12r(a+b+c),根據(jù)類比思想,若四面體的內(nèi)切球半徑為R,四個面的面積分別為S1、S2、S3、S4,則此四面體的體積V=______.答案:設(shè)四面體的內(nèi)切球的球心為O,則球心O到四個面的距離都是R,所以四面體的體積等于以O(shè)為頂點,分別以四個面為底面的4個三棱錐體積的和.故為:13R(S1+S2+S3+S4).4.如圖,正方體ABCD-A1B1C1D1的棱長為3,點M在AB上,且AM=13AB,點P在平面ABCD上,且動點P到直線A1D1的距離與P到點M的距離相等,在平面直角坐標(biāo)系xAy中,動點P的軌跡方程是______.答案:作PN⊥AD,則PN⊥面A1D1DA,作NH⊥A1D1,N,H為垂足,由三垂線定理可得PH⊥A1D1.以AD,AB,AA1為x軸,y軸,z軸,建立空間坐標(biāo)系,設(shè)P(x,y,0),由題意可得M(0,1,0),H(x,0,3),|PM|=|pH|,∴x2+(y-1)2=y2+9,整理,得x2=2y+8.故為:x2=2y+8.5.已知兩組樣本數(shù)據(jù)x1,x2,…xn的平均數(shù)為h,y1,y2,…ym的平均數(shù)為k,則把兩組數(shù)據(jù)合并成一組以后,這組樣本的平均數(shù)為()

A.

B.

C.

D.答案:B6.若kxy-8x+9y-12=0表示兩條直線,則實數(shù)k的值及兩直線所成的角分別是()

A.8,60°

B.4,45°

C.6,90°

D.2,30°答案:C7.(文)不等式的解集是(

)A.B.C.D.答案:D解析:【思路分析】:原不等式可化為,得,故選D.【命題分析】考查不等式的解法,要求同解變形.8.已知直線l的參數(shù)方程為x=12ty=22+32t(t為參數(shù)),若以直角坐標(biāo)系xOy的O點為極點,Ox方向為極軸,選擇相同的長度單位建立極坐標(biāo)系,得曲線C的極坐標(biāo)方程為ρ=2cos(θ-π4)

(1)求直線l的傾斜角;

(2)若直線l與曲線C交于A,B兩點,求|AB|.答案:(1)直線參數(shù)方程可以化x=tcos60°y=22+tsin60°,根據(jù)直線參數(shù)方程的意義,這條經(jīng)過點(0,22),傾斜角為60°的直線.(2)l的直角坐標(biāo)方程為y=3x+22,ρ=2cos(θ-π4)的直角坐標(biāo)方程為(x-22)2+(y-22)2=1,所以圓心(22,22)到直線l的距離d=64,∴|AB|=102.9.某產(chǎn)品的廣告費用x與銷售額y的統(tǒng)計數(shù)據(jù)如下表

廣告費用x(萬元)4235銷售額y(萬元)49263954根據(jù)上表可得回歸方程

y=

bx+

a中的

b為9.4,則

a=______.答案:由圖表中的數(shù)據(jù)可知.x=14(4+2+3+5)=144=3.5,.y=14(49+26+39+54)=42,即樣本中心為(3.5,42),將點代入回歸方程y=bx+a,得42=9.4×3.5+a,解得a=9.1.故為:9.1.10.在平面直角坐標(biāo)系xOy中,已知圓C:x=5cosθ-1y=5sinθ+2(θ為參數(shù))和直線l:x=4t+6y=-3t-2(t為參數(shù)),則直線l與圓C相交所得的弦長等于______.答案:∵在平面直角坐標(biāo)系xOy中,已知圓C:x=5cosθ-1y=5sinθ+2(θ為參數(shù)),∴(x+1)2+(y-2)2=25,∴圓心為(-1,2),半徑為5,∵直線l:x=4t+6y=-3t-2(t為參數(shù)),∴3x+4y-10=0,∴圓心到直線l的距離d=|-3+8-10|5=1,∴直線l與圓C相交所得的弦長=2×52-1=46.故為46.11.在△ABC所在平面存在一點O使得OA+OB+OC=0,則面積S△OBCS△ABC=______.答案:∵OA+OB+OC=0,∴OB+

OC=AO,設(shè)OB+OC=OD∴O是AD的中點,要求面積之比的兩個三角形是同底的三角形,∴面積之比等于三角形的高之比,∴比值是13,故為:13.12.如圖,花園中間是噴水池,噴水池周圍的A、B、C、D區(qū)域種植草皮,要求相鄰的區(qū)域種不同顏色的草皮,現(xiàn)有4種不同顏色的草皮可供選用,則共有______種不同的種植方法(以數(shù)字作答).答案:若AD相同,有4×(3+3×2)種種植方法,若AD不同,有4×3×(2+2×1)種種植方法∴共有4×(3+3×2)+4×3×(2+2×1)=36+48=84種不同方法.故為84.13.若0<x<1,則2x,(12)x,(0.2)x之間的大小關(guān)系為()A.2x<(0.2)x<(12)xB.2x<(12)x<(0.2)xC.(12)x<(0.2)x<2xD.(0.2)x<(12)x<2x答案:由題意考察冪函數(shù)y=xn(0<n<1),利用冪函數(shù)的性質(zhì),∵0<n<1,∴冪函數(shù)y=xn在第一象限是增函數(shù),又2>12>0.2∴2x>(12)x>(0.2)x故選D14.如圖所示的程序框圖,運行相應(yīng)的程序,若輸出S的值為254,則判斷框①中應(yīng)填入的條件是()A.n≤5B.n≤6C.n≤7D.n≤8答案:分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是輸出滿足條件S=2+22+23+…+2n=126時S的值∵2+22+23+…+27=254,故最后一次進(jìn)行循環(huán)時n的值為7,故判斷框中的條件應(yīng)為n≤7.故選C.15.k取何值時,一元二次方程kx2+3kx+k=0的兩根為負(fù)。答案:解:∴k≤或k>316.用數(shù)字1,2,3,4,5組成的無重復(fù)數(shù)字的四位偶數(shù)的個數(shù)為()

A.8

B.24

C.48

D.120答案:C17.設(shè)a=0.7,b=0.8,c=log30.7,則()

A.c<b<a

B.c<a<b

C.a(chǎn)<b<c

D.b<a<c答案:B18.我們稱正整數(shù)n為“好數(shù)”,如果n的二進(jìn)制表示中1的個數(shù)多于0的個數(shù).如6=(110):為好數(shù),1984=(11111000000);不為好數(shù),則:

(1)二進(jìn)制表示中恰有5位數(shù)碼的好數(shù)共有______個;

(2)不超過2012的好數(shù)共有______個.答案:(1)二進(jìn)制表示中恰有5位數(shù)碼的二進(jìn)制數(shù)分別為:10000,10001,10010,10011,10100,10101,10110,10111,11000,11001,11010,11011,11100,11101,11110,11111,共十六個數(shù),再結(jié)合好數(shù)的定義,得到其中好數(shù)有11個;(2)整數(shù)2012的二進(jìn)制數(shù)為:11111011100,它是一個十一位的二進(jìn)制數(shù).其中一位的二進(jìn)制數(shù)是:1,共有C11個;其中二位的二進(jìn)制數(shù)是:11,共有C22個;

其中三位的二進(jìn)制數(shù)是:101,110,111,共有C12+C22個;

其中四位的二進(jìn)制數(shù)是:1011,1101,1110,1111,共有C23+C33個;

其中五位的二進(jìn)制數(shù)是:10011,10101,10110,11001,11010,11100,10111,11011,11101,11110,11111,共有C24+C34+C44個;

以此類推,其中十位的二進(jìn)制數(shù)是:共有C49+C59+C69+C79+C89+C99個;其中十一位的小于2012二進(jìn)制數(shù)是:共有24+4個;一共不超過2012的好數(shù)共有1164個.故1065個19.直線ax+by=1與圓x2+y2=1有兩不同交點,則點P(a,b)與圓的位置關(guān)系為______.答案:圓心到直線ax+by=1的距離,1a2+b2,∵直線ax+by=1與圓x2+y2=1有兩不同交點,∴1a2+b2<1即a2+b2>1.故為:點在圓外.20.用反證法證明命題“在函數(shù)f(x)=x2+px+q中,|f(1)|,|f(2)|,|f(3)|至少有一個不小于”時,假設(shè)正確的是()

A.假設(shè)|f(1)|,|f(2)|,|f(3)|至多有一個小于

B.假設(shè)|f(1)|,|f(2)|,|f(3)|至多有兩個小于

C.假設(shè)|f(1)|,|f(2)|,|f(3)|都不小于

D.假設(shè)|f(1)|,|f(2)|,|f(3)|都小于答案:D21.我市某機(jī)構(gòu)為調(diào)查2009年下半年落實中學(xué)生“陽光體育”活動的情況,設(shè)平均每人每天參加體育鍛煉時間為X(單位:分鐘),按鍛煉時間分下列四種情況統(tǒng)計:①0~10分鐘;②11~20分鐘;③21~30分鐘;④30分鐘以上,有10000名中學(xué)生參加了此項活動,右圖是此次調(diào)查中某一項的流程圖,其輸出的結(jié)果是6200,則平均每天參加體育鍛煉時間在0~20分鐘內(nèi)的學(xué)生的頻率是()A.0.62B.0.38C.6200D.3800答案:由圖知輸出的S的值是運動時間超過20分鐘的學(xué)生人數(shù),由于統(tǒng)計總?cè)藬?shù)是10000,又輸出的S=6200,故運動時間不超過20分鐘的學(xué)生人數(shù)是3800事件“平均每天參加體育鍛煉時間在0~20分鐘內(nèi)的學(xué)生的”頻率是380010000=0.38故選B22.若lga,lgb是方程2x2-4x+1=0的兩個根,則的值等于

A.2

B.

C.4

D.答案:A23.到兩互相垂直的異面直線的距離相等的點,在過其中一條直線且平行于另一條直線的平面內(nèi)的軌跡是()

A.直線

B.橢圓

C.拋物線

D.雙曲線答案:D24.(理)在直角坐標(biāo)系中,圓C的參數(shù)方程是x=2cosθy=2+2sinθ(θ為參數(shù)),以原點為極點,以x軸正半軸為極軸建立極坐標(biāo)系,則圓C的圓心極坐標(biāo)為______.答案:∵直角坐標(biāo)系中,圓C的參數(shù)方程是x=2cosθy=2+2sinθ(θ為參數(shù)),∴x2+(y-2)2=4,∵以原點為極點,以x軸正半軸為極軸建立極坐標(biāo)系,∴圓心坐標(biāo)(0,2),r=2∵0=pcosθ,∴θ=π2,又p=r=2,∴圓C的圓心極坐標(biāo)為(2,π2),故為:(2,π2).25.

如圖,平面內(nèi)向量,的夾角為90°,,的夾角為30°,且||=2,||=1,||=2,若=λ+2

,則λ等()

A.

B.1

C.

D.2

答案:D26.下面程序框圖輸出的S表示什么?虛線框表示什么結(jié)構(gòu)?答案:由框圖知,當(dāng)r=5時,輸出的s=πr2所以程序框圖輸出的S表示:求半徑為5的圓的面積的算法的程序框圖,虛線框是一個順序結(jié)構(gòu).27.化簡的結(jié)果是()

A.a(chǎn)B.C.a(chǎn)2D.答案:B解析:分析:指數(shù)函數(shù)的性質(zhì)28.已知直線經(jīng)過點,傾斜角,設(shè)與圓相交與兩點,求點到兩點的距離之積。答案:2解析:把直線代入得,則點到兩點的距離之積為29.給定點A(x0,y0),圓C:x2+y2=r2及直線l:x0x+y0y=r2,給出以下三個命題:

①當(dāng)點A在圓C上時,直線l與圓C相切;

②當(dāng)點A在圓C內(nèi)時,直線l與圓C相離;

③當(dāng)點A在圓C外時,直線l與圓C相交.

其中正確的命題個數(shù)是()

A.0

B.1

C.2

D.3答案:D30.不等式3≤|5-2x|<9的解集為()

A.[-2,1)∪[4,7)

B.(-2,1]∪(4,7]

C.(-2,-1]∪[4,7)

D.(-2,1]∪[4,7)答案:D31.若圓臺的上下底面半徑分別是1和3,它的側(cè)面積是兩底面面積和的2倍,則圓臺的母線長是()A.2B.2.5C.5D.10答案:設(shè)母線長為l,則S側(cè)=π(1+3)l=4πl(wèi).S上底+S下底=π?12+π?32=10π.據(jù)題意4πl(wèi)=20π即l=5,故選C.32.在平面幾何中,四邊形的分類關(guān)系可用以下框圖描述:

則在①中應(yīng)填入______;在②中應(yīng)填入______.答案:由題意知①對應(yīng)的四邊形是一個有一組鄰邊相等的平行四邊形,∴這里是一個菱形,②處的圖形是一個有一條腰和底邊垂直的梯形,∴②處是一個直角梯形,故為:菱形;直角梯形.33.已知點P在曲線C1:x216-y29=1上,點Q在曲線C2:(x-5)2+y2=1上,點R在曲線C3:(x+5)2+y2=1上,則|PQ|-|PR|的最大值是()A.6B.8C.10D.12答案:由雙曲線的知識可知:C1x216-y29=1的兩個焦點分別是F1(-5,0)與F2(5,0),且|PF1|+|PF2|=8而這兩點正好是兩圓(x+5)2+y2=1和(x-5)2+y2=1的圓心,兩圓(x+5)2+y2=4和(x-5)2+y2=1的半徑分別是r1=1,r2=1,∴|PQ|max=|PF1|+1,|PR|min=|PF2|-1,∴|PQ|-|PR|的最大值為:(|PF1|+1)-(|PF2|-1)=|PF1|+|PF2|+2=8+2=10,故選C34.若=(2,-3,1)是平面α的一個法向量,則下列向量中能作為平面α的法向量的是()

A.(0,-3,1)

B.(2,0,1)

C.(-2,-3,1)

D.(-2,3,-1)答案:D35.若直線l:ax+by=1與圓C:x2+y2=1有兩個不同交點,則點P(a,b)與圓C的位置關(guān)系是(

A.點在圓上

B.點在圓內(nèi)

C.點在圓外

D.不能確定答案:C36.如圖,在⊙O中,AB是弦,AC是⊙O的切線,A是切點,過

B作BD⊥AC于D,BD交⊙O于E點,若AE平分∠BAD,則∠BAD=()

A.30°

B.45°

C.50°

D.60°

答案:D37.在7塊并排、形狀大小相同的試驗田上進(jìn)行施化肥量對水稻產(chǎn)量影響的試驗,得到如下表所示的一組數(shù)據(jù)(單位:kg).

(1)畫出散點圖;

(2)求y關(guān)于x的線性回歸方程;

(3)若施化肥量為38kg,其他情況不變,請預(yù)測水稻的產(chǎn)量.答案:(1)根據(jù)題表中數(shù)據(jù)可得散點圖如下:(2)∵.x=15+20+25+30+35+40+457=30,.y=330+345+365+405+445+450+4557=399.3∴利用最小二乘法得到b=4.75,a=257∴根據(jù)回歸直線方程系數(shù)的公式計算可得回歸直線方程是?y=4.75x+257.(3)把x=38代入回歸直線方程得y=438,可以預(yù)測,施化肥量為38kg,其他情況不變時,水稻的產(chǎn)量是438kg.38.執(zhí)行下列程序后,輸出的i的值是()

A.5

B.6

C.10

D.11答案:D39.

已知向量a,b的夾角為,且|a|=2,|b|=1,則向量a與向量2+2b的夾角等于()

A.

B.

C.

D.答案:D40.

點M分有向線段的比為λ,已知點M1(1,5),M2(2,3),λ=-2,則點M的坐標(biāo)為()

A.(3,8)

B.(1,3)

C.(3,1)

D.(-3,-1)答案:C41.在畫兩個變量的散點圖時,下面哪個敘述是正確的(

A.預(yù)報變量x軸上,解釋變量y軸上

B.解釋變量x軸上,預(yù)報變量y軸上

C.可以選擇兩個變量中任意一個變量x軸上

D.可以選擇兩個變量中任意一個變量y軸上答案:B42.對任意的實數(shù)k,直線y=kx+1與圓x2+y2=2

的位置關(guān)系一定是()

A.相離

B.相切

C.相交但直線不過圓心

D.相交且直線過圓心答案:C43.(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,點M(ρ,θ)關(guān)于極點的對稱點的極坐標(biāo)是______.答案:由點的極坐標(biāo)的意義可得,點M(ρ,θ)關(guān)于極點的對稱點到極點的距離等于ρ,極角為π+θ,故點M(ρ,θ)關(guān)于極點的對稱點的極坐標(biāo)是(ρ,π+θ),故為(ρ,π+θ).44.(不等式選講選做題)

已知實數(shù)a、b、x、y滿足a2+b2=1,x2+y2=3,則ax+by的最大值為______.答案:因為a2+b2=1,x2+y2=3,由柯西不等式(a2+b2)(x2+y2)≥(ax+by)2,得3≥(ax+by)2,不且僅當(dāng)ay=bx時取等號,所以ax+by的最大值為3.故為:3.45.已知函數(shù)f(x)滿足:x≥4,則f(x)=(12)x;當(dāng)x<4時f(x)=f(x+1),則f(2+log23)═______.答案:∵2+log23<4,∴f(2+log23)=f(3+log23)=f(log224)=(12)log224=124故應(yīng)填12446.點(2a,a-1)在圓x2+y2-2y-4=0的內(nèi)部,則a的取值范圍是()

A.-1<a<1

B.0<a<1

C.-1<a<

D.-<a<1答案:D47.執(zhí)行如圖所示的程序框圖,輸出的S值為()

A.2

B.4

C.8

D.16

答案:C48.方程組的解集是[

]A.

B.{x,y|x=3且y=-7}

C.{3,-7}

D.{(x,y)|x=3且y=-7}答案:D49.不等式ax2+bx+2>0的解集是(-,),則a+b的值是()

A.10

B.-10

C.14

D.-14答案:D50.某學(xué)校為了解高一男生的百米成績,隨機(jī)抽取了50人進(jìn)行調(diào)查,如圖是這50名學(xué)生百米成績的頻率分布直方圖.根據(jù)該圖可以估計出全校高一男生中百米成績在[13,14]內(nèi)的人數(shù)大約是140人,則高一共有男生______人.

答案:第三和第四個小矩形面積之和為(0.72+0.68)×0.5=0.7,即百米成績在[13,14]內(nèi)的頻率為:0.7,因為根據(jù)該圖可以估計出全校高一男生中百米成績在[13,14]內(nèi)的人數(shù)大約是140人,則高一共有男生1400.7=200人.故為:200.第3卷一.綜合題(共50題)1.扇形周長為10,則扇形面積的最大值是()A.52B.254C.252D.102答案:設(shè)半徑為r,弧長為l,則周長為2r+l=10,面積為s=12lr,因為10=2r+l≥22rl,所以rl≤252,所以s≤254故選B2.下面程序運行后,輸出的值是()

A.42

B.43

C.44

D.45

答案:C3.若集合M={a,b,c}中的元素是△ABC的三邊長,則△ABC一定不是()

A.銳角三角形

B.直角三角形

C.鈍角三角形

D.等腰三角形答案:D4.一個容量為n的樣本,分成若干組,已知某數(shù)的頻數(shù)和頻率分別為40、0.125,則n的值為()A.640B.320C.240D.160答案:由頻數(shù)、頻率和樣本容量之間的關(guān)系得到,40n=0.125,∴n=320.故選B.5.某人從家乘車到單位,途中有3個交通崗?fù)ぃ僭O(shè)在各交通崗遇到紅燈的事件是相互獨立的,且概率都是0.4,則此人上班途中遇紅燈的次數(shù)的期望為()

A.0.4

B.1.2

C.0.43

D.0.6答案:B6.若實數(shù)X、少滿足,則的范圍是()

A.[0,4]

B.(0,4)

C.(-∝,0]U[4,+∝)

D.(-∝,0)U(4,+∝))答案:D7.用反證法證明“如果a<b,那么“”,假設(shè)的內(nèi)容應(yīng)是()

A.

B.

C.且

D.或

答案:D8.若點P分向量AB的比為34,則點A分向量BP的比為()A.-34B.34C.-73D.73答案:由題意可得APPB=|AP||PB|=34,故

A分BP的比為BAAP=-|BA||AP|=-4+33=-73,故選C.9.設(shè)空間兩個不同的單位向量

a=(x1,y1,0),

b=(x2,y2,0)與向量

c=(1,1,1)的夾角都等于45°.

(1)求x1+y1和x1y1的值;

(2)求<

a,

b>的大?。鸢福海?)∵單位向量a=(x1,y1,0)與向量c=(1,1,1)的夾角等于45°∴|a|=x21+y21=1,cos45°=a?

c|a|?

|c|=13(x1+y1)=22∴x1+y1=62,x1?y1=-14(2)同理可知x2+y2=22,x2?y2=-14∴x1?x2=-14,y1?y2=-14cos<a,b>=a?b|a|?|b|=x1?x2+y1?y2=-12∴<a,b>=120°10.下列說法中正確的有()

①平均數(shù)不受少數(shù)幾個極端值的影響,中位數(shù)受樣本中的每一個數(shù)據(jù)影響;

②拋擲兩枚硬幣,出現(xiàn)“兩枚都是正面朝上”、“兩枚都是反面朝上”、“恰好一枚硬幣正面朝上”的概率一樣大

③用樣本的頻率分布估計總體分布的過程中,樣本容量越大,估計越準(zhǔn)確.

④向一個圓面內(nèi)隨機(jī)地投一個點,如果該點落在圓內(nèi)任意一點都是等可能的,則該隨機(jī)試驗的數(shù)學(xué)模型是古典概型.A.①②B.③C.③④D.④答案:中位數(shù)數(shù)不受少數(shù)幾個極端值的影響,平均數(shù)受樣本中的每一個數(shù)據(jù)影響,故①不正確,拋擲兩枚硬幣,出現(xiàn)“兩枚都是正面朝上”的概率是14“兩枚都是反面朝上的概率是14、“恰好一枚硬幣正面朝上的概率是12”,故②不正確,用樣本的頻率分布估計總體分布的過程中,樣本容量越大,估計越準(zhǔn)確.正確向一個圓面內(nèi)隨機(jī)地投一個點,如果該點落在圓內(nèi)任意一點都是等可能的,則該隨機(jī)試驗的數(shù)學(xué)模型是幾何概型,故④不正確,故選B.11.已知函數(shù)f(x)=2x,x≥01,

x<0,若f(1-a2)>f(2a),則實數(shù)a的取值范圍是______.答案:函數(shù)f(x)=2x,x≥01,

x<0,x<0時是常函數(shù),x≥0時是增函數(shù),由f(1-a2)>f(2a),所以2a<1-a21-a2>0,解得:-1<a<2-1,故為:-1<a<2-1.12.在如圖所示的莖葉圖中,甲、乙兩組數(shù)據(jù)的中位數(shù)分別是______.答案:由莖葉圖可得甲組共有9個數(shù)據(jù)中位數(shù)為45乙組共9個數(shù)據(jù)中位數(shù)為46故為45、4613.已知||=2,||=,∠AOB=150°,點C在∠AOB內(nèi),且∠AOC=30°,設(shè)(m,n∈R),則=()

A.

B.

C.

D.答案:B14.從1,2,…,9這九個數(shù)中,隨機(jī)抽取3個不同的數(shù),則這3個數(shù)的和為偶數(shù)的概率是()A.59B.49C.1121D.1021答案:基本事件總數(shù)為C93,設(shè)抽取3個數(shù),和為偶數(shù)為事件A,則A事件數(shù)包括兩類:抽取3個數(shù)全為偶數(shù),或抽取3數(shù)中2個奇數(shù)1個偶數(shù),前者C43,后者C41C52.∴A中基本事件數(shù)為C43+C41C52.∴符合要求的概率為C34+C14C25C39=1121.15.某制藥廠為了縮短培養(yǎng)時間,決定優(yōu)選培養(yǎng)溫度,試驗范圍定為29℃至50℃,現(xiàn)用分?jǐn)?shù)法確定最佳溫度,設(shè)第1,2,3次試驗的溫度分別為x1,x2,x3,若第2個試點比第1個試點好,則x3的值為(

)。答案:34℃或45℃16.如圖,△ABC內(nèi)接于圓⊙O,CT切⊙O于C,∠ABC=100°,∠BCT=40°,則∠AOB=()

A.30°

B.40°

C.80°

D.70°

答案:C17.已知某車間加工零件的個數(shù)x與所花費時間y(h)之間的線性回歸方程為=0.01x+0.5,則加工600個零件大約需要的時間為()

A.6.5h

B.5.5h

C.3.5h

D.0.3h答案:A18.如圖,設(shè)a,b,c,d>0,且不等于1,y=ax,y=bx,y=cx,y=dx在同一坐標(biāo)系中的圖象如圖,則a,b,c,d的大小順序()

A.a(chǎn)<b<c<d

B.a(chǎn)<b<d<c

C.b<a<d<c

D.b<a<c<d

答案:C19.已知2a=3b=6c則有()

A.∈(2,3)

B.∈(3,4)

C.∈(4,5)

D.∈(5,6)答案:C20.長方體的共頂點的三個側(cè)面面積分別為3,5,15,則它的體積為______.答案:設(shè)長方體過同一頂點的三條棱長分別為a,b,c,∵從長方體一個頂點出發(fā)的三個面的面積分別為3,5,15,∴a?b=3,a?c=5,b?c=15∴(a?b?c)2=152∴a?b?c=15即長方體的體積為15,故為:15.21.設(shè)△ABC是邊長為1的正三角形,則|CA+CB|=______.答案:∵△ABC是邊長為1的正三角形,∴|CA|=1,|CB|=1,CA?CB=1×1×cosπ3=12∴|CA+CB|=CA2+2CA?CB+CB2=1+1+

2×12=3,故為:322.72的正約數(shù)(包括1和72)共有______個.答案:72=23×32.∴2m?3n(0≤m≤3,0≤n≤2,m,n∈N)都是72的正約數(shù).m的取法有4種,n的取法有3種,由分步計數(shù)原理共3×4個.故為:12.23.設(shè)集合A={0,1,3},B={1,3,4},則A∩B=______.答案:∵集合A={0,1,3},B={1,3,4},A∩B={1,3}.故為:{1,3}.24.若對n個向量a1,a2,…,an,存在n個不全為零的實數(shù)k1,k2…,kn,使得k1a1+k2a2+…+knan=0成立,則稱向量a1,a2,…,an為“線性相關(guān)”.依此規(guī)定,請你求出一組實數(shù)k1,k2,k3的值,它能說明a1=(1,0),a2=(1,-1),a3=(2,2)“線性相關(guān)”.k1,k2,k3的值分別是______(寫出一組即可).答案:設(shè)a1=(1,0),a2=(1,-1),a3=(2,2)“線性相關(guān)”.則存在實數(shù),k1,k2,k3,使k1a1+k2a2+k3a3=0∵a1=(1,0),a2=(1,-1),a3=(2,2)∴k1+k2+2k3=0,且-k2+2k3=0令k3=1,則k2=2,k1=-4故為:-4,2,125.已知P為x24+y29=1,F(xiàn)1,F(xiàn)2為橢圓的左右焦點,則PF2+PF1=______.答案:∵x24+y29=1,F(xiàn)1,F(xiàn)2為橢圓的左右焦點,∴根據(jù)橢圓的定義,可得|PF2|+|PF1|=2×2=4故為:426.點(1,2)到原點的距離為()

A.1

B.5

C.

D.2答案:C27.點(1,2)到直線x+2y+5=0的距離為______.答案:點(1,2)到直線x+2y+5=0的距離為d=|1+2×2+5|12+22=25故為:2528.已知一個學(xué)生的語文成績?yōu)?9,數(shù)學(xué)成績?yōu)?6,外語成績?yōu)?9.求他的總分和平均成績的一個算法為:

第一步:取A=89,B=96,C=99;

第二步:______;

第三步:______;

第四步:輸出計算的結(jié)果.答案:由題意,第二步,求和S=A+B+C,第三步,計算平均成績.x=A+B+C3.故為:S=A+B+C;.x=A+B+C3.29.已知f(10x)=x,則f(5)=______.答案:令10x=5可得x=lg5所以f(5)=f(10lg5)=lg5故為:lg530.已知0<k<4,直線l1:kx-2y-2k+8=0和直線l:2x+k2y-4k2-4=0與兩坐標(biāo)軸圍成一個四邊形,則使得這個四邊形面積最小的k值為______.答案:如圖所示:直線l1:kx-2y-2k+8=0即k(x-2)-2y+8=0,過定點B(2,4),與y軸的交點C(0,4-k),直線l:2x+k2y-4k2-4=0,即2x-4+k2(y-4)=0,過定點(2,4),與x軸的交點A(2k2+2,0),由題意知,四邊形的面積等于三角形ABD的面積和梯形OCBD的面積之和,故所求四邊形的面積為12×4×(2k2+2-2)+2×(4-k+4)2=4k2-k+8,∴k=18時,所求四邊形的面積最小,故為18.31.設(shè)S(n)=1n+1n+1+1n+2+1n+3+…+1n2,則()A.S(2)=12+13B.S(2)=12+14C.S(2)=1+12+13+14D.S(2)=12+13+14答案:∵S(n)=1n+1n+1+1n+2+1n+3+…+1n2,當(dāng)n=2時,n2=4故S(2)=12+13+14故選D32.若直線y=x+b與圓x2+y2=2相切,則b的值為(

A.±4

B.±2

C.±

D.±2

答案:B33.如圖所示,O點在△ABC內(nèi)部,D、E分別是AC,BC邊的中點,且有OA+2OB+3OC=O,則△AEC的面積與△AOC的面積的比為()

A.2

B.

C.3

D.

答案:B34.在極坐標(biāo)系中,點(2,π6)到直線ρsinθ=2的距離等于______.答案:在極坐標(biāo)系中,點(2

,

π6)化為直角坐標(biāo)為(3,1),直線ρsinθ=2化為直角坐標(biāo)方程為y=2,(3,1),到y(tǒng)=2的距離1,即為點(2

,

π6)到直線ρsinθ=2的距離1,故為:1.35.將函數(shù)進(jìn)行平移,使得到的圖形與拋物線的兩個交點關(guān)于原點對稱,試求平移后的圖形對應(yīng)的函數(shù)解析式.答案:函數(shù)解析式

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論