版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
長風(fēng)破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年安徽警官職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.若a2+b2=c2,求證:a,b,c不可能都是奇數(shù).答案:證明:假設(shè)a,b,c都是奇數(shù),則a2,b2,c2都是奇數(shù),得a2+b2為偶數(shù),而c2為奇數(shù),即a2+b2≠c2,這與a2+b2=c2相矛盾,所以假設(shè)不成立,故原命題成立.2.在某次數(shù)學(xué)考試中,考生的成績X~N(90,100),則考試成績X位于區(qū)間(80,90)上的概率為______.答案:∵考生的成績X~N(90,100),∴正弦曲線關(guān)于x=90對稱,根據(jù)3?原則知P(80<x<100)=0.6829,∴考試成績X位于區(qū)間(80,90)上的概率為0.3413,故為:0.34133.下列函數(shù)中,與函數(shù)y=1x有相同定義域的是()A.f(x)=lnxB.f(x)=1xC.f(x)=x3D.f(x)=ex答案:∵函數(shù)y=1x,∴x>0,A、∵f(x)=lnx,∴x>0,故A正確;B、∵f(x)=1x,∴x≠0,故B錯誤;C、f(x)=x3,其定義域為R,故C錯誤;D、f(x)=ex,其定義域為R,故D錯誤;故選A.4.(不等式選講選做題)
已知實數(shù)a、b、x、y滿足a2+b2=1,x2+y2=3,則ax+by的最大值為______.答案:因為a2+b2=1,x2+y2=3,由柯西不等式(a2+b2)(x2+y2)≥(ax+by)2,得3≥(ax+by)2,不且僅當ay=bx時取等號,所以ax+by的最大值為3.故為:3.5.當a>0時,設(shè)命題P:函數(shù)f(x)=x+ax在區(qū)間(1,2)上單調(diào)遞增;命題Q:不等式x2+ax+1>0對任意x∈R都成立.若“P且Q”是真命題,則實數(shù)a的取值范圍是()A.0<a≤1B.1≤a<2C.0≤a≤2D.0<a<1或a≥2答案:∵函數(shù)f(x)=x+ax在區(qū)間(1,2)上單調(diào)遞增;∴f′(x)≥0在區(qū)間(1,2)上恒成立,∴1-ax2≥0在區(qū)間(1,2)上恒成立,即a≤x2在區(qū)間(1,2)上恒成立,∴a≤1.且a>0…①又不等式x2+ax+1>0對任意x∈R都成立,∴△=a2-4<0,∴-2<a<2…②若“P且Q”是真命題,則P且Q都是真命題,故由①②的交集得:0<a≤1,則實數(shù)a的取值范圍是0<a≤1.故選A.6.如圖的算法的功能是______.輸出結(jié)果i=______,i+2=______.答案:框圖首先輸入變量i的值,判斷i(i+2)=624,執(zhí)行輸出i,i+2;否則,i=i+2.算法結(jié)束.故此算法執(zhí)行的是求積為624的兩個連續(xù)偶數(shù),i=24,i+2=26;故為:求積為624的兩個連續(xù)偶數(shù),24,26.7.設(shè)求證答案:證明略解析:左邊-右邊===
=
∴原不等式成立。證法二:左邊>0,右邊>0?!嘣坏仁匠闪ⅰ?.空間向量a=(2,-1,0),.b=(1,0,-1),n=(1,y,z),若n⊥a,n⊥b,則y+z=______.答案:∵n⊥a,n⊥b,∴n?a=0n?b=0,即2-y=01-z=0,解得y=2z=1,∴y+z=3.故為3.9.(考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評分)
A.(不等式選做題)不等式|x-5|+|x+3|≥10的解集是______.
B.(坐標系與參數(shù)方程選做題)在極坐標系中,圓ρ=-2sinθ的圓心的極坐標是______.
C.(幾何證明選做題)如圖,已知圓中兩條弦AB與CD相交于點F,E是AB延長線上一點,且DF=CF=22,BE=1,BF=2,若CE與圓相切,則線段CE的長為______.答案:A:當x<-3時不等式|x-5|+|x+3|≥10可化為:-(x-5)-(x+3)≥10解得:x≤-4當-3≤x≤5時不等式|x-5|+|x+3|≥10可化為:-(x-5)+(x+3)=8≥10恒不成立當x>5時不等式|x-5|+|x+3|≥10可化為:(x-5)+(x+3)≥10解得:x≥6故不等式|x-5|+|x+3|≥10解集為:(-∞,-4]∪[6,+∞).B:圓ρ=-2sinθ即ρ2=-2ρsinθ,即x2+y2+2y=0,即x2+(y+1)2=1.表示以(0,-1)為圓心,半徑等于1的圓,故圓心的極坐標為(1,3π2).C:由題意,DF=CF=22,BE=1,BF=2,由DF?FC=AF?BF,得22?22=AF?2,∴AF=4,又BF=2,BE=1,∴AE=7;由切割線定理得CE2=BE?EA=1×7=7.∴CE=7.故為:(-∞,-4]∪[6,+∞);(1,3π2)(不唯一);7.10.若e1、e2、e3是三個不共面向量,則向量a=3e1+2e2+e3,b=-e1+e2+3e3,c=2e1-e2-4e3是否共面?請說明理由.答案:解:設(shè)c=1a+2b,則即∵a、b不共線,向量a、b、c共面.11.棱長為1的正方體ABCD-A1B1C1D1的8個頂點都在球O的表面上,E,F(xiàn)分別是棱AA1,DD1的中點,則直線EF被球O截得的線段長為()
A.
B.1
C.1+
D.答案:D12.已知正三角形的外接圓半徑為63cm,求它的邊長.答案:設(shè)正三角形的邊長為a,則12a=Rcos30°=63?32=9(cm)∴a=18(cm).它的邊長為18cm.13.給出下列四個命題,其中正確的一個是()
A.在線性回歸模型中,相關(guān)指數(shù)R2=0.80,說明預(yù)報變量對解釋變量的貢獻率是80%
B.在獨立性檢驗時,兩個變量的2×2列聯(lián)表中對角線上數(shù)據(jù)的乘積相差越大,說明這兩個變量沒有關(guān)系成立的可能性就越大
C.相關(guān)指數(shù)R2用來刻畫回歸效果,R2越小,則殘差平方和越大,模型的擬合效果越好
D.線性相關(guān)系數(shù)r的絕對值越接近于1,表明兩個隨機變量線性相關(guān)性越強答案:D14.設(shè)兩圓C1、C2都和兩坐標軸相切,且都過點(4,1),則兩圓心的距離|C1C2|=______.答案:∵兩圓C1、C2都和兩坐標軸相切,且都過點(4,1),故兩圓圓心在第一象限的角平分線上,設(shè)圓心的坐標為(a,a),則有|a|=(a-4)2-(a-1)2,∴a=5+22,或a=5-22,故圓心為(5+22,5+22
)
和(5-22,5-22
),故兩圓心的距離|C1C2|=2[(5+22)-(5-22)]=8,故為:815.有以下命題:①如果向量與任何向量不能構(gòu)成空間向量的一組基底,那么的關(guān)系是不共線;②O,A,B,C為空間四點,且向量不構(gòu)成空間的一個基底,那么點O,A,B,C一定共面;③已知向量是空間的一個基底,則向量,也是空間的一個基底.其中正確的命題是[
]A.①②
B.①③
C.②③
D.①②③答案:C16.來自中國、英國、瑞典的乒乓球裁判各兩名,執(zhí)行北京奧運會的一號、二號和三號場地的乒乓球裁判工作,每個場地由兩名來自不同國家的裁判組成,則不同的安排方案總數(shù)有()
A.12種
B.48種
C.90種
D.96種答案:B17.若命題P(n)對n=k成立,則它對n=k+2也成立,又已知命題P(2)成立,則下列結(jié)論正確的是()
A.P(n)對所有自然數(shù)n都成立
B.P(n)對所有正偶數(shù)n成立
C.P(n)對所有正奇數(shù)n都成立
D.P(n)對所有大于1的自然數(shù)n成立答案:B18.將函數(shù)="2x"+1的圖像按向量平移得函數(shù)=的圖像則
A=(1)B=(1,1)C=()
D(1,1)答案:C解析:分析:本小題主要考查函數(shù)圖象的平移與向量的關(guān)系問題.依題由函數(shù)y=2x+1的圖象得到函數(shù)y=2x+1的圖象,需將函數(shù)y=2x+1的圖象向左平移1個單位,向下平移1個單位;故=(-1,-1).解:設(shè)=(h,k)則函數(shù)y=2x+1的圖象平移向量后所得圖象的解析式為y=2x-h+1+k∴∴∴=(-1,-1)故答案為:C.19.閱讀下面的程序框圖,則輸出的S=()A.14B.20C.30D.55答案:∵S1=0,i1=1;S2=1,i2=2;S3=5,i3=3;S4=14,i4=4;S5=30,i=5>4退出循環(huán),故為C.20.設(shè)雙曲線C:x2a2-y2=1(a>0)與直線l:x+y=1相交于兩個不同的點A、B.
(I)求雙曲線C的離心率e的取值范圍:
(II)設(shè)直線l與y軸的交點為P,且PA=512PB.求a的值.答案:(I)由C與l相交于兩個不同的點,故知方程組x2a2-y2=1x+y=1.有兩個不同的實數(shù)解.消去y并整理得(1-a2)x2+2a2x-2a2=0.①所以1-a2≠0.4a4+8a2(1-a2)>0.解得0<a<2且a≠1.雙曲線的離心率e=1+a2a=1a2+1.∵0<a<2且a≠1,∴e>62且e≠2即離心率e的取值范圍為(62,2)∪(2,+∞).(II)設(shè)A(x1,y1),B(x2,y2),P(0,1)∵PA=512PB,∴(x1,y1-1)=512(x2,y2-1).由此得x1=512x2.由于x1和x2都是方程①的根,且1-a2≠0,所以1712x2=-2a21-a2.x1?x2=512x22=-2a21-a2.消去x2,得-2a21-a2=28960由a>0,所以a=1713.21.閱讀程序框圖,運行相應(yīng)的程序,則輸出i的值為()A.3B.4C.5D.6答案:該程序框圖是循環(huán)結(jié)構(gòu)經(jīng)第一次循環(huán)得到i=1,a=2;經(jīng)第二次循環(huán)得到i=2,a=5;經(jīng)第三次循環(huán)得到i=3,a=16;經(jīng)第四次循環(huán)得到i=4,a=65滿足判斷框的條件,執(zhí)行是,輸出4故選B22.(參數(shù)方程與極坐標選講)在極坐標系中,圓C的極坐標方程為:ρ2+2ρcosθ=0,點P的極坐標為(2,π2),過點P作圓C的切線,則兩條切線夾角的正切值是______.答案:圓C的極坐標方程ρ2+2ρcosθ=0,化為普通方程為x2+y2+2x=0,即(x-1)2+y2=1.它表示以C(1,0)為圓心,以1為半徑的圓.點P的極坐標為(2,π2),化為直角坐標為(0,2).設(shè)兩條切線夾角為2θ,則sinθ=15,cosθ25,故tanθ=12.再由tan2θ=2tanθ1-tan2θ=43,故為43.23.設(shè)圓O1和圓O2是兩個定圓,動圓P與這兩個定圓都相切,則圓P的圓心軌跡不可能是()
A.
B.
C.
D.
答案:A24.若方程x2-3x+mx+m=0的兩根均在(0,+∞)內(nèi),則m的取值范圍是(
)
A.m≤1
B.0<m≤1
C.m>1
D.0<m<1答案:B25.已知一個學(xué)生的語文成績?yōu)?9,數(shù)學(xué)成績?yōu)?6,外語成績?yōu)?9.求他的總分和平均成績的一個算法為:
第一步:取A=89,B=96,C=99;
第二步:______;
第三步:______;
第四步:輸出計算的結(jié)果.答案:由題意,第二步,求和S=A+B+C,第三步,計算平均成績.x=A+B+C3.故為:S=A+B+C;.x=A+B+C3.26.圖為一個幾何體的三視國科,尺寸如圖所示,則該幾何體的體積為()A.23+π6B.23+4πC.33+π6D.33+4π3答案:由圖中數(shù)據(jù),下部的正三棱柱的高是3,底面是一個正三角形,其邊長為2,高為3,故其體積為3×12×2×3=33上部的球體直徑為1,故其半徑為12,其體積為4π3×(12)3=π6故組合體的體積是33+π6故選C27.用反證法證明:“方程ax2+bx+c=0,且a,b,c都是奇數(shù),則方程沒有整數(shù)根”正確的假設(shè)是方程存在實數(shù)根x0為()
A.整數(shù)
B.奇數(shù)或偶數(shù)
C.正整數(shù)或負整數(shù)
D.自然數(shù)或負整數(shù)答案:A28.拋物線頂點在坐標原點,以y軸為對稱軸,過焦點且與y軸垂直的弦長為16,則拋物線方程為______.答案:∵過焦點且與對稱軸y軸垂直的弦長等于p的2倍.∴所求拋物線方程為x2=±16y.故為:x2=±16y.29.某校高三年級舉行一次演講賽共有10位同學(xué)參賽,其中一班有3位,二班有2位,其它班有5位,若采用抽簽的方式確定他們的演講順序,則一班有3位同學(xué)恰好被排在一起(指演講序號相連),而二班的2位同學(xué)沒有被排在一起的概率為:()A.110B.120C.140D.1120答案:由題意知本題是一個古典概型,∵試驗發(fā)生包含的所有事件是10位同學(xué)參賽演講的順序共有:A1010;滿足條件的事件要得到“一班有3位同學(xué)恰好被排在一起而二班的2位同學(xué)沒有被排在一起的演講的順序”可通過如下步驟:①將一班的3位同學(xué)“捆綁”在一起,有A33種方法;②將一班的“一梱”看作一個對象與其它班的5位同學(xué)共6個對象排成一列,有A66種方法;③在以上6個對象所排成一列的7個間隙(包括兩端的位置)中選2個位置,將二班的2位同學(xué)插入,有A72種方法.根據(jù)分步計數(shù)原理(乘法原理),共有A33?A66?A72種方法.∴一班有3位同學(xué)恰好被排在一起(指演講序號相連),而二班的2位同學(xué)沒有被排在一起的概率為:P=A33?A66?A27A1010=120.故選B.30.直線y=2x+1的參數(shù)方程是()
A.(t為參數(shù))
B.(t為參數(shù))
C.(t為參數(shù))
D.(θ為參數(shù))
答案:B31.橢圓=1的焦點為F1,點P在橢圓上,如果線段PF1的中點M在y軸上,那么點M的縱坐標是()
A.±
B.±
C.±
D.±答案:A32.若A是圓x2+y2=16上的一個動點,過點A向y軸作垂線,垂足為B,則線段AB中點C的軌跡方程為()
A.x2+2y2=16
B.x2+4y2=16
C.2x2+y2=16
D.4x2+y2=16答案:D33.已知l∥α,且l的方向向量為(2,-8,1),平面α的法向量為(1,y,2),則y=______.答案:∵l∥α,∴l(xiāng)的方向向量(2,-8,1)與平面α的法向量(1,y,2)垂直,∴2×1-8×y+2=0,解得y=12.故為12.34.已知正三角形ABC的邊長為a,求△ABC的直觀圖△A′B′C′的面積.答案:如圖①、②所示的實際圖形和直觀圖.由②可知,A′B′=AB=a,O′C′=12OC=34a,在圖②中作C′D′⊥A′B′于D′,則C′D′=22O′C′=68a.∴S△A′B′C′=12A′B′?C′D′=12×a×68a=616a2.35.若函數(shù)y=f(x)的定義域是[12,2],則函數(shù)y=f(log2x)的定義域為______.答案:由題意知12≤log2x≤2,即log22≤log2x≤log24,∴2≤x≤4.故為:[2,4].36.已知橢圓中心在原點,一個焦點為(3,0),且長軸長是短軸長的2倍,則該橢圓的標準方程是______.答案:根據(jù)題意知a=2b,c=3又∵a2=b2+c2∴a2=4
b2=1∴x24+
y2=1故為:∴x24+
y2=1.37.(幾何證明選講選做題)如圖,已知四邊形ABCD內(nèi)接于⊙O,且AB為⊙O的直徑,直線MN切
⊙O于D,∠MDA=45°,則∠DCB=______.答案:連接BD,∵AB為⊙O的直徑,直線MN切⊙O于D,∠MDA=45°,∴∠ABD=45°,∠ADB=90°,∴∠DCB=∠ABD+∠ADB=45°+90°=135°.故為:135°.38.從四個公司按分層抽樣的方法抽取職工參加知識競賽,其中甲公司共有職工96人.若從甲、乙、丙、丁四個公司抽取的職工人數(shù)分別為12,21,25,43,則這四個公司的總?cè)藬?shù)為()
A.101
B.808
C.1212
D.2012答案:B39.|a|=4,a與b的夾角為30°,則a在b方向上的投影為______.答案:a在b方向上的投影為|a|cos30°=4×32=23故為:2340.設(shè)
是不共線的向量,(k,m∈R),則A、B、C三點共線的充要條件是()
A.k+m=0
B.k=m
C.km+1=0
D.km-1=0答案:D41.已知點(3,1)和(-4,6)在直線3x-2y+a=0的兩側(cè),則實數(shù)a的取值范圍是(
)
A.a<-7或a>24
B.a=7或a=24
C.-7<a<24
D.-24<a<7答案:C42.已知圓x2+y2=r2在曲線|x|+|y|=4的內(nèi)部,則半徑r的范圍是()A.0<r<22B.0<r<2C.0<r<2D.0<r<4答案:根據(jù)題意畫出圖形,如圖所示:可得曲線|x|+|y|=4表示邊長為42的正方形,如圖ABCD為正方形,x2+y2=r2表示以原點為圓心的圓,過O作OE⊥AB,∵邊AB所在直線的方程為x+y=4,∴|OE|=42=22,則滿足題意的r的范圍是0<r<22.故選A43.如圖,從圓O外一點P引兩條直線分別交圓O于點A,B,C,D,且PA=AB,PC=5,CD=9,則AB的長等于______.答案:∵PAB和PBC是圓O的兩條割線∴PA?PB=PC?PD又∵PA=AB,PC=5,CD=9,∴2AB2=5×(5+9)∴AB=35故為:3544.某地區(qū)居民生活用電分為高峰和低谷兩個時間段進行分時計價.該地區(qū)的電網(wǎng)銷售電價表如圖:高峰時間段用電價格表低谷時間段用電價格表高峰月用電量
(單位:千瓦時)高峰電價(單位:元/千瓦時)低谷月用電量
(單位:千瓦時)低谷電價(單位:
元/千瓦時)50及以下的部分0.56850及以下的部分0.288超過50至200的部分0.598超過50至200的部分0.318超過200的部分0.668超過200的部分0.388若某家庭5月份的高峰時間段用電量為200千瓦時,低谷時間段用電量為100千瓦時,則按這種計費方式該家庭本月應(yīng)付的電費為______元(用數(shù)字作答)答案:高峰時間段用電的電費為50×0.568+150×0.598=28.4+89.7=118.1(元),低谷時間段用電的電費為50×0.288+50×0.318=14.4+15.9=30.3(元),本月的總電費為118.1+30.3=148.4(元),故為:148.4.45.“sinx=siny”是“x=y”的()A.充要條件B.充分不必要條件C.必要不充分條件D.既不充分也不必要條件答案:∵“sinx=siny”不能推出“x=y”,例如sin30°=sin390°,但30°≠390°,即充分性不成立;反過來,若“x=y”,一定有“sinx=siny”,即必要性成立;∴“sinx=siny”是“x=y”的必要不充分條件.故選C.46.用反證法證明命題“在函數(shù)f(x)=x2+px+q中,|f(1)|,|f(2)|,|f(3)|至少有一個不小于”時,假設(shè)正確的是()
A.假設(shè)|f(1)|,|f(2)|,|f(3)|至多有一個小于
B.假設(shè)|f(1)|,|f(2)|,|f(3)|至多有兩個小于
C.假設(shè)|f(1)|,|f(2)|,|f(3)|都不小于
D.假設(shè)|f(1)|,|f(2)|,|f(3)|都小于答案:D47.在平面直角坐標系內(nèi)第二象限的點組成的集合為______.答案:∵平面直角坐標系內(nèi)第二象限的點,橫坐標小于0,縱坐標大于0,∴在平面直角坐標系內(nèi)第二象限的點組成的集合為{(x,y)|x<0且y>0},故為:{(x,y)|x<0且y>0}.48.拋擲兩枚骰子各一次,記第一枚骰子擲出的點數(shù)與第二枚骰子擲出的點數(shù)的差為X,則“X>4”表示試驗的結(jié)果為()
A.第一枚為5點,第二枚為1點
B.第一枚大于4點,第二枚也大于4點
C.第一枚為6點,第二枚為1點
D.第一枚為4點,第二枚為1點答案:C49.以拋物線的焦點弦為直徑的圓與其準線的位置關(guān)系是(
)
A.相切
B.相交
C.相離
D.以上均有可能答案:A50.在平行四邊形ABCD中,E和F分別是邊CD和BC的中點,若AC=λAE+μAF,其中λ、μ∈R,則λ+μ=______.答案:解析:設(shè)AB=a,AD=b,那么AE=12a+b,AF=a+12b,又∵AC=a+b,∴AC=23(AE+AF),即λ=μ=23,∴λ+μ=43.故為:43.第2卷一.綜合題(共50題)1.已知函數(shù)f(x)=x21+x2,那么f(1)+f(2)+f(12)+f(3)+f(13)+f(4)+f(14)=______.答案:∵f(x)=x21+x2,∴f(1x)=11+x2∴f(x)+f(1x)=1∴f(2)+f(12)=1,f(3)+f(13)=1,f(4)+f(14)=1,f(1)=12∴f(1)+f(2)+f(12)+f(3)+f(13)+f(4)+f(14)=72故為:722.如圖:在長方體ABCD-A1B1C1D1中,已知AB=4,AD=3,AA1=2,E,F(xiàn)分別是線段AB,BC上的點,且EB=FB=1.
(1)求二面角C-DE-C1的大??;
(2)求異面直線EC1與FD1所成角的大小;
(3)求異面直線EC1與FD1之間的距離.答案:(1)以A為原點AB,AD,AA1分別為x軸、y軸、z軸的正向建立空間直角坐標系,則有D(0,3,0),D1(0,3,2),E(3,0,0),F(xiàn)(4,1,0),C1(4,3,2).(1分)于是DE=(3,-3,0),EC1=(1,3,2),F(xiàn)D1=(-4,2,2)(3分)設(shè)向量n=(x,y,z)與平面C1DE垂直,則有n⊥DEn⊥EC1?3x-3y=0x+3y+2z=0?x=y=-12z.∴n=(-z2,-z2,z)=z2(-1,-1,2),其中z>0.取n0=(-1,-1,2),則n0是一個與平面C1DE垂直的向量,(5分)∵向量AA1=(0,0,2)與平面CDE垂直,∴n0與AA1所成的角θ為二面角C-DE-C1的平面角.(6分)∴cosθ=n0?AA1|n0||AA1|=-1×0-1×0+2×21+1+4×0+0+4=63.(7分)故二面角C-DE-C1的大小為arccos63.(8分)(2)設(shè)EC1與FD1所成角為β,(1分)則cosβ=EC1?FD1|EC1||FD1|=1×(-4)+3×2+2×21+1+4×0+0+4=2114(10分)故異面直線EC1與FD1所成角的大小為arccos2114(11分)(3)設(shè)m=(x,y,z)m⊥EC1m⊥FD1?m=(17,-57,1)又取D1C1=(4,0,0)$}}\overm}=(\frac{1}{7},-\frac{5}{7},1)$$}}\overC}_1}=(4,0,0)$(13分)設(shè)所求距離為d,則d=|m?D1C1||m|=4315$}}\overC}}_1}|}}{|\vecm|}=\frac{{4\sqrt{3}}}{15}$(14分).3.正方體ABCD-A1B1C1D1的棱長為1,點M是棱AB的中點,點P是平面ABCD上的一動點,且點P到直線A1D1的距離兩倍的平方比到點M的距離的平方大4,則點P的軌跡為()A.圓B.橢圓C.雙曲線D.拋物線答案:在平面ABCD上,以AD為x軸,以AB為y軸建立平面直角坐標系,則M(,12,0),設(shè)P(x,y)則|MP|2=y2+(x-12)2點P到直線A1D1的距離為x2+1由題意得4(x2+1)=
y2+(x-12)2+4即3(x+12)2-y2=74選C4.已知點M在z軸上,A(1,0,2),B(1,-3,1),且|MA|=|MB|,則點M的坐標是
______.答案:∵點M在z軸上,∴設(shè)點M的坐標為(0,0,z)又|MA|=|MB|,由空間兩點間的距離公式得:12+02+(z-2)2=12+32+(z-1)2解得:z=-3.故點M的坐標是(0,0,-3).故為:(0,0,-3).5.圓C1x2+y2-4y-5=0與圓C2x2+y2-2x-2y+1=0位置關(guān)系是()
A.內(nèi)含
B.內(nèi)切
C.相交
D.外切答案:A6.P為橢圓x225+y216=1上一點,F(xiàn)1,F(xiàn)2分別為其左,右焦點,則△PF1F2周長為______.答案:由題意知△PF1F2周長=2a+2c=10+6=16.7.如果關(guān)于x的不等式|x-4|-|x+5|≥b的解集為空集,則實數(shù)b的取值范圍為______.答案:|x-4|-|x+5|的幾何意義就是數(shù)軸上的點到4的距離與到-5的距離的差,差的最大值為9,如果關(guān)于x的不等式|x-4|-|x+5|≥b的解集為空集,則實數(shù)b的取值范圍為b>9;故為:b>9.8.一條直線的傾斜角的余弦值為32,則此直線的斜率為()A.3B.±3C.33D.±33答案:設(shè)直線的傾斜角為α,∵α∈[0,π),cosα=32∴α=π6因此,直線的斜率k=tanα=33故選:C9.如圖所示,CD為Rt△ABC斜邊AB邊上的中線,CE⊥CD,CE=103,連接DE交BC于點F,AC=4,BC=3.
求證:(1)△ABC∽△EDC;
(2)DF=EF.答案:證明:(1)∵CD為Rt△ABC斜邊AB邊上的中線∴CD=12AB=12AC2+BC2=52.∴CECD=10352=43=ACBC,∠ACB=∠DCE=90°.∴△ABC∽△EDC.(2)因為△ABC∽△EDC∴∠B=∠CDE,∠E=∠A.由CD為Rt△ABC斜邊AB邊上的中線得:CD=AD=DB?∠B=∠DCB,∠A=∠DCA∴∠DCB=∠CDE?DF=CF;又因為:∠DCA+∠DCB=∠DCB+∠BCE=90°;∴∠DCA=∠BCE=∠A=∠E∴CF=EF.∴DF=EF.10.函數(shù)y=f(x)對任意實數(shù)x,y都有f(x+y)=f(x)+f(y)+2xy.
(1)求f(0)的值;
(2)若f(1)=1,求f(2),f(3),f(4)的值,猜想f(n)的表達式并用數(shù)學(xué)歸納法證明你的結(jié)論;
(3)若f(1)≥1,求證:f(12n)>0(n∈N*).答案:(1)令x=y=0得f(0+0)=f(0)+f(0)+2×0×0?f(0)=0(2)f(1)=1,f(2)=f(1+1)=1+1+2=4f(3)=f(2+1)=4+1+2×2×1=9f(4)=f(3+1)=9+1+2×3×1=16猜想f(n)=n2,下用數(shù)學(xué)歸納法證明之.①當n=1時猜想成立.②假設(shè)n=k時猜想成立,即:f(k)=k2,那么f(k+1)=f(k)+f(1)+2k=k2+2k+1=(k+1)2.這就是說n=k+1時猜想也成立.對于一切n≥1,n∈N+猜想都成立.(3)f(1)≥1,則f(1)=2f(12)+2×12×12≥1?f(12)≥14>0假設(shè)n=k(k∈N*)時命題成立,即f(12k)≥122k>0,則f(12k)=2f(12k+1)+2×12k+1×12k+1≥122k?f(12k+1)≥122(k+1),由上知,則f(12n)>0(n∈N*).11.參數(shù)方程中當t為參數(shù)時,化為普通方程為(
)。答案:x2-y2=112.圓錐曲線G的一個焦點是F,與之對應(yīng)的準線是,過F作直線與G交于A、B兩點,以AB為直徑作圓M,圓M與的位置關(guān)系決定G
是何種曲線之間的關(guān)系是:______
圓M與的位置相離相切相交G
是何種曲線答案:設(shè)圓錐曲線過焦點F的弦為AB,過A、B分別向相應(yīng)的準線作垂線AA',BB',則由第二定義得:|AF|=e|AA'|,|BF|=e|BB'|,∴|AF|+|BF|2=|AA′|+|BB′|2
?
e.設(shè)以AB為直徑的圓半徑為r,圓心到準線的距離為d,即有r=de,橢圓的離心率
0<e<1,此時r<d,圓M與準線相離;拋物線的離心率
e=1,此時r=d,圓M與準線相切;雙曲線的離心率
e>1,此時r>d,圓M與準線相交.故為:橢圓、拋物線、雙曲線.13.過點A(-1,4)作圓C:(x-2)2+(y-3)2=1的切線l,求切線l的方程.答案:設(shè)方程為y-4=k(x+1),即kx-y+k+4=0∴d=|2k-3+k+4|k2+1=1∴4k2+3k=0∴k=0或k=-34∴切線l的方程為y=4或3x+4y-13=014.已知集合{2x,x+y}={7,4},則整數(shù)x=______,y=______.答案:∵{2x,x+y}={7,4},∴2x=4x+y=7或2x=7x+y=4解得x=2y=5或x=3.5y=0.5不是整數(shù),舍去故為:2,515.P是直線3x+y+1=0上一點,P到點Q(0,2)距離的最小值是______.答案:過點Q作直線的垂線段,當P是垂足時,線段PQ最短,故最小距離是點Q(0,2)到直線3x+y+1=0的距離d,d=|0+2+1|3+1=32=1.5.∴P到點Q(0,2)距離的最小值是1.5;故為1.5.16.如圖,在梯形ABCD中,對角線AC和BD交于點O,E、F分別是AC和BD的中點,分別寫出
(1)圖中與EF、CO共線的向量;
(2)與EA相等的向量.答案:(1)由圖可知,與EF共線的向量有:CD、AB;與CO共線的向量有:CE、CA、OE、OA、EA;(2)由E為CA的中點可知,CE=EA,即與EA相等的向量為CE;17.點P(4,-2)與圓x2+y2=4上任一點連線的中點軌跡方程是______.答案:設(shè)圓上任意一點為A(x1,y1),AP中點為(x,y),則x=x1+42y=y1-22,∴x1=2x-4y1=2y+2代入x2+y2=4得(2x-4)2+(2y+2)2=4,化簡得(x-2)2+(y+1)2=1.故為:(x-2)2+(y+1)2=118.已知,求證:.答案:證明略解析:因為是輪換對稱不等式,可考慮由局部證整體.,相加整理得.當且僅當時等號成立.【名師指引】綜合法證明不等式常用兩個正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)這一結(jié)論,運用時要結(jié)合題目條件,有時要適當變形.19.下面是一個算法的偽代碼.如果輸出的y的值是10,則輸入的x的值是______.答案:由題意的程序,若x≤5,y=10x,否則y=2.5x+5,由于輸出的y的值是10,當x≤5時,y=10x=10,得x=1;當x>5時,y=2.5x+5=10,得x=2,不合,舍去.則輸入的x的值是1.故為:1.20.已知偶函數(shù)f(x)的圖象與x軸有五個公共點,那么方程f(x)=0的所有實根之和為______.答案:∵函數(shù)y=f(x)是偶函數(shù)∴其圖象關(guān)于y軸對稱∴其圖象與x軸有五個交點也關(guān)于y軸對稱其中一個為0.另四個關(guān)于y軸對稱.∴方程f(x)=0的所有實根之和為0故為:0.21.用隨機數(shù)表法從100名學(xué)生(男生35人)中選20人作樣本,男生甲被抽到的可能性為()A.15B.2035C.35100D.713答案:由題意知,本題是一個等可能事件的概率,試驗發(fā)生包含的事件是用隨機數(shù)表法從100名學(xué)生選一個,共有100種結(jié)果,滿足條件的事件是抽取20個,∴根據(jù)等可能事件的概率公式得到P=20100=15,故選A.22.已知離心率為63的橢圓C:x2a
2+y2b2=1(a>b>0)經(jīng)過點P(3,1).
(1)求橢圓C的方程;
(2)過左焦點F1且不與x軸垂直的直線l交橢圓C于M、N兩點,若OM?ON=463tan∠MON(O為坐標原點),求直線l的方程.答案:(1)依題意,離心率為63的橢圓C:x2a
2+y2b2=1(a>b>0)經(jīng)過點P(3,1).∴3a
2+1b2=1,且e2=c2a2=a2-b2a2=23解得:a2=6,b2=2故橢圓方程為x26+y22=1…(4分)(2)橢圓的左焦點為F1(-2,0),則直線l的方程可設(shè)為y=k(x+2)代入橢圓方程得:(3k2+1)x2+12k2x+12k2-6=0設(shè)M(x1,y1),N(x2,y2),∴x1+x2=-12k23k2+1,x1?x2=12k2-63k2+1…(6分)由OM?ON=463tan∠MON得:|OM|?|ON|sin∠MON=436,∴S△OMN=236…(9分)又|MN|=1+k2|x1-x2|=26(1+k2)3k2+1,原點O到l的距離d=|2k|1+k2,則S△OMN=12|MN|d=6(1+k2)3k2+1?|2k|1+k2=236解得k=±33∴l(xiāng)的方程是y=±33(x+2)…(13分)(用其他方法解答參照給分)23.已知函數(shù)f(x)=2x,數(shù)列{an}滿足a1=f(0),且f(an+1)=(n∈N*),
(1)證明數(shù)列{an}是等差數(shù)列,并求a2010的值;
(2)分別求出滿足下列三個不等式:,
的k的取值范圍,并求出同時滿足三個不等式的k的最大值;
(3)若不等式對一切n∈N*都成立,猜想k的最大值,并予以證明。答案:解:(1)由,得,即,∴是等差數(shù)列,∴,∴。(2)由,得;,得;,得,,∴當k同時滿足三個不等式時,。(3)由,得恒成立,令,則,,∴,∵F(n)是關(guān)于n的單調(diào)增函數(shù),∴,∴。24.證明:已知a與b均為有理數(shù),且a和b都是無理數(shù),證明a+b也是無理數(shù).答案:證明:假設(shè)a+b是有理數(shù),則(a+b)(a-b)=a-b由a>0,b>0則a+b>0即a+b≠0∴a-b=a-ba+b∵a,b?Q且a+b∈Q∴a-ba+b∈Q即(a-b)∈Q這樣(a+b)+(a-b)=2a∈Q從而a?Q(矛盾)∴a+b是無理數(shù)25.“龜兔賽跑”講述了這樣的故事:領(lǐng)先的兔子看著慢慢爬行的烏龜,驕傲起來,睡了一覺,當它醒來時,發(fā)現(xiàn)烏龜快到終點了,于是急忙追趕,但為時已晚,烏龜還是先到達了終點…,用S1、S2分別表示烏龜和兔子所行的路程,t為時間,則下圖與故事情節(jié)相吻合的是()
A.
B.
C.
D.
答案:B26.已知α,β表示兩個不同的平面,m為平面α內(nèi)的一條直線,則“α⊥β”是“m⊥β”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案:由平面與平面垂直的判定定理知如果m為平面α內(nèi)的一條直線,m⊥β,則α⊥β,反過來則不一定所以“α⊥β”是“m⊥β”的必要不充分條件.故選B.27.某種肥皂原零售價每塊2元,凡購買2塊以上(包括2塊),商場推出兩種優(yōu)惠銷售辦法。第一種:一塊肥皂按原價,其余按原價的七折銷售;第二種:全部按原價的八折銷售。你在購買相同數(shù)量肥皂的情況下,要使第一種方法比第二種方法得到的優(yōu)惠多,最少需要買(
)塊肥皂。
A.5
B.2
C.3
D.4答案:D28.某校對文明班的評選設(shè)計了a,b,c,d,e五個方面的多元評價指標,并通過經(jīng)驗公式樣S=ab+cd+1e來計算各班的綜合得分,S的值越高則評價效果越好,若某班在自測過程中各項指標顯示出0<c<d<e<b<a,則下階段要把其中一個指標的值增加1個單位,而使得S的值增加最多,那么該指標應(yīng)為()A.a(chǎn)B.bC.cD.d答案:因a,b,cde都為正數(shù),故分子越大或分母越小時,S的值越大,而在分子都增加1的前提下,分母越小時,S的值增長越多,由于0<c<d<e<b<a,分母中d最小,所以c增大1個單位會使得S的值增加最多.故選C.29.如圖,AB是平面a的斜線段,A為斜足,若點P在平面a內(nèi)運動,使得△ABP的面積為定值,則動點P的軌跡是()A.圓B.橢圓C.一條直線D.兩條平行直線答案:本題其實就是一個平面斜截一個圓柱表面的問題,因為三角形面積為定值,以AB為底,則底邊長一定,從而可得P到直線AB的距離為定值,分析可得,點P的軌跡為一以AB為軸線的圓柱面,與平面α的交線,且α與圓柱的軸線斜交,由平面與圓柱面的截面的性質(zhì)判斷,可得P的軌跡為橢圓.30.已知x=-3-2i(i為虛數(shù)單位)是一元二次方程x2+ax+b=0(a,b均為實數(shù))的一個根,則a+b=______.答案:∵x=-3-2i(i為虛數(shù)單位)是一元二次方程x2+ax+b=0(a,b均為實數(shù))的一個根,∴(-3-2i)2+a(-3-2i)+b=0,化為5-3a+b+(12-2a)i=0.根據(jù)復(fù)數(shù)相等即可得到5-3a+b=012-2a=0,解得a=6b=13.∴a+b=19.故為19.31.某廠生產(chǎn)電子元件,其產(chǎn)品的次品率為5%.現(xiàn)從一批產(chǎn)品中任意的連續(xù)取出2件,寫出其中次品數(shù)ξ的概率分布.答案:依題意,隨機變量ξ~B(2,5%).所以,P(ξ=0)=C20(95%)2=0.9025,P(ξ=1)=C21(5%)(95%)=0.095P(ξ=2)=C22(5%)2=0.0025因此,次品數(shù)ξ的概率分布是:32.已知:如圖,四邊形ABCD內(nèi)接于⊙O,,過A點的切線交CB的延長線于E點,求證:AB2=BE·CD。
答案:證明:連結(jié)AC,因為EA切⊙O于A,所以∠EAB=∠ACB,因為,所以∠ACD=∠ACB,AB=AD,于是∠EAB=∠ACD,又四邊形ABCD內(nèi)接于⊙O,所以∠ABE=∠D,所以△ABE∽△CDA,于是,即AB·DA=BE·CD,所以。33.已知函數(shù)y=f(n),滿足f(1)=2,且f(n+1)=3f(n),n∈N+,則
f(3)的值為______.答案:∵f(1)=2,且f(n+1)=3f(n),n∈N+,∴f(2)=3f(1)=6,f(3)=f(2+1)=3f(2)=18,故為18.34.設(shè),則之間的大小關(guān)系是
.答案:b>a>c解析:略35.已知函數(shù)f(x)=|x+2|-1,g(x)=|3-x|+2,若不等式f(x)-g(x)≤K的解集為R.則實數(shù)K的取值范圍為______.答案:因為函數(shù)f(x)=|x+2|-1,g(x)=|3-x|+2,所以f(x)-g(x)=|x+2|-|x-3|-3,它的幾何意義是數(shù)軸上的點到-2與到3距離的差再減去3,它的最大值為2,不等式f(x)-g(x)≤K的解集為R.所以K≥2.故為:[2,+∞).36.求證:不論λ取什么實數(shù)時,直線(2λ-1)x+(λ+3)y-(λ-11)=0都經(jīng)過一個定點,并求出這個定點的坐標.答案:證明:直線(2λ-1)x+(λ+3)y-(λ-11)=0即λ(2x+y-1)+(-x+3y+11)=0,根據(jù)λ的任意性可得2x+y-1=0-x+3y+11=0,解得x=2y=-3,∴不論λ取什么實數(shù)時,直線(2λ-1)x+(λ+3)y-(λ-11)=0都經(jīng)過一個定點(2,-3).37.(選做題)方程ρ=cosθ與(t為參數(shù))分別表示何種曲線(
)。答案:圓,雙曲線38.用0.618法確定的試點,則經(jīng)過(
)次試驗后,存優(yōu)范圍縮小為原來的0.6184倍.答案:539.現(xiàn)有以下兩項調(diào)查:①某校高二年級共有15個班,現(xiàn)從中選擇2個班,檢查其清潔衛(wèi)生狀況;②某市有大型、中型與小型的商店共1500家,三者數(shù)量之比為1:5:9.為了調(diào)查全市商店每日零售額情況,抽取其中15家進行調(diào)查.完成①、②這兩項調(diào)查宜采用的抽樣方法依次是()A.簡單隨機抽樣法,分層抽樣法B.系統(tǒng)抽樣法,簡單隨機抽樣法C.分層抽樣法,系統(tǒng)抽樣法D.系統(tǒng)抽樣法,分層抽樣法答案:從15個班中選擇2個班,檢查其清潔衛(wèi)生狀況;總體個數(shù)不多,而且差異不大,故可采用簡單隨機抽樣的方法,1500家大型、中型與小型的商店的每日零售額存在較大差異,故可采用分層抽樣的方法故完成①、②這兩項調(diào)查宜采用的抽樣方法依次是簡單隨機抽樣法,分層抽樣法故選A40.已知向量a=(8,x,x).b=(x,1,2),其中x>0.若a∥b,則x的值為()
A.8
B.4
C.2
D.0答案:B41.若兩直線l1,l2的傾斜角分別為α1,α2,則下列四個命題中正確的是()
A.若α1<α2,則兩直線斜率k1<k2
B.若α1=α2,則兩直線斜率k1=k2
C.若兩直線斜率k1<k2,則α1<α2
D.若兩直線斜率k1=k2,則α1=α2答案:D42.已知指數(shù)函數(shù)f(x)=ax(a>0且a≠1)過點(3,8),求f(4)=______.答案:設(shè)指數(shù)函數(shù)為y=ax(a>0且a≠1)將(3,8)代入得8=a3解得a=2,所以y=2x,則f(4)=42=16故為16.43.用數(shù)學(xué)歸納法證明:“1×4+2×7+3×10+…+n(3n+1)=n(n+1)2,n∈N+”,當n=1時,左端為______.答案:在等式:“1×4+2×7+3×10+…+n(3n+1)=n(n+1)2,n∈N+”中,當n=1時,3n+1=4,而等式左邊起始為1×4的連續(xù)的正整數(shù)積的和,故n=1時,等式左端=1×4=4故為:4.44.如圖,O是正方形ABCD對角線的交點,四邊形OAED,OCFB都是正方形,在圖中所示的向量中:
(1)與AO相等的向量有
______;
(2)寫出與AO共線的向量有
______;
(3)寫出與AO的模相等的向量有
______;
(4)向量AO與CO是否相等?答
______.答案:(1)與AO相等的向量有BF(2)與AO共線的向量有DE,CO,BF(3)與AO的模相等的向量有DE,
DO,AE,CO,CF,BF,BO(4)模相等,方向相反故AO與CO不相等45.由直角△ABC勾上一點D作弦AB的垂線交弦于E,交股的延長線于F,交外接圓于G,求證:EG為EA和EB的比例中項,又為ED和EF的比例中項.
答案:證明:連接GA、GB,則△AGB也是一個直角三角形,因為EG為直角△AGB的斜邊AB上的高,所以,EG為EA和EB的比例中項,即EG2=EA?EB∵∠AFE=∠ABC,∴直角△AEF∽直角△DEB,EAEF=EDEB即EA?EB=ED?EF.又∵EG2=EA?EB,∴EG2=ED?EF(等量代換),故EG也是ED和EF的比例中項.46.直線2x-3y+10=0的法向量的坐標可以是答案:C47.給定兩個長度為1的平面向量OA和OB,它們的夾角為90°.如圖所示,點C在以O(shè)為圓心的圓弧AB上變動,若OC=xOA+yOB,其中x,y∈R,則xy的范圍是______.答案:由OC=xOA+yOB?OC2=x2OA2+y2OB2+2xyOA?OB,又|OC|=|OA|=|OB|=1,OA?OB=0,∴1=x2+y2≥2xy,得xy≤12,而點C在以O(shè)為圓心的圓弧AB上變動,得x,y∈[0,1],于是,0≤xy≤12,故為[0,12].48.甲袋中裝有3個白球和5個黑球,乙袋中裝有4個白球和6個黑球,現(xiàn)從甲袋中隨機取出一個球放入乙袋中,充分混合后,再從乙袋中隨機取出一個球放回甲袋中,則甲袋中白球沒有減少的概率為()A.944B.2544C.3544D.3744答案:白球沒有減少的情況有:①抓出黑球,抓入任意球,概率是:58.抓出白球,抓入白球,概率是38×511=1588,故所求事件的概率為58+1588=3544,故選C.49.已知二項分布ξ~B(4,12),則該分布列的方差Dξ值為______.答案:∵二項分布ξ~B(4,12),∴該分布列的方差Dξ=npq=4×12×(1-12)=1故為:150.已知圖形F上的點A按向量平移前后的坐標分別是和,若B()是圖形F上的又一點,則在F按向量平移后得到的圖形F,上B,的坐標是(
)A.B.C.D.答案:選D解析:設(shè)向量,則平移公式為依題意有∴平移公式為將B點坐標代入可得B,點的坐標為.所以選D.第3卷一.綜合題(共50題)1.中,是邊上的中線(如圖).
求證:.
答案:證明見解析解析:取線段所在的直線為軸,點為原點建立直角坐標系.設(shè)點的坐標為,點的坐標為,則點的坐標為.可得,,,.,..2.下列函數(shù)中,與函數(shù)y=x相等的是()A.y=(x)4B.y=5x5C.y=x2D.y=x2x答案:函數(shù)y=x的定義域為R,選項中A,D定義域不是R,是A、D不正確.選項C的對應(yīng)法則不同,C不正確.故選B.3.已知在平面直角坐標系xOy中,圓C的參數(shù)方程為x=3+3cosθy=1+3sinθ,(θ為參數(shù)),以O(shè)x為極軸建立極坐標系,直線l的極坐標方程為pcos(θ+π6)=0.
(1)寫出直線l的直角坐標方程和圓C的普通方程;
(2)求圓C截直線l所得的弦長.答案:(1)消去參數(shù)θ,得圓C的普通方程為(x-3)2+(y-1)2=9.(2分)由ρcos(θ+π6)=0,得32ρcosθ-12ρsinθ=0,∴直線l的直角坐標方程為3x-y=0.(5分)(2)圓心(3,1)到直線l的距離為d=|3×3-1|(3)2+12=1.(7分)設(shè)圓C直線l所得弦長為m,則m2=r2-d2=9-1=22,∴m=42.(10分)4.點B是點A(1,2,3)在坐標平面yOz內(nèi)的正投影,則|OB|等于()
A.
B.
C.
D.答案:B5.設(shè)P,Q為△ABC內(nèi)的兩點,且AP=mAB+nAC
(m,n>0)AQ=pAB+qAC
(p,q>0),則△ABP的面積與△ABQ的面積之比為______.答案:設(shè)P到邊AB的距離為h1,Q到邊AB的距離為h2,則△ABP的面積與△ABQ的面積之比為h1h2,設(shè)AB邊上的單位法向量為e,AB?e=0,則h1=|AP?e|=|(mAB+nAC)?e|=|m?AB?e+nAC?e|=|nAC?e|,同理可得h2=|qAC?e|,∴h1h2=|nq|=nq,故為n:q.6.已知P是以F1,F(xiàn)2為焦點的橢圓(a>b>0)上的一點,若PF1⊥PF2,tan∠PF1F2=,則此橢圓的離心率為()
A.
B.
C.
D.答案:D7.設(shè)△ABC是邊長為1的正三角形,則|CA+CB|=______.答案:∵△ABC是邊長為1的正三角形,∴|CA|=1,|CB|=1,CA?CB=1×1×cosπ3=12∴|CA+CB|=CA2+2CA?CB+CB2=1+1+
2×12=3,故為:38.將一枚骰子連續(xù)拋擲600次,請你估計擲出的點數(shù)大于2的大約是______次.答案:一顆骰子是均勻的,當拋這顆骰子時,出現(xiàn)的6個點數(shù)是等可能的,將一枚骰子連續(xù)拋擲600次,估計每一個嗲回溯出現(xiàn)的次數(shù)是100,∴擲出的點數(shù)大于2的大約有400次,故為:400.9.若m∈{-2,-1,1,2},n∈{-2,-1,1,2,3},則方程x2m+y2n=1表示的是雙曲線的概率為______.答案:由題意,方程x2m+y2n=1表示雙曲線時,mn<0,m>0,n<0時,有2×2=4種,m<0,n>0時,有2×3=6種∵m,n的取值共有4×5=20種∴方程x2m+y2n=1表示的是雙曲線的概率為4+620=12故為:1210.已知△A′B′C′是水平放置的邊長為a的正三角形△ABC的斜二測平面直觀圖,那么△A′B′C′的面積為______.答案:正三角形ABC的邊長為a,故面積為34a2,而原圖和直觀圖面積之間的關(guān)系S直觀圖S原圖=24,故直觀圖△A′B′C′的面積為6a216故為:6a216.11.已知適合不等式|x2-4x+p|+|x-3|≤5的x的最大值為3,求p的值.答案:因為x的最大值為3,故x-3<0,原不等式等價于|x2-4x+p|-x+3≤5,(3分)即-x-2≤x2-4x+p≤x+2,則x2-5x+p-2≤0x2-3x+p+2≥0
解的最大值為3,(6分)設(shè)x2-5x+p-2=0
的根分別為x1和x2,x1<x2,x2-3x+p+2=0的根分別為x3和
x4,x3<x4.則x2=3,或x4=3.若x2=3,則9-15+p-2=0,p=8,若x4=3,則9-9+p+2=0,p=-2.當p=-2時,原不等式無解,檢驗得:p=8
符合題意,故p=8.(12分)12.若定義在正整數(shù)有序?qū)仙系亩瘮?shù)f滿足:①f(x,x)=x,②f(x,y)=f(y,x);③(x+y)f(x,y)=yf(x,x+y),則f(12,16)的值是()A.12B.16C.24D.48答案:依題意:∵(x+y)f(x,y)=yf(x,x+y),∴f(x,x+y)=1y(x+y)f(x,y)∴f(12,16)=f(12,12+4)=14(12+4)f(12,4)=4f(12,4)=4f(4,12)=4f(4,4+8)=4×18(4+8)f(4,8)=6f(4,8)=6f(4,4+4)=6×14(4+4)f(4,4)=12f(4,4)=12×4=48故選D13.b1是[0,1]上的均勻隨機數(shù),b=3(b1-2),則b是區(qū)間______上的均勻隨機數(shù).答案:∵b1是[0,1]上的均勻隨機數(shù),b=3(b1-2)∵b1-2是[-2,-1]上的均勻隨機數(shù),∴b=3(b1-2)是[-6,-3]上的均勻隨機數(shù),故為:[-6,-3]14.設(shè)U={x|x<7,x∈N+}A={1,2,5},B={2,3,4,5},求A∩B,CUA,A∪(CUB).答案:∵U={1,2,3,4,5,6}A∩B={2,5}CUA={3,4,6}A∪CUB={1}15.設(shè)、、為實數(shù),,則下列四個結(jié)論中正確的是(
)A.B.C.且D.且答案:D解析:若,則,則.若,則對于二次函數(shù),由可得結(jié)論.16.已知一直線斜率為3,且過A(3,4),B(x,7)兩點,則x的值為()
A.4
B.12
C.-6
D.3答案:A17.已知x1>0,x1≠1,且xn+1=xn(x2n+3)3x2n+1,(n=1,2,…).試證:數(shù)列{xn}或者對任意自然數(shù)n都滿足xn<xn+1,或者對任意自然數(shù)n都滿足xn>xn+1.答案:證:首先,xn+1-xn=xn(x2n+3)3x2n+1-xn=2xn(1-x2n)3x2n+1,由于x1>0,由數(shù)列{xn}的定義可知xn>0,(n=1,2,…)所以,xn+1-xn與1-xn2的符號相同.①假定x1<1,我們用數(shù)學(xué)歸納法證明1-xn2>0(n∈N)顯然,n=1時,1-x12>0設(shè)n=k時1-xk2>0,那么當n=k+1時1-x2k+1=1-[xk(x2k+3)3x2k+1]2=(1-x2k)3(3x2k+1)2>0,因此,對一切自然數(shù)n都有1-xn2>0,從而對一切自然數(shù)n都有xn<xn+1②若x1>1,當n=1時,1-x12<0;設(shè)n=k時1-xk2<0,那么當n=k+1時1-x2k+1=1-[xk(x2k+3)3x2k+1]2=(1-x2k)3(3x2k+1)2<0,因此,對一切自然數(shù)n都有1-xn2<0,從而對一切自然數(shù)n都有xn>xn+118.一個四棱錐和一個三棱錐恰好可以拼接成一個三棱柱.這個四棱錐的底面為正方形,且底面邊長與各側(cè)棱長相等,這個三棱錐的底面邊長與各側(cè)棱長也都相等.設(shè)四棱錐、三棱錐、三棱柱的高分別為h1,h2,h,則h1:h2:h3=()
A.:1:1
B.:2:2
C.:2:
D.:2:答案:B19.已知x∈R,i為虛數(shù)單位,若(x-2)i-1-i為純虛數(shù),則x的值為()A.1B.-1C.2D.-2答案:(x-2)i-1-i=[(x-2)i-1]?i-i?i=(x-2)i2-i=(2-x)-i由純虛數(shù)的定義可得2-x=0,故x=2故選C20.數(shù)集{1,x,2x}中的元素x應(yīng)滿足的條件是______.答案:根據(jù)集合中元素的互異性可得1≠x,x≠2x,1≠2x∴x≠1且x≠12且x≠0.故為:x≠1且x≠12且x≠0.21.”m>n>0”是”方程mx2+ny2=1表示焦點在y軸上的橢圓”的()
A.充分而不必要條件
B.必要而不充分條件
C.充要條件
D.既不充分也不必要條件答案:C22.已知當m∈R時,函數(shù)f(x)=m(x2-1)+x-a的圖象和x軸恒有公共點,求實數(shù)a的取值范圍.答案:(1)m=0時,f(x)=x-a是一次函數(shù),它的圖象恒與x軸相交,此時a∈R.(2)m≠0時,由題意知,方程mx2+x-(m+a)=0恒有實數(shù)解,其充要條件是△=1+4m(m+a)=4m2+4am+1≥0.又只需△′=(4a)2-16≤0,解得-1≤a≤1,即a∈[-1,1].∴m=0時,a∈R;m≠0時,a∈[-1,1].23.如圖的曲線是指數(shù)函數(shù)y=ax的圖象,已知a的值取,,,則相應(yīng)于曲線①②③④的a的值依次為()
A.,,,
B.,,,
C.,,,
D.,,,
答案:A24.若|x-4|+|x+5|>a對于x∈R均成立,則a的取值范圍為______.答案:∵|x-4|+|x+5|=|4-x|+|x+5|≥|4-x+x+5|=9,故|x-4|+|x+5|的最小值為9.再由題意可得,當a<9時,不等式對x∈R均成立.故為(-∞,9).25.大家知道,在數(shù)列{an}中,若an=n,則sn=1+2+3+…+n=12n2+12n,若an=n2,則
sn=12+22+32+…+n2=13n3+12n2+16n,于是,猜想:若an=n3,則sn=13+23+33+…+n3=an4+bn3+cn2+dn.
問:(1)這種猜想,你認為正確嗎?
(2)不管猜想是否正確,這個結(jié)論是通過什么推理方法得到的?
(3)如果結(jié)論正確,請用數(shù)學(xué)歸納法給予證明.答案:(1)猜想正確;(2)這是一種類比推理的方法;(3)由類比可猜想,a=14,n=1時,a+b+c+d=1;n=2時,16a+8b+4c+d=9;n=3時,81a+27b+9c+d=36故解得a=14,b=12,c=14,∴sn=13+23+33+…+n3=14n4+12n3+14n2用數(shù)學(xué)歸納法證明:①n=1時,結(jié)論成立;②假設(shè)n=k時,結(jié)論成立,即13+23+33+…+k3=14k4+12k3+14k2=[k(k+1)2]2則n=k+1時,左邊=13+23+33+…+k3+(k+1)3=14k4+12k3+14k2+(k+1)3=[k(k+1)2]2+(k+1)3=(k+12)2(k2+4k+4)=[(k+1)(k+2)2]2=右邊,結(jié)論成立由①②可知,sn=13+23+33+…+n3=14n4+12n3+14n2,成立26.某種燈泡的耐用時間超過1000小時的概率為0.2,有3個相互獨立的燈泡在使用1000小時以后,最多只有1個損壞的概率是()
A.0.008
B.0.488
C.0.096
D.0.104答案:D27.已知點P是長方體ABCD-A1B1C1D1底面ABCD內(nèi)一動點,其中AA1=AB=1,AD=2,若A1P與A1C所成的角為30°,那么點P在底面的軌跡為()A.圓弧B.橢圓的一部分C.雙曲線的一部分D.拋物線的一部分答案:如圖,∵A1P與A1C所成的角為30°,∴P點在以A1C為軸,母線與軸的夾角為30度的圓錐面上,在直角三角形A1CC1中,A1C1=3,CC1=1,∴∠C1AC1=30°當截面ABCD與圓錐的母線A1C1平行時,截得的圖形是拋物線,故點P在底面的軌跡為拋物線的一部分.故選D.28.在空間直角坐標系中,點,過點P作平面xOy的垂線PQ,則Q的坐標為()
A.
B.
C.
D.答案:D29.”m>n>0”是”方程mx2+ny2=1表示焦點在y軸上的橢圓”的(
)
A.充分而不必要條件
B.必要而不充分條件
C.充要條件
D.既不充分也不必要條件答案:C30.(理)
設(shè)O為坐標原點,向量OA=(1,2,3),OB=(2,1,2),OP=(1,1,2),點Q在直線OP上運動,則當QA?QB取得最小值時,點Q的坐標為______.答案:∵OP=(1,1,2),點Q在直線OP上運動,設(shè)OQ=λOP=(λ,λ,2λ)又∵向量OA=(1,2,3),OB=(2,1,2),∴QA=(1-λ,2-λ,3-2λ),QB=(2-λ,1-λ,2-2λ)則QA?QB=(1-λ)×(2-λ)+(2-λ)×(1-λ)+(3-2λ)×(2-2λ)=6λ2-16λ+10易得當λ=43時,QA?QB取得最小值.此時Q的坐標為(43,43,83)故為:(43,43,83)31.正方體的內(nèi)切球和外接球的半徑之比為
A.:1
B.:2
C.2:
D.:3答案:D32.如圖,PT是⊙O的切線,切點為T,直線PA與⊙O交于A、B兩點,∠TPA的平分線分別交直線TA、TB于D、E兩點,已知PT=2,PB=3,則PA=______,TEAD=______.答案:由題意,如圖可得PT2=PB×PA又由已知PT=2,PB=3,故可得PA=433又TPA的平分線分別交直線TA、TB于D、E兩點,可得∠TPE=∠APD又由弦切角定理知∠PTE=∠PAD故有△PET≈△PDA故有TE:AD=PT:PA=3:2故為433,3233.拋物線y=4x2的焦點坐標是______.答案:由題意可知x2=14y∴p=18∴焦點坐標為(0,116)故為(0,116)34.一個凸多面體的各個面都是四邊形,它的頂點數(shù)是16,則它的面數(shù)為()
A.14
B.7
C.15
D.不能確定答案:A35.計算機的程序設(shè)計語言很多,但各種程序語言都包含下列基本的算法語句:______,______,______,______,______.答案:計算機的程序設(shè)計語言很多,但各種程序語言都包含下列基本的算法語句:輸入語句,輸出語句,賦值語句,條件語句,循環(huán)語句.故為:輸入語句,輸出語句,賦值語句,條件語句,循環(huán)語句.36.在極坐標系中,極點到直線ρcosθ=2的距離為______.答案:直線ρcosθ=2即x=2,極點的直角坐標為(0,0),故極點到直線ρcosθ=2的距離為2,故為2.37.設(shè)a>2,給定數(shù)列{xn},其中x1=a,xn+1=x2n2(xn-1)(n=1,2…)求證:
(1)xn>2,且xn+1xn<1(n=1,2…);
(2)如果a≤3,那么xn≤2+12n-1(n=1,2…).答案:證明:(1)①當n=1時,∵x2=x122(x1-1)=x1+(2-x1)x12(x1-1),x2=x122(x1-1)=4(x1-1)+x12
-4x1+42(x1-1)=2+(x1-2)22(x1-1),x1=a>2,∴2<x2<x1.結(jié)論成立.②假設(shè)n=k時,結(jié)論成立,即2<xk+1<xk(k∈N+),則xk+2=xk+122(xk+1-1)=xk+1+(2-xk+1)xk+12(xk+1-1)>xk+1,xk+2=xk+122(xk+1-1)=2+(xk+1-2)22(xk+1-1)>2.∴2<xk+2<xk+1,綜上所述,由①②知2<xn+1<xn.∴xn>2且xn
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 海南自貿(mào)港稅收優(yōu)惠政策對旅游企業(yè)財務(wù)績效的影響
- 設(shè)備巡查關(guān)注要點培訓(xùn)
- 《我國普惠金融發(fā)展研究》
- 20XX旅游業(yè)發(fā)展解析
- 蘇科版初中物理九年級上冊14.4 歐姆定律的應(yīng)用 導(dǎo)學(xué)案
- 教用正文10 液體的壓強-2018年滬科版八年級下冊物理名師學(xué)案
- 人教版八年級物理下冊第八章第一節(jié)牛頓第一定律 教學(xué)設(shè)計
- 二年級加減混合運算練習(xí)題
- 滬粵版初中物理九年級上冊 12.2 熱量與熱值 導(dǎo)學(xué)案
- 棚戶區(qū)改造培訓(xùn)
- 國開形考作業(yè):可編程控制器應(yīng)用-課程實驗
- 監(jiān)理安全管理工作中有哪些細節(jié)必須注意
- 西南交大土木工程經(jīng)濟與項目管理課程設(shè)計
- 管井降水施工方案
- 創(chuàng)業(yè)基礎(chǔ)期末考試
- 廣東省廣州市白云區(qū)八年級(上)期末數(shù)學(xué)試卷
- 全過程工程咨詢服務(wù)技術(shù)方案
- 焊機安全技操作規(guī)程15篇
- CMS電子后視鏡遇見未來
- YY/T 0698.6-2009最終滅菌醫(yī)療器械包裝材料第6部分:用于低溫滅菌過程或輻射滅菌的無菌屏障系統(tǒng)生產(chǎn)用紙要求和試驗方法
- GB/T 397-2009煉焦用煤技術(shù)條件
評論
0/150
提交評論