2023年安徽工商職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第1頁
2023年安徽工商職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第2頁
2023年安徽工商職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第3頁
2023年安徽工商職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第4頁
2023年安徽工商職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第5頁
已閱讀5頁,還剩42頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

長風(fēng)破浪會有時,直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年安徽工商職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.O、A、B、C為空間四個點,又為空間的一個基底,則()

A.O、A、B、C四點共線

B.O、A、B、C四點共面,但不共線

C.O、A、B、C四點中任意三點不共線

D.O、A、B、C四點不共面答案:D2.已知矩陣A將點(1,0)變換為(2,3),且屬于特征值3的一個特征向量是11,(1)求矩陣A.(2)β=40,求A5β.答案:(1)設(shè)A=abcd,由abcd10=23得,a=2c=3,由abcd11=311=33得,a+b=3c+d=3,所以b=1d=0所以A=2130.

7分(2)A=2130的特征多項式為f(λ)=.λ-2-1-3λ.=

-3)(λ+1)令f(λ)=0,可得λ1=3,λ2=-1,λ1=3時,α1=11,λ2=-1時,α2=1-3令β=mα1+α2,則β=40=3α1+α2,A5β=3×35α1-α2=36-136+3…14分.3.某會議室第一排共有8個座位,現(xiàn)有3人就座,若要求每人左右均有空位,那么不同的坐法種數(shù)為()A.12B.16C.24D.32答案:將空位插到三個人中間,三個人有兩個中間位置和兩個兩邊位置就是將空位分為四部分,五個空位四分只有1,1,1,2空位五差別,只需要空位2分別占在四個位置就可以有四種方法,另外三個人排列A33=6根據(jù)分步計數(shù)可得共有4×6=24故選C.4.已知點P是拋物線y2=2x上的一個動點,則點P到點(0,2)的距離與P到該拋物線準(zhǔn)線的距離之和的最小值為______.答案:依題設(shè)P在拋物線準(zhǔn)線的投影為P',拋物線的焦點為F,則F(12,0),依拋物線的定義知P到該拋物線準(zhǔn)線的距離為|PP'|=|PF|,則點P到點A(0,2)的距離與P到該拋物線準(zhǔn)線的距離之和d=|PF|+|PA|≥|AF|=(12)2+22=172.故為:172.5.若向量a=(1,1,x),b=(1,2,1),c=(1,1,1),滿足條件(c-a)?(2b)=-2,則x=______.答案:c-a=(0,0,1-x),(c-a)?(2b)

=(2,4,2)?(0,0,1-x)=2(1-x)=-2,解得x=2,故為2.6.H:x-y+z=2為坐標(biāo)空間中一平面,L為平面H上的一直線.已知點P(2,1,1)為L上距離原點O最近的點,則______為L的方向向量.答案:∵x-y+z=2為坐標(biāo)空間中一平面∴平面的一個法向量是n=(1,-1,1)設(shè)直線L的方向向量為d=(2,b,c)∵L在H上,∴d與平面H的法向量n=(1,-1,1)垂直故d?n=0?2-b+c=0∵P(2,1,1)為直線L上距離原點O最近的點,∴.OP⊥L故OP?d=0?(2,1,1)?(2,b,c)=0?4+b+c=0解得b=-1,c=-3故為:(2,-1,-3)7.半徑為R的球內(nèi)接一個正方體,則該正方體的體積為()A.22RB.4π3R3C.893R3D.193R3答案:∵半徑為R的球內(nèi)接一個正方體,設(shè)正方體棱長為a,正方體的對角線過球心,可得正方體對角線長為:a2+a2+a2=2R,可得a=2R3,∴正方體的體積為a3=(2R3)3=83R39,故選C;8.有四個游戲盤,將它們水平放穩(wěn)后,在上面扔一顆玻璃小球,若小球落在陰影部分,則可中獎,小明要想增加中獎機會,應(yīng)選擇的游戲盤的序號______

答案:(1)游戲盤的中獎概率為

38,(2)游戲盤的中獎概率為

14,(3)游戲盤的中獎概率為

26=13,(4)游戲盤的中獎概率為

13,(1)游戲盤的中獎概率最大.故為:(1).9.函數(shù)y=2x的值域為______.答案:因為:x≥0,所以:y=2x≥20=1.∴函數(shù)y=2x的值域為:[1,+∞).故為:[1,+∞).10.設(shè)某批電子手表正品率為,次品率為,現(xiàn)對該批電子手表進(jìn)行測試,設(shè)第X次首次測到正品,則P(X=3)等于()

A.

B.

C.

D.答案:C11.設(shè)四邊形ABCD中,有DC=12AB,且|AD|=|BC|,則這個四邊形是

______.答案:由DC=12AB知四邊形ABCD是梯形,又|AD|=|BC|,即梯形的對角線相等,所以,四邊形ABCD是等腰梯形.故為:等腰梯形.12.命題“存在x∈Z使x2+2x+m≤0”的否定是()

A.存在x∈Z使x2+2x+m>0

B.不存在x∈Z使x2+2x+m>0

C.對任意x∈Z使x2+2x+m≤0

D.對任意x∈Z使x2+2x+m>0答案:D13.閱讀下面的程序框圖,該程序運行后輸出的結(jié)果為______.答案:循環(huán)前,S=0,A=1,第1次判斷后循環(huán),S=1,A=2,第2次判斷并循環(huán),S=3,A=3,第3次判斷并循環(huán),S=6,A=4,第4次判斷并循環(huán),S=10,A=5,第5次判斷并循環(huán),S=15,A=6,第6次判斷并退出循環(huán),輸出S=15.故為:15.14.(上海卷理3文8)動點P到點F(2,0)的距離與它到直線x+2=0的距離相等,則P的軌跡方程為______.答案:由拋物線的定義知點P的軌跡是以F為焦點的拋物線,其開口方向向右,且p2=2,解得p=4,所以其方程為y2=8x.故為y2=8x15.若a1≤a2≤…≤an,而b1≥b2≥…≥bn或a1≥a2≥…≥an而b1≤b2≤…≤bn,證明:a1b1+a2b2+…+anbnn≤(a1+a2+…+ann)?(b1+b2+…+bnn).當(dāng)且僅當(dāng)a1=a2=…=an或b1=b2=…=bn時等號成立.答案:證明不妨設(shè)a1≤a2≤…≤an,b1≥b2≥…≥bn.則由排序原理得:a1b1+a2b2+…+anbn=a1b1+a2b2+…+anbna1b1+a2b2+…+anbn≤a1b2+a2b3+…+anb1a1b1+a2b2+…+anbn≤a1b3+a2b4+…+an-1b1+anb2…a1b1+a2b2+…+anbn≤a1bn+a2b1+…+anbn-1.將上述n個式子相加,得:n(a1b1+a2b2+…+anbn)≤(a1+a2+…+an)(b1+b2+…+bn)上式兩邊除以n2,得:a1b1+a2b2+…+anbnn≤(a1+a2+…+ann)(b1+b2+…+bnn)等號當(dāng)且僅當(dāng)a1=a2=…=an或b1=b2=…=bn時成立.16.設(shè)斜率為2的直線l過拋物線y2=ax(a>0)的焦點F,且和y軸交于點A,若△OAF(O為坐標(biāo)原點)的面積為4,則拋物線的方程為______.答案:焦點坐標(biāo)(a4,0),|0F|=a4,直線的點斜式方程y=2(x-a4)在y軸的截距是-a2S△OAF=12×a4×a2=4∴a2=64,∵a>0∴a=8,∴y2=8x故為:y2=8x17.執(zhí)行下列程序后,輸出的i的值是()

A.5

B.6

C.10

D.11答案:D18.已知雙曲線的漸近線方程為2x±3y=0,F(xiàn)(0,-5)為雙曲線的一個焦點,則雙曲線的方程為()

A.

B.

C.

D.答案:B19.下表是x與y之間的一組數(shù)據(jù),則y關(guān)于x的線性回歸方程

必過點()

x

0

1

2

3

y

1

3

5

7

A.(2,2)

B.(1.5,2)

C.(1,2)

D.(1.5,4)答案:D20.兩圓相交于點A(1,3)、B(m,-1),兩圓的圓心均在直線x-y+c=0上,則m+c的值為(

A.3

B.2

C.-1

D.0答案:A21.已知圓的方程是(x-2)2+(y-3)2=4,則點P(3,2)滿足()

A.是圓心

B.在圓上

C.在圓內(nèi)

D.在圓外答案:C22.已知:正四棱柱ABCD—A1B1C1D1中,底面邊長為2,側(cè)棱長為4,E、F分別為棱AB、BC的中點.

(1)求證:平面B1EF⊥平面BDD1B1;

(2)求點D1到平面B1EF的距離.答案:(1)證明略(2)解析:(1)

建立如圖所示的空間直角坐標(biāo)系,則D(0,0,0),B(2,2,0),E(2,,0),F(xiàn)(,2,0),D1(0,0,4),B1(2,2,4).=(-,,0),=(2,2,0),=(0,0,4),∴·=0,·=0.∴EF⊥DB,EF⊥DD1,DD1∩BD=D,∴EF⊥平面BDD1B1.又EF平面B1EF,∴平面B1EF⊥平面BDD1B1.(2)

由(1)知=(2,2,0),=(-,,0),=(0,-,-4).設(shè)平面B1EF的法向量為n,且n=(x,y,z)則n⊥,n⊥即n·=(x,y,z)·(-,,0)=-x+y=0,n·=(x,y,z)·(0,-,-4)=-y-4z=0,令x=1,則y=1,z=-,∴n="(1,1,-")∴D1到平面B1EF的距離d===.23.圓x2+y2-6x+4y+12=0與圓x2+y2-14x-2y+14=0的位置關(guān)系是______.答案:∵圓x2+y2-6x+4y+12=0化成標(biāo)準(zhǔn)形式,得(x-3)2+(y+2)2=1∴圓x2+y2-6x+4y+12=0的圓心為C1(3,-2),半徑r1=1同理可得圓x2+y2-14x-2y+14=0的C2(7,1),半徑r2=6∵兩圓的圓心距|C1C2|=(7-3)2+(1+2)2=5∴|C1C2|=r2-r1=5,可得兩圓的位置關(guān)系是內(nèi)切故為:內(nèi)切24.命題“若A∩B=A,則A∪B=B”的逆否命題是()A.若A∪B=B,則A∩B=AB.若A∩B≠A,則A∪B≠BC.若A∪B≠B,則A∩B≠AD.若A∪B≠B,則A∩B=A答案:∵“A∩B=A”的否定是“A∩B≠A”,∴命題“若A∩B=A,則A∪B=B”的逆否命題是“若A∪B≠B,則A∩B≠A”.故選C.25.如圖,圓O的直徑AB=6,C為圓周上一點,BC=3,過C作圓的切線l,過A作l的垂線AD,AD分別與直線l、圓交于點D、E.求∠DAC的度數(shù)與線段AE的長.答案:如圖,連接OC,因BC=OB=OC=3,因此∠CBO=60°,由于∠DCA=∠CBO,所以∠DCA=60°,又AD⊥DC得∠DAC=30°;(5分)又因為∠ACB=90°,得∠CAB=30°,那么∠EAB=60°,從而∠ABE=30°,于是AE=12AB=3.(10分)26.在統(tǒng)計中,樣本的標(biāo)準(zhǔn)差可以近似地反映總體的()

A.平均狀態(tài)

B.頻率分布

C.波動大小

D.最大值和最小值答案:C27.甲、乙兩人參加一次考試,已知在備選的10道試題中,甲能答對其中6題,乙能答對其中8題.若規(guī)定每次考試分別都從這10題中隨機抽出3題進(jìn)行測試,至少答對2題算合格.

(1)分別求甲、乙兩人考試合格的概率;

(2)求甲、乙兩人至少有一人合格的概率.答案:(1)(2)解析:(1)設(shè)甲、乙考試合格分別為事件A、B,甲考試合格的概率為P(A)=,乙考試合格的概率為P(B)=.(2)A與B相互獨立,且P(A)=,P(B)=,則甲、乙兩人至少有一人合格的概率為P(AB++A)=×+×+×=.28.已知|a|=1,|b|=2,<a,b>=60°,則|2a+b|=______.答案:∵|a|=1,|b|=2,<a,b>=60°,∴a?b=|a|×|b|cos60°=1由此可得(2a+b)2=4a2+4a?b+b2=4×12+4×1+22=12∴|2a+b|=(2a+b)2=23故為:2329.語句“若a>b,則a+c>b+c”是()

A.不是命題

B.真命題

C.假命題

D.不能判斷真假答案:B30.根據(jù)給出的程序語言,畫出程序框圖,并計算程序運行后的結(jié)果.

答案:程序框圖:模擬程序運行:當(dāng)j=1時,n=1,當(dāng)j=2時,n=1,當(dāng)j=3時,n=1,當(dāng)j=4時,n=2,…當(dāng)j=8時,n=2,…當(dāng)j=11時,n=2,當(dāng)j=12時,此時不滿足循環(huán)條件,退出循環(huán)程序運行后的結(jié)果是:2.31.已知a、b均為單位向量,它們的夾角為60°,那么|a+3b|=()

A.

B.

C.

D.4答案:C32.已知數(shù)列{an}的前n項和Sn=an2+bn=c

(a、b、c∈R),則“c=0”是“{an}是等差數(shù)列”的()A.充分非必要條件B.必要非充分條件C.充要條件D.既非充分也非必要條件答案:數(shù)列{an}的前n項和Sn=an2+bn+c根據(jù)等差數(shù)列的前n項和的公式,可以看出當(dāng)c=0時,Sn=an2+bn表示等差數(shù)列的前n項和,則數(shù)列是一個等差數(shù)列,當(dāng)數(shù)列是一個等差數(shù)列時,表示前n項和時,c=0,故前者可以推出后者,后者也可以推出前者,∴前者是后者的充要條件,故選C.33.若平面α,β的法向量分別為(-1,2,4),(x,-1,-2),并且α⊥β,則x的值為()A.10B.-10C.12D.-12答案:∵α⊥β,∴平面α,β的法向量互相垂直∴(-1,2,4)?(x,-1,-2)=0即-1×x+(-1)×2+4×(-2)=0解得x=-10故選B.34.如圖,AB為⊙O的直徑,弦AC、BD交于點P,若AP=5,PC=3,DP=5,則AB=______.

答案:∵AP=5,PC=3,DP=5由相交弦定理可得:BP=35又∵AB為直徑,∴∠ACB=90°∴BC=PB2-PC2=6∴AB=AC2-BC2=10故為:1035.一個長方體共一頂點的三個面的面積分別是2、3、6,這個長方體的體積是()A.6B.6C.32D.23答案:可設(shè)長方體同一個頂點上的三條棱長分別為a,b,c,則有ab=2、bc=3、ca=6,解得:a=2,b=1,c=3故這個長方體的體積是6故為B36.在Rt△ABC中,若∠C=90°,AC=b,BC=a,則△ABC外接圓半徑r=a2+b22.運用類比方法,若三棱錐的三條側(cè)棱兩兩互相垂直且長度分別為a,b,c,則其外接球的半徑R=______.答案:直角三角形外接圓半徑為斜邊長的一半,由類比推理可知若三棱錐的三條側(cè)棱兩兩互相垂直且長度分別為a,b,c,將三棱錐補成一個長方體,其外接球的半徑R為長方體對角線長的一半.故為a2+b2+c22故為:a2+b2+c2237.用數(shù)字1,2,3,4,5組成的無重復(fù)數(shù)字的四位偶數(shù)的個數(shù)為()

A.8

B.24

C.48

D.120答案:C38.Rt△ABC的直角邊AB在平面α內(nèi),頂點C在平面α外,則直角邊BC、斜邊AC在平面α上的射影與直角邊AB組成的圖形是()

A.線段或銳角三角形

B.線段與直角三角形

C.線段或鈍角三角形

D.線段、銳角三角形、直角三角形或鈍角三角形答案:B39.函數(shù)f(x)=x2+(a+1)x+2是定義在[a,b]上的偶函數(shù),則a+b=______.答案:∵函數(shù)f(x)=x2+(a+1)x+2是定義在[a,b]上的偶函數(shù),∴其定義域關(guān)于原點對稱,既[a,b]關(guān)于原點對稱.所以a與b互為相反數(shù)即a+b=0.故為:0.40.曲線的極坐標(biāo)方程ρ=4sinθ化為直角坐標(biāo)方程為______.答案:將原極坐標(biāo)方程ρ=4sinθ,化為:ρ2=4ρsinθ,化成直角坐標(biāo)方程為:x2+y2-4y=0,即x2+(y-2)2=4.故為:x2+(y-2)2=4.41.正方形ABCD的邊長為1,=,=,則|+|=(

A.0

B.2

C.

D.2答案:C42.若點M是△ABC的重心,則下列向量中與AB共線的是______.(填寫序號)

(1)AB+BC+AC

(2)AM+MB+BC

(3)AM+BM+CM

(4)3AM+AC.答案:對于(1)AB+BC+AC=2AC不與AB共線對于(2)AM+MB+BC=AB+BC=AC不與AB對于(3)AM+BM+CM=13(AB+AC)+13(BA+BC)+13(CA+CB)=0與AB對于(4)3AM+AC=AB+AC+AC不與AB故為:(3)43.已知點G是△ABC的重心,點P是△GBC內(nèi)一點,若,則λ+μ的取值范圍是()

A.

B.

C.

D.(1,2)答案:B44.設(shè)直線l過點P(-3,3),且傾斜角為56π

(1)寫出直線l的參數(shù)方程;

(2)設(shè)此直線與曲線C:x=2cosθy=4sinθ(θ為參數(shù))交A、B兩點,求|PA|?|PB|答案:(1)由于過點(a,b)傾斜角為α的直線的參數(shù)方程為

x=a+t?cosαy=b+t?sinα(t是參數(shù)),∵直線l經(jīng)過點P(-3,3),傾斜角α=5π6,故直線的參數(shù)方程是x=-3-32ty=3+12t(t是參數(shù)).…(5分)(2)因為點A,B都在直線l上,所以可設(shè)它們對應(yīng)的參數(shù)為t1和t1,則點A,B的坐標(biāo)分別為A(-3-32t1,3+12t1),B(2-32t1,3+12t1).把直線L的參數(shù)方程代入橢圓的方程4x2+y2=16整理得到t2+(123+3)t+11613=0①,…(8分)因為t1和t2是方程①的解,從而t1t2=11613,由t的幾何意義可知|PA||PB|=|t1||t2|=11613.…(10分)即|PA|?|PB|=11613.45.已知x=-3-2i(i為虛數(shù)單位)是一元二次方程x2+ax+b=0(a,b均為實數(shù))的一個根,則a+b=______.答案:∵x=-3-2i(i為虛數(shù)單位)是一元二次方程x2+ax+b=0(a,b均為實數(shù))的一個根,∴(-3-2i)2+a(-3-2i)+b=0,化為5-3a+b+(12-2a)i=0.根據(jù)復(fù)數(shù)相等即可得到5-3a+b=012-2a=0,解得a=6b=13.∴a+b=19.故為19.46.已知事件A與B互斥,且P(A)=0.3,P(B)=0.6,則P(A|.B)=______.答案:∵P(B)=0.6,∴P(.B)=0.4.又事件A與B互斥,且P(A)=0.3,∴P(A|.B)=P(A)P(.B)=0.30.4=34.故為:34.47.

若平面向量,,兩兩所成的角相等,||=||=1,||=3,則|++|=()

A.2

B.4

C.2或5

D.4或5答案:C48.設(shè)d1與d2都是直線Ax+By+C=0(AB≠0)的方向向量,則下列關(guān)于d1與d2的敘述正確的是()A.d1=d2B.d1與d2同向C.d1∥d2D.d1與d2有相同的位置向量答案:根據(jù)直線的方向向量定義,把直線上的非零向量以及與之共線的非零向量叫做直線的方向向量.因此,線Ax+By+C=0(AB≠0)的方向向量都應(yīng)該是共線的故選C.49.(理)

設(shè)O為坐標(biāo)原點,向量OA=(1,2,3),OB=(2,1,2),OP=(1,1,2),點Q在直線OP上運動,則當(dāng)QA?QB取得最小值時,點Q的坐標(biāo)為______.答案:∵OP=(1,1,2),點Q在直線OP上運動,設(shè)OQ=λOP=(λ,λ,2λ)又∵向量OA=(1,2,3),OB=(2,1,2),∴QA=(1-λ,2-λ,3-2λ),QB=(2-λ,1-λ,2-2λ)則QA?QB=(1-λ)×(2-λ)+(2-λ)×(1-λ)+(3-2λ)×(2-2λ)=6λ2-16λ+10易得當(dāng)λ=43時,QA?QB取得最小值.此時Q的坐標(biāo)為(43,43,83)故為:(43,43,83)50.設(shè)O是正方形ABCD的中心,向量,,,是(

A.平行向量

B.有相同終點的向量

C.相等向量

D.模相等的向量答案:D第2卷一.綜合題(共50題)1.極坐標(biāo)方程pcosθ=表示()

A.一條平行于x軸的直線

B.一條垂直于x軸的直線

C.一個圓

D.一條拋物線答案:B2.與x軸相切并和圓x2+y2=1外切的圓的圓心的軌跡方程是______.答案:設(shè)M(x,y)為所求軌跡上任一點,則由題意知1+|y|=x2+y2,化簡得x2=2|y|+1.因此與x軸相切并和圓x2+y2=1外切的圓的圓心的軌跡方程是x2=2|y|+1.故為x2=2|y|+1.3.在某次數(shù)學(xué)考試中,考生的成績X~N(90,100),則考試成績X位于區(qū)間(80,90)上的概率為______.答案:∵考生的成績X~N(90,100),∴正弦曲線關(guān)于x=90對稱,根據(jù)3?原則知P(80<x<100)=0.6829,∴考試成績X位于區(qū)間(80,90)上的概率為0.3413,故為:0.34134.已知平面向量=(3,1),=(x,3),且⊥,則實數(shù)x的值為()

A.9

B.1

C.-1

D.-9答案:C5.用樣本估計總體,下列說法正確的是()A.樣本的結(jié)果就是總體的結(jié)果B.樣本容量越大,估計就越精確C.樣本容量越小,估計就越精確D.樣本的方差可以近似地反映總體的平均狀態(tài)答案:用樣本估計總體時,樣本容量越大,估計就越精確,樣本的平均值可以近似地反映總體的平均狀態(tài),樣本的標(biāo)準(zhǔn)差可以近似地反映總體的波動狀態(tài),數(shù)據(jù)的方差越大,說明數(shù)據(jù)越不穩(wěn)定,樣本的結(jié)果可以粗略的估計總體的結(jié)果,但不就是總體的結(jié)果.故選B.6.若圖中直線l1,l2,l3的斜率分別為k1,k2,k3,則()A.k2<k1<k3B.k3<k2<k1C.k2<k3<k1D.k1<k3<k2答案:∵直線l2的傾斜角為鈍角,∴k2<0.直線l1,l3的傾斜角為銳角,且直線l1的傾斜角小于l3的傾斜角,∴0<k1<k3.故選A.7.已知函數(shù)f(x)=|x+2|-1,g(x)=|3-x|+2,若不等式f(x)-g(x)≤K的解集為R.則實數(shù)K的取值范圍為______.答案:因為函數(shù)f(x)=|x+2|-1,g(x)=|3-x|+2,所以f(x)-g(x)=|x+2|-|x-3|-3,它的幾何意義是數(shù)軸上的點到-2與到3距離的差再減去3,它的最大值為2,不等式f(x)-g(x)≤K的解集為R.所以K≥2.故為:[2,+∞).8.復(fù)數(shù)(12+32i)3i的值為______.答案:(12+32i)3i=(cosπ3+isinπ3)3cosπ2+isinπ2=cosπ+isinπcosπ2+

isinπ2=cosπ2+isinπ2=i,故為:i.9.甲、乙兩人對一批圓形零件毛坯進(jìn)行成品加工.根據(jù)需求,成品的直徑標(biāo)準(zhǔn)為100mm.現(xiàn)從他們兩人的產(chǎn)品中各隨機抽取5件,測得直徑(單位:mm)如下:

甲:105

102

97

96

100

乙:100

101

102

97

100

(I)分別求甲、乙的樣本平均數(shù)與方差,并由此估計誰加工的零件較好?

(Ⅱ)若從乙樣本的5件產(chǎn)品中再次隨機抽取2件,試求這2件產(chǎn)品中至少有一件產(chǎn)品直徑為100mm的概率.答案:(Ⅰ).x甲=15(105+102+97+96+100)=100,.x乙=15(100+101+102+97+100)=100S甲=15(25+4+3+16+0)=545=10.8,S乙=15(0+1+4+9+0)=145=2.8.∵S甲>S乙,據(jù)此估計乙加工的零件好;(Ⅱ)從乙樣本的5件產(chǎn)品中再次隨機抽取2件的全部結(jié)果有如下10種:(100,101),(100,102),(100,97),(100,100),(101,102),(101,97),(101,100),(102,97),(102,100),(97,100).設(shè)事件A為“其中至少有一件產(chǎn)品直徑為100”,則時間A有7種.故P(A)=710.10.平行線3x-4y-8=0與6x-8y+3=0的距離為______.答案:6x-8y+3=0可化為3x-4y+32=0,故所求距離為|-8-32|32+(-4)2=1910,故為:191011.直線3x+4y-7=0與直線6x+8y+3=0之間的距離是()

A.

B.2

C.

D.答案:C12.兩平行直線x+3y-4=0與2x+6y-9=0的距離是

______.答案:由直線x+3y-4=0取一點A,令y=0得到x=4,即A(4,0),則兩平行直線的距離等于A到直線2x+6y-9=0的距離d=|8-9|22+62=1210=1020.故為:102013.已知直線l的方程為x=2-4

ty=1+3

t,則直線l的斜率為______.答案:直線x=2-4

ty=1+3

t,所以直線的普通方程為:(y-1)=-34(x-2);所以直線的斜率為:-34;故為:-34.14.2012年3月2日,國家環(huán)保部發(fā)布了新修訂的《環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)》.其中規(guī)定:居民區(qū)的PM2.5年平均濃度不得超過35微克/立方米,PM2.5的24小時平均濃度不得超過75微克/立方米.

某城市環(huán)保部門隨機抽取了一居民區(qū)去年20天PM2.5的24小時平均濃度的監(jiān)測數(shù)據(jù),數(shù)據(jù)統(tǒng)計如下:

組別PM2.5濃度

(微克/立方米)頻數(shù)(天)頻率

第一組(0,25]50.25第二組(25,50]100.5第三組(50,75]30.15第四組(75,100)20.1(Ⅰ)從樣本中PM2.5的24小時平均濃度超過50微克/立方米的5天中,隨機抽取2天,求恰好有一天PM2.5的24小時平均濃度超過75微克/立方米的概率;

(Ⅱ)求樣本平均數(shù),并根據(jù)樣本估計總體的思想,從PM2.5的年平均濃度考慮,判斷該居民區(qū)的環(huán)境是否需要改進(jìn)?說明理由.答案:(Ⅰ)

設(shè)PM2.5的24小時平均濃度在(50,75]內(nèi)的三天記為A1,A2,A3,PM2.5的24小時平均濃度在(75,100)內(nèi)的兩天記為B1,B2.所以5天任取2天的情況有:A1A2,A1A3,A1B1,A1B2,A2A3,A2B1,A2B2,A3B1,A3B2共10種.

…(4分)其中符合條件的有:A1B1,A1B2,A2B1,A2B2,A3B1,A3B2共6種.

…(6分)所以所求的概率P=610=35.

…(8分)(Ⅱ)去年該居民區(qū)PM2.5年平均濃度為:12.5×0.25+37.5×0.5+62.5×0.15+87.5×0.1=40(微克/立方米).…(10分)因為40>35,所以去年該居民區(qū)PM2.5年平均濃度不符合環(huán)境空氣質(zhì)量標(biāo)準(zhǔn),故該居民區(qū)的環(huán)境需要改進(jìn).

…(12分)15.若向量a=(3,0),b=(2,2),則a與b夾角的大小是()

A.0

B.

C.

D.答案:B16.向量在基底{,,}下的坐標(biāo)為(1,2,3),則向量在基底{}下的坐標(biāo)為()

A.(3,4,5)

B.(0,1,2)

C.(1,0,2)

D.(0,2,1)答案:D17.在空間中,有如下命題:

①互相平行的兩條直線在同一個平面內(nèi)的射影必然是互相平行的兩條直線;

②若平面α∥平面β,則平面α內(nèi)任意一條直線m∥平面β;

③若平面α與平面β的交線為m,平面α內(nèi)的直線n⊥直線m,則直線n⊥平面β.

其中正確命題的個數(shù)為()個.

A.0

B.1

C.2

D.3答案:B18.在空間直角坐標(biāo)系O-xyz中,點P(4,3,7)關(guān)于坐標(biāo)平面yOz的對稱點的坐標(biāo)為______.答案:設(shè)所求對稱點為P'(x,y,z)∵關(guān)于坐標(biāo)平面yOz的對稱的兩個點,它們的縱坐標(biāo)、豎坐標(biāo)相等,而橫坐標(biāo)互為相反數(shù),∴x=-4,y=3,z=7即P關(guān)于坐標(biāo)平面yOz的對稱點的坐標(biāo)為P'(-4,3,7)故為:(-4,3,7)19.來自中國、英國、瑞典的乒乓球裁判各兩名,執(zhí)行北京奧運會的一號、二號和三號場地的乒乓球裁判工作,每個場地由兩名來自不同國家的裁判組成,則不同的安排方案總數(shù)有()

A.12種

B.48種

C.90種

D.96種答案:B20.為求方程x5-1=0的虛根,可以把原方程變形為(x-1)(x2+ax+1)(x2+bx+1)=0,由此可得原方程的一個虛根為______.答案:由題可知(x-1)(x2+ax+1)(x2+bx+1)=(x-1)[x4+(a+b)x3+(2+ab)x2+(a+b)x+1]比較系數(shù)可得a+b=1ab+2=1,∴a=1+52,b=1-52∴原方程的一個虛根為-1-5±10-25i4,-1+5±10+25i4中的一個故為:-1-5+10-25i4.21.4名同學(xué)分別報名參加學(xué)校的足球隊,籃球隊,乒乓球隊,每人限報其中的一個運動隊,不同報法的種數(shù)是()

A.34

B.43

C.24

D.12答案:A22.(幾何證明選講選做題)如圖4,A,B是圓O上的兩點,且OA⊥OB,OA=2,C為OA的中點,連接BC并延長交圓O于點D,則CD=______.答案:如圖所示:作出直徑AE,∵OA=2,C為OA的中點,∴OC=CA=1,CE=3.∵OB⊥OA,∴BC=22+12=5.由相交弦定理得BC?CD=EC?CA,∴CD=EC?CABC=3×15=355.故為355.23.已知a=(1,-2,1),a+b=(3,-6,3),則b等于()A.(2,-4,2)B.(-2,4,-2)C.(-2,0,-2)D.(2,1,-3)答案:∵a+b=(3,-6,3),∴b=a+b-a=(3,-6,3)-(1,-2,1)=(2,-4,2).故選A.24.某市某年一個月中30天對空氣質(zhì)量指數(shù)的監(jiān)測數(shù)據(jù)如下:

61

76

70

56

81

91

55

91

75

81

88

67

101

103

57

91

77

86

81

83

82

82

64

79

86

85

75

71

49

45

(Ⅰ)完成下面的頻率分布表;

(Ⅱ)完成下面的頻率分布直方圖,并寫出頻率分布直方圖中a的值;

(Ⅲ)在本月空氣質(zhì)量指數(shù)大于等于91的這些天中隨機選取兩天,求這兩天中至少有一天空氣質(zhì)量指數(shù)在區(qū)間[101,111)內(nèi)的概率.

分組頻數(shù)頻率[41,51)2230[51,61)3330[61,71)4430[71,81)6630[81,91)[91,101)[101,111)2230答案:(Ⅰ)如下圖所示.

…(4分)(Ⅱ)如下圖所示.…(6分)由己知,空氣質(zhì)量指數(shù)在區(qū)間[71,81)的頻率為630,所以a=0.02.…(8分)分組頻數(shù)頻率………[81,91)101030[91,101)3330………(Ⅲ)設(shè)A表示事件“在本月空氣質(zhì)量指數(shù)大于等于91的這些天中隨機選取兩天,這兩天中至少有一天空氣質(zhì)量指數(shù)在區(qū)間[101,111)內(nèi)”,由己知,質(zhì)量指數(shù)在區(qū)間[91,101)內(nèi)的有3天,記這三天分別為a,b,c,質(zhì)量指數(shù)在區(qū)間[101,111)內(nèi)的有2天,記這兩天分別為d,e,則選取的所有可能結(jié)果為:(a,b),(a,c),(a,d),(a,e),(b,c),(b,d),(b,e),(c,d),(c,e),(d,e).基本事件數(shù)為10.…(10分)事件“至少有一天空氣質(zhì)量指數(shù)在區(qū)間[101,111)內(nèi)”的可能結(jié)果為:(a,d),(a,e),(b,d),(b,e),(c,d),(c,e),(d,e).基本事件數(shù)為7,…(12分)所以P(A)=710.…(13分)25.圓ρ=2sinθ的圓心到直線2ρcosθ+ρsinθ+1=0的距離是______.答案:由ρ=2sinθ,化為直角坐標(biāo)方程為x2+y2-2y=0,其圓心是A(0,1),由2ρcosθ+ρsinθ+1=0得:化為直角坐標(biāo)方程為2x+y+1=0,由點到直線的距離公式,得+d=|1+1|5=255.故為255.26.”m>n>0”是”方程mx2+ny2=1表示焦點在y軸上的橢圓”的(

A.充分而不必要條件

B.必要而不充分條件

C.充要條件

D.既不充分也不必要條件答案:C27.設(shè)復(fù)數(shù)z=x+yi(x,y∈R)與復(fù)平面上點P(x,y)對應(yīng).

(1)設(shè)復(fù)數(shù)z滿足條件|z+3|+(-1)n|z-3|=3a+(-1)na(其中n∈N*,常數(shù)a∈

(32

,

3)),當(dāng)n為奇數(shù)時,動點P(x,y)的軌跡為C1;當(dāng)n為偶數(shù)時,動點P(x,y)的軌跡為C2,且兩條曲線都經(jīng)過點D(2,2),求軌跡C1與C2的方程;

(2)在(1)的條件下,軌跡C2上存在點A,使點A與點B(x0,0)(x0>0)的最小距離不小于233,求實數(shù)x0的取值范圍.答案:(1)方法1:①當(dāng)n為奇數(shù)時,|z+3|-|z-3|=2a,常數(shù)a∈

(32

3),軌跡C1為雙曲線,其方程為x2a2-y29-a2=1;…(3分)②當(dāng)n為偶數(shù)時,|z+3|+|z-3|=4a,常數(shù)a∈

(32

3),軌跡C2為橢圓,其方程為x24a2+y24a2-9=1;…(6分)依題意得方程組44a2+24a2-9=14a2-29-a2=1?4a4-45a2+99=0a4-15a2+36=0

,解得a2=3,因為32<a<3,所以a=3,此時軌跡為C1與C2的方程分別是:x23-y26=1(x>0),x212+y23=1.…(9分)方法2:依題意得|z+3|+|z-3|=4a|z+3|-|z-3|=2a?|z+3|=3a|z-3|=a…(3分)軌跡為C1與C2都經(jīng)過點D(2,2),且點D(2,2)對應(yīng)的復(fù)數(shù)z=2+2i,代入上式得a=3,…(6分)即|z+3|-|z-3|=23對應(yīng)的軌跡C1是雙曲線,方程為x23-y26=1(x>0);|z+3|+|z-3|=43對應(yīng)的軌跡C2是橢圓,方程為x212+y23=1.…(9分)(2)由(1)知,軌跡C2:x212+y23=1,設(shè)點A的坐標(biāo)為(x,y),則|AB|2=(x-x0)2+y2=(x-x0)2+3-14x2=34x2-2x0x+x20+3=34(x-43x0)2+3-13x20,x∈[-23,23]…(12分)當(dāng)0<43x0≤23即0<x0≤332時,|AB|2min=3-13x20≥43?0<x0≤5當(dāng)43x0>23即x0>332時,|AB|min=|x0-23|≥233?x0≥833,…(16分)綜上,0<x0≤5或x0≥833.…(18分)28.對總數(shù)為N的一批零件抽取一個容量為30的樣本,若每個零件被抽取的概率為0.25,則N等于()A.150B.200C.120D.100答案:∵每個零件被抽取的概率都相等,∴30N=0.25,∴N=120.故選C.29.“龜兔賽跑”講述了這樣的故事:領(lǐng)先的兔子看著慢慢爬行的烏龜,驕傲起來,睡了一覺,當(dāng)它醒來時,發(fā)現(xiàn)烏龜快到終點了,于是急忙追趕,但為時已晚,烏龜還是先到達(dá)了終點…,用S1、S2分別表示烏龜和兔子所行的路程,t為時間,則下圖與故事情節(jié)相吻合的是()

A.

B.

C.

D.

答案:B30.方程(x2-9)2(x2-y2)2=0表示的圖形是()

A.4個點

B.2個點

C.1個點

D.四條直線答案:D31.已知復(fù)數(shù)w滿足w-4=(3-2w)i(i為虛數(shù)單位),z=5w+|w-2|,求一個以z為根的實系數(shù)一元二次方程.答案:[解法一]∵復(fù)數(shù)w滿足w-4=(3-2w)i,∴w(1+2i)=4+3i,∴w(1+2i)(1-2i)=(4+3i)(1-2i),∴5w=10-5i,∴w=2-i.∴z=52-i+|2-i-2|=5(2+i)(2-i)(2+i)+1=2+i+1=3+i.若實系數(shù)一元二次方程有虛根z=3+i,則必有共軛虛根.z=3-i.∵z+.z=6,z?.z=10,∴所求的一個一元二次方程可以是x2-6x+10=0.[解法二]設(shè)w=a+b,(a,b∈Z),∴a+bi-4=3i-2ai+2b,得a-4=2bb=3-2a解得a=2b=-1,∴w=2-i,以下解法同[解法一].32.已知點P為△ABC所在平面上的一點,且,其中t為實數(shù),若點P落在△ABC的內(nèi)部,則t的取值范圍是()

A.

B.

C.

D.答案:D33.某工程隊有6項工程需要單獨完成,其中工程乙必須在工程甲完成后才能進(jìn)行,工程丙必須在工程乙完成后才能進(jìn)行,有工程丁必須在工程丙完成后立即進(jìn)行.那么安排這6項工程的不同排法種數(shù)是______.(用數(shù)字作答)答案:依題意,乙必須在甲后,丙必須在乙后,丙丁必相鄰,且丁在丙后,只需將剩余兩個工程依次插在由甲、乙、丙丁四個工程之間即可,第一個插入時有4種,第二個插入時共5個空,有5種方法;可得有5×4=20種不同排法.故為:2034.已知隨機變量ξ服從二項分布ξ~B(6,),則E(2ξ+4)=()

A.10

B.4

C.3

D.9答案:A35.參數(shù)方程(θ為參數(shù))化為普通方程是()

A.2x-y+4=0

B.2x+y-4=0

C.2x-y+4=0,x∈[2,3]

D.2x+y-4=0,x∈[2,3]答案:D36.點P(1,2,2)到原點的距離是()

A.9

B.3

C.1

D.5答案:B37.如圖,直線l1,l2,l3的斜率分別為k1,k2,k3,則()

A.k1>k2>k3

B.k3>k2>k1

C.k2>k1>k3

D.k3>k1>k2

答案:C38.如圖,在△ABC中,∠ACB=90°,AB=8,∠BAC=60°,PC⊥平面ABC,PC=4,M為AB邊上的一個動點,求PM的最小值.答案:過C作CM⊥AB,連接PM,因為PC⊥AB,所以AB⊥平面PCM,所以PM⊥AB,此時PM最短,∵∠BAC=60°,AB=8,∴AC=AB?cos60°=4.∴CM=AC?sin60°=4?32=23.∴PM=PC2+CM2=16+12=27.39.化簡下列各式:

(1)AB+DF+CD+BC+FA=______;

(2)(AB+MB)+(BO+BC)+OM=______.答案:(1)AB+DF+CD+BC+FA=(AB+BC+CD+DF)+FA=AF+FA=0;(2)(AB+MB)+(BO+BC)+OM=(AB+BC)+MB+(BO+OM)=AC+MB+BM=AC+(MB+BM)=AC+0=AC,故為:(1)0;(2)AC40.不等式的解集是

.答案:[0,2]解析:本小題主要考查根式不等式的解法,去掉根號是解根式不等式的基本思路,也考查了轉(zhuǎn)化與化歸的思想.原不等式等價于解得0≤x≤2.41.已知||=2,||=,∠AOB=150°,點C在∠AOB內(nèi),且∠AOC=30°,設(shè)(m,n∈R),則=()

A.

B.

C.

D.答案:B42.設(shè)直線的參數(shù)方程是x=2+12ty=3+32t,那么它的斜截式方程是______.答案:∵直線的參數(shù)方程為x=2+12ty=3+32t(t為參數(shù)),消去參數(shù)化為普通方程可得y-3=3(x-2),那么它的斜截式方程是y=3x+3-23.故為:y=3x+3-23.43.設(shè)α∈[0,π],則方程x2sinα+y2cosα=1不能表示的曲線為()

A.橢圓

B.雙曲線

C.拋物線

D.圓答案:C44.如圖,AC、BC分別是直角三角形ABC的兩條直角邊,且AC=3,BC=4,以AC為直徑作圓與斜邊AB交于D,則BD=______.答案:連CD,在Rt△ABC中,因為AC、BC的長分別為3cm、4cm,所以AB=5cm,∵AC為直徑,∴∠ADC=90°,∵∠B公共角,可得Rt△BDC∽Rt△BCA,∴BD=165,故為:16545.已知a=20.5,,,則a,b,c的大小關(guān)系是()

A.a(chǎn)>c>b

B.a(chǎn)>b>c

C.c>b>a

D.c>a>b答案:B46.若函數(shù)y=ax(a>1)在[0,1]上的最大值與最小值之和為3,則a=______.答案:①當(dāng)0<a<1時函數(shù)y=ax在[0,1]上為單調(diào)減函數(shù)∴函數(shù)y=ax在[0,1]上的最大值與最小值分別為1,a∵函數(shù)y=ax在[0,1]上的最大值與最小值和為3∴1+a=3∴a=2(舍)②當(dāng)a>1時函數(shù)y=ax在[0,1]上為單調(diào)增函數(shù)∴函數(shù)y=ax在[0,1]上的最大值與最小值分別為a,1∵函數(shù)y=ax在[0,1]上的最大值與最小值和為3∴1+a=3∴a=2故為:2.47.|a|=4,|b|=5,|a+b|=8,則a與b的夾角為______.答案:設(shè)a與b的夾角為θ因為|a|=4,|b|=5,|a+b|=8,所以a2+2a?b+b2=64即16+2×4×5cosθ+25=64解得cosθ=2340所以θ=arccos2340故為arccos234048.對于數(shù)25,規(guī)定第1次操作為23+53=133,第2次操作為13+33+33=55,如此反復(fù)操作,則第2012次操作后得到的數(shù)是

()A.25B.250C.55D.133答案:第1次操作為23+53=133,第2次操作為13+33+33=55,第3次操作為53+53=250,第4次操作為23+53+03=133∴操作結(jié)果,以3為周期,循環(huán)出現(xiàn)∵2012=3×670+2∴第2012次操作后得到的數(shù)與第2次操作后得到的數(shù)相同∴第2012次操作后得到的數(shù)是55故選C.49.現(xiàn)有10個保送上大學(xué)的名額,分配給7所學(xué)校,每校至少有1個名額,名額分配的方法共有______種(用數(shù)字作答).答案:根據(jù)題意,將10個名額,分配給7所學(xué)校,每校至少有1個名額,可以轉(zhuǎn)化為10個元素之間有9個間隔,要求分成7份,每份不空;相當(dāng)于用6塊檔板插在9個間隔中,共有C96=84種不同方法.所以名額分配的方法共有84種.50.已知函數(shù)f(x)=x2+2,x≥13x,x<1,則f(f(0))=()A.4B.3C.9D.11答案:因為f(0)=30=1,所以f[f(0)]═f(1)=1+2=3.故選B.第3卷一.綜合題(共50題)1.已知鐳經(jīng)過100年,質(zhì)量便比原來減少4.24%,設(shè)質(zhì)量為1的鐳經(jīng)過x年后的剩留量為y,則y=f(x)的函數(shù)解析式為(x≥0)()A.0.0424x100B.0.9576x100C.0.0424100xD.0.9576100x答案:由題意可得,對于函數(shù),當(dāng)x=100時,y=95.76%=0.9576,結(jié)合選項檢驗選項A:x=100,y=0.0424,故排除A選項B:x=100,y=0.9576,故B正確故選:B解析:已知鐳經(jīng)過100年,質(zhì)量便比原來減少4.24%,設(shè)質(zhì)量為1的鐳經(jīng)過x年后的剩留量為y,則y=f(x)的函數(shù)解析式為(x≥0)()A.0.0424x100B.0.9576x100C.0.0424100x2.如圖,AB是半圓O的直徑,C是AB延長線上一點,CD切半圓于D,CD=4,AB=3BC,則AC的長是______.答案:∵CD是圓O的切線,∴由切割線定理得:CD2=CB×CA,∵AB=3BC,設(shè)BC=x,由CA=4x,又CD=4∴16=x×4x,x=2∴則AC的長是8.故填:8.3.如圖,已知PA是圓O的切線,切點為A,PO交圓O于B、C兩點,PA=3,PB=1,則∠C=______.答案:∵PA切圓O于A點,PBC是圓O的割線∴PA2=PB?PC,可得(3)2=1×PC,得PC=3∵點O在BC上,即BC是圓O的直徑,∴∠ABC=90°,由弦切角定理,得∠PAB=∠C,∠PAC=90°+∠C∴△PAC中,根據(jù)正弦定理,得PAsinC=PCsin∠PAC即3sinC=3sin(90°+C),整理得tanC=33∵∠C是銳角,∴∠C=30°.故為:30°4.從某校隨機抽取了100名學(xué)生,將他們的體重(單位:kg)數(shù)據(jù)繪制成頻率分布直方圖(如圖),由圖中數(shù)據(jù)可知m=______,所抽取的學(xué)生中體重在45~50kg的人數(shù)是______.答案:由頻率分步直方圖知,(0.02+m+0.06+0.02)×5=1,∴m=0.1,∴所抽取的體重在45~50kg的人數(shù)是0.1×5×100=50人,故為:0.1;505.設(shè)a1,a2,…,a2n+1均為整數(shù),性質(zhì)P為:對a1,a2,…,a2n+1中任意2n個數(shù),存在一種分法可將其分為兩組,每組n個數(shù),使得兩組所有元素的和相等求證:a1,a2,…,a2n+1全部相等當(dāng)且僅當(dāng)a1,a2,…,a2n+1具有性質(zhì)P.答案:證明:①當(dāng)a1,a2,…,a2n+1全部相等時,從中任意2n個數(shù),將其分為兩組,每組n個數(shù),兩組所有元素的和相等,故性質(zhì)P成立.②下面證明:當(dāng)a1,a2,…,a2n+1具有性質(zhì)P時,a1,a2,…,a2n+1全部相等.反證法:假設(shè)a1,a2,…,a2n+1不全部相等,則其中至少有一個整數(shù)和其它的整數(shù)不同,不妨設(shè)此數(shù)為a1,若a1在取出的2n個數(shù)中,將其分為兩組,每組n個數(shù),則a1在的那個組所有元素的和與另一個組所有元素的和不相等,這與性質(zhì)P矛盾,故假設(shè)不成立,所以,當(dāng)a1,a2,…,a2n+1具有性質(zhì)P時,a1,a2,…,a2n+1全部相等.綜上,a1,a2,…,a2n+1全部相等當(dāng)且僅當(dāng)a1,a2,…,a2n+1具有性質(zhì)P.6.“x2>2012”是“x2>2011”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案:由于“x2>2

012”時,一定有“x2>2

011”,反之不成立.所以“x2>2

012”是“x2>2

011”的充分不必要條件.故選A.7.直線x+ky=0,2x+3y+8=0和x-y-1=0交于一點,則k的值是()

A.

B.-

C.2

D.-2答案:B8.若曲線x24+k+y21-k=1表示雙曲線,則k的取值范圍是

______.答案:要使方程為雙曲線方程需(4+k)(1-k)<0,即(k-1)(k+4)>0,解得k>1或k<-4故為(-∞,-4)∪(1,+∞)9.過點M(0,1)作直線,使它被兩直線l1:x-3y+10=0,l2:2x+y-8=0所截得的線段恰好被M所平分,求此直線方程.答案:設(shè)所求直線與已知直線l1,l2分別交于A、B兩點.∵點B在直線l2:2x+y-8=0上,故可設(shè)B(t,8-2t).又M(0,1)是AB的中點,由中點坐標(biāo)公式得A(-t,2t-6).∵A點在直線l1:x-3y+10=0上,∴(-t)-3(2t-6)+10=0,解得t=4.∴B(4,0),A(-4,2),故所求直線方程為:x+4y-4=0.10.如果一個圓錐的正視圖是邊長為2的等邊三角形,則該圓錐的表面積是______.答案:由已知,圓錐的底面直徑為2,母線為2,則這個圓錐的表面積是12×2π×2+π?12=3π.故:3π.11.從甲、乙兩人手工制作的圓形產(chǎn)品中,各自隨機抽取6件,測得其直徑如下(單位:cm):

甲:9.00,9.20,9.00,8.50,9.10,9.20

乙:8.90,9.60,9.50,8.54,8.60,8.90

據(jù)以上數(shù)據(jù)估計兩人的技術(shù)穩(wěn)定性,結(jié)論是()

A.甲優(yōu)于乙

B.乙優(yōu)于甲

C.兩人沒區(qū)別

D.無法判斷答案:A12.如圖,在⊙O中,AB是弦,AC是⊙O的切線,A是切點,過

B作BD⊥AC于D,BD交⊙O于E點,若AE平分

∠BAD,則∠BAD=()

A.30°

B.45°

C.50°

D.60°

答案:D13.如圖,AB是⊙O的直徑,點D在AB的延長線上,BD=OB,CD與⊙O切于C,那么∠CAB═______.答案:連接OC,BC.∵CD是切線,∴OC⊥CD.∵BD=OB,∴BC=OB=OC.∴∠ABC=60°.∵AB是直徑,∴∠ACB=90°,∴∠CAB=30°故為:30°14.由9個正數(shù)組成的矩陣

中,每行中的三個數(shù)成等差數(shù)列,且a11+a12+a13,a21+a22+a23,a31+a32+a33成等比數(shù)列,給出下列判斷:①第2列a12,a22,a32必成等比數(shù)列;②第1列a11,a21,a31不一定成等比數(shù)列;③a12+a32≥a21+a23;④若9個數(shù)之和等于9,則a22≥1.其中正確的個數(shù)有()

A.1個

B.2個

C.3個

D.4個答案:B15.如圖,菱形ABCD的對角線AC和BD相交于O點,E,F(xiàn),G,H分別是AB,BC,CD,DA的中點,求證:E,F(xiàn),G,H四個點在以O(shè)為圓心的同一個圓上.答案:連接OE,OF,OG,OH.∵四邊形ABCD為菱形,∴AB=BC=CD=DA,且BD⊥AC.∵E、F、GH分別為AB、BC、CD、DA的中點,∴OE=OF=OG=OH=12AB,∴E、F、G、H四點在以O(shè)為圓心,12AB為半徑的圓上.16.如圖所示,PD⊥平面ABCD,且四邊形ABCD為正方形,AB=2,E是PB的中點,

cos〈,〉=.

(1)建立適當(dāng)?shù)目臻g坐標(biāo)系,寫出點E的坐標(biāo);

(2)在平面PAD內(nèi)求一點F,使EF⊥平面PCB.答案:(1)點E的坐標(biāo)是(1,1,1)(2)F是AD的中點時滿足EF⊥平面PCB解析:(1)如圖所示,以DA、DC、DP所在直線分別為x軸、y軸、z軸建立空間直角坐標(biāo)系,則A(2,0,0)、B(2,2,0)、C(0,2,0),設(shè)P(0,0,2m),則E(1,1,m),∴=(-1,1,m),=(0,0,2m).∴cos〈,〉==.解得m=1,∴點E的坐標(biāo)是(1,1,1).(2)∵F∈平面PAD,∴可設(shè)F(x,0,z).則=(x-1,-1,z-1),又=(2,0,0),=(0,2,-2)∵EF⊥平面PCB∴⊥,且⊥即∴∴,∴F點的坐標(biāo)為(1,0,0)即點F是AD的中點時滿足EF⊥平面PCB.17.已知:在△ABC中,AD為∠BAC的平分線,AD的垂直平分線EF與AD交于點E,與BC的延長線交于點F,若CF=4,BC=5,則DF=______.答案:連接FA,如下圖所示:∵EF垂直平分AD,∴FA=FD,∠FAD=∠FDA.即∠FAC+∠CAD=∠B+∠BAD.又∠CAD=∠BAD.故∠FAC=∠B;又∠AFC=∠BFA.∴△ABF∽△CAF.∴AF2=CF?BF=4?(4+5)=36∴DF=AF=6故為:618.參數(shù)方程(θ為參數(shù))化為普通方程是()

A.2x-y+4=0

B.2x+y-4=0

C.2x-y+4=0,x∈[2,3]

D.2x+y-4=0,x∈[2,3]答案:D19.參數(shù)方程(θ為參數(shù))表示的曲線是()

A.直線

B.圓

C.橢圓

D.拋物線答案:C20.如果方程x2+(m-1)x+m2-2=0的兩個實根一個小于1,另一個大于1,那么實數(shù)m的取值范圍是()

A.

B.(-2,0)

C.(-2,1)

D.(0,1)答案:C21.直線x=-3+ty=1-t(t是參數(shù))被圓x=5cosθy=5sinθ(θ是參數(shù))所截得的弦長是______.答案:把直線和圓的參數(shù)方程化為普通方程得:直線x+y+2=0,圓x2+y2=25,畫出函數(shù)圖象,如圖所示:過圓心O(0,0)作OC⊥AB,根據(jù)垂徑定理得到:AC=BC=12AB,連接OA,則|OA|=5,且圓心O到直線x+y+2=0的距離|OC|=|2|2=2,在直角△ACO中,根據(jù)勾股定理得:AC=23,所以AB=223,則直線被圓截得的弦長為223.故為:22322.如果雙曲線的焦距為6,兩條準(zhǔn)線間的距離為4,那么該雙曲線的離心率為()

A.

B.

C.

D.2答案:C23.滿足條件|z|=|3+4i|的復(fù)數(shù)z在復(fù)平面上對應(yīng)點的軌跡是______.答案:|z|=5,即點Z到原點O的距離為5∴z所對應(yīng)點的軌跡為以(0,0)為圓心,5為半徑的圓.24.若a2+b2=c2,求證:a,b,c不可能都是奇數(shù).答案:證明:假設(shè)a,b,c都是奇數(shù),則a2,b2,c2都是奇數(shù),得a2+b2為偶數(shù),而c2為奇數(shù),即a2+b2≠c2,這與a2+b2=c2相矛盾,所以假設(shè)不成立,故原命題成立.25.拋物線y2=4x的焦點坐標(biāo)為()

A.(0,1)

B.(1,0)

C.(0,2)

D.(2,0)答案:B26.用數(shù)學(xué)歸納法證明:12+22+32+…+n2=n(n+1)(2n+1)6.答案:證明:(1)當(dāng)n=1時,左邊=12=1,右邊=1×2×36=1,等式成立.(4分)(2)假設(shè)當(dāng)n=k時,等式成立,即12+22+32+…+k2=k(k+1)(2k+1)6(6分)那么,當(dāng)n=k+1時,12+22+32+…+k2+(k+1)2=k(k+1)(2k+1)6+(k+1)2=k(k+1)(2k+1)+6(k+1)26=(k+1)(2k2+7k+6)6=(k+1)(k+2)(2k+3)6=(k+1)[(k+1)+1][2(k+1)+1]6這就是說,當(dāng)n=k+1時等式也成立.(10分)根據(jù)(1)和(2),可知等式對任何n∈N*都成立.(12分)27.已知|a|<1,|b|<1,求證:<1.答案:證明略解析:∵<1<1a2+b2+2ab<1+2ab+a2b2a2b2-a2-b2+1>0

(a2-1)(b2-1)>0又|a|<1,|b|<1,∴(a2-1)(b2-1)>0.∴原不等式成立.28.用數(shù)學(xué)歸納法證明等式1+2+3+…+(n+3)=(n+3)(n+4)2(n∈N+)時,第一步驗證n=1時,左邊應(yīng)取的項是______答案:在等式1+2+3+…+(n+3)=(n+3)(n+4)2(n∈N+)中,當(dāng)n=1時,n+3=4,而等式左邊起始為1的連續(xù)的正整數(shù)的和,故n=1時,等式左邊的項為:1+2+3+4故為:1+2+3+429.如圖,在正方體OABC-O1A1B1C1中,棱長為2,E是B1B的中點,則點E的坐標(biāo)為()

A.(2,2,1)

B.(2,2,)

C.(2,2,)

D.(2,2,)

答案:A30.設(shè)橢圓=1和x軸正方向的交點為A,和y軸的正方向的交點為B,P為第一象限內(nèi)橢圓上的點,使四邊形OAPB面積最大(O為原點),那么四邊形OAPB面積最大值為()

A.a(chǎn)b

B.ab

C.a(chǎn)b

D.2ab答案:B31.已知如下等式:12=1×2×36,12+22=2×3×56,12+22+32=3×4×76,…當(dāng)n∈N*時,試猜想12+22+32+…+n2的值,并用數(shù)學(xué)歸納法給予證明.答案:由已知,猜想12+22+32+…+n2=n(n+1)(2n+1)6,下面用數(shù)學(xué)歸納法給予證明:(1)當(dāng)n=1時,由已知得原式成立;(2)假設(shè)當(dāng)n=k時,原式成立,即1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論