2023年山東商業(yè)職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第1頁
2023年山東商業(yè)職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第2頁
2023年山東商業(yè)職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第3頁
2023年山東商業(yè)職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第4頁
2023年山東商業(yè)職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第5頁
已閱讀5頁,還剩40頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

長風(fēng)破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年山東商業(yè)職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.若關(guān)于x的不等式xa2-2xa-3<0在[-1,1]上恒成立,則實數(shù)a的取值范圍是

A.[-1,1]

B.[-1,3]

C.(-1,1)

D.(-1,3)答案:D2.(理科)若隨機變量ξ~N(2,22),則D(14ξ)的值為______.答案:解;∵隨機變量ξ服從正態(tài)分布ξ~N(2,22),∴可得隨機變量ξ方差是4,∴D(14ξ)的值為142D(ξ)=142×4=14.故為:14.3.已知隨機變量ξ~N(3,22),若ξ=2η+3,則Dη=()

A.0

B.1

C.2

D.4答案:B4.一個容量為n的樣本,分成若干組,已知某數(shù)的頻數(shù)和頻率分別為40、0.125,則n的值為()A.640B.320C.240D.160答案:由頻數(shù)、頻率和樣本容量之間的關(guān)系得到,40n=0.125,∴n=320.故選B.5.在△ABC中,已知D是AB邊上一點,若AD=2DB,CD=λCA+μCB,則λμ的值為______.答案:∵AD=2DB,∴CD=CA+23

AB∵AB=CB-CA∴CD=CA+23AB=CA+23(CB-CA)=13CA+23CB∵CD=λCA+μCB∴λ=13,μ=23∴λμ=12故為126.向量在基底{,,}下的坐標(biāo)為(1,2,3),則向量在基底{}下的坐標(biāo)為()

A.(3,4,5)

B.(0,1,2)

C.(1,0,2)

D.(0,2,1)答案:D7.如圖是一個正三棱柱體的三視圖,該柱體的體積等于()A.3B.23C.2D.33答案:根據(jù)長對正,寬相等,高平齊,可得底面正三角形高為3,三棱柱高為1所以正三角形邊長為3sin60°=2,所以V=12×2×3×1=3,故選A.8.下列集合中,不同于另外三個集合的是()A.{0}B.{y|y2=0}C.{x|x=0}D.{x=0}答案:解析:A是列舉法,C是描述法,對于B要注意集合的代表元素是y,故與A,C相同,而D表示該集合含有一個元素,即方程“x=0”.故選D.9.已知函數(shù)f(x)=2x,x≤1log13x,x>1,若f(a)=2,則a=______.答案:當(dāng)a≤1時y=2x∴2a=2∴a=1當(dāng)a>1時y=log13x∴2=loga13∴a=19不成立所以a=1故為:110.已知圓O:x2+y2=5和點A(1,2),則過A且與圓O相切的直線與兩坐標(biāo)軸圍成的三角形的面積=______.答案:由題意知,點A在圓上,切線斜率為-1KOA=-121=-12,用點斜式可直接求出切線方程為:y-2=-12(x-1),即x+2y-5=0,從而求出在兩坐標(biāo)軸上的截距分別是5和52,所以,所求面積為12×52×5=254.11.若點P(a,b)在圓C:x2+y2=1的外部,則直線ax+by+1=0與圓C的位置關(guān)系是()

A.相切

B.相離

C.相交

D.相交或相切答案:C12.函數(shù)f(x)=x2+ax+3,

(1)若f(1-x)=f(1+x),求a的值;

(2)在第(1)的前提下,當(dāng)x∈[-2,2]時,求f(x)的最值,并說明當(dāng)f(x)取最值時的x的值;

(3)若f(x)≥a恒成立,求a的取值范圍.答案:(1)∵f(1+x)=f(1-x)∴y=f(x)的圖象關(guān)于直線x=1對稱∴-a2=1即a=-2(2)a=-2時,函數(shù)f(x)=x2-2x+3在區(qū)間[-2,1]上遞減,在區(qū)間[1,2]上遞增,∴當(dāng)x=-2時,fmax(x)=f(-2)=11當(dāng)x=1時,fmin(x)=f(1)=2(3)∵x∈R時,有x2+ax+3-a≥0恒成立,須△=a2-4(3-a)≤0,即a2+4a-12≤0,所以-6≤a≤2.13.參數(shù)方程為t為參數(shù))表示的曲線是()

A.一條直線

B.兩條直線

C.一條射線

D.兩條射線答案:D14.已知函數(shù)y=ax2+bx+c,如果a>b>c,且a+b+c=0,則它的圖象是(

)

A.

B.

C.

D.

答案:D15.i是虛數(shù)單位,a,b∈R,若ia+bi=1+i,則a+b=______.答案:∵ia+bi=1+i,a,b∈R,∴i(a-bi)(a+bi)(a-bi)=1+i,∴b+aia2+b2=1+i,化為b+ai=(a2+b2)+(a2+b2)i,根據(jù)復(fù)數(shù)相等的定義可得b=a2+b2a=a2+b2,a2+b2≠0解得a=b=12.∴a+b=1.故為1.16.如果消息M發(fā)生的概率為P(M),那么消息M所含的信息量為I(M)=log2[P(M)+],若小明在一個有4排8列座位的小型報告廳里聽報告,則發(fā)布的以下4條消費中,信息量最大的是()

A.小明在第4排

B.小明在第5列

C.小明在第4排第5列

D.小明在某一排答案:C17.曲線2y2+3x+3=0與曲線x2+y2-4x-5=0的公共點的個數(shù)是()

A.4

B.3

C.2

D.1答案:D18.函數(shù)f(x)=ex(e為自然對數(shù)的底數(shù))對任意實數(shù)x、y,都有()

A.f(x+y)=f(x)f(y)

B.f(x+y)=f(x)+f(y)

C.f(xy)=f(x)f(y)

D.f(xy)=f(x)+f(y)答案:A19.若2x+3y=1,求4x2+9y2的最小值,并求出最小值點.答案:由柯西不等式(4x2+9y2)(12+12)≥(2x+3y)2=1,∴4x2+9y2≥12.當(dāng)且僅當(dāng)2x?1=3y?1,即2x=3y時取等號.由2x=3y2x+3y=1得x=14y=16∴4x2+9y2的最小值為12,最小值點為(14,16).20.曲線y=log2x在M=0110作用下變換的結(jié)果是曲線方程______.答案:設(shè)P(x,y)是曲線y=log2x上的任一點,P1(x′,y′)是P(x,y)在矩陣M=0110對應(yīng)變換作用下新曲線上的對應(yīng)點,則x′y′=0110xy=yx(3分)即x′=yy′=x,所以x=y′y=x′,(6分)將x=y′y=x′代入曲線y=log2x,得x′=log2y′,(8分)即y′=2x′曲線y=log2x在M=0110作用下變換的結(jié)果是曲線方程y=2x故為:y=2x21.給定點A(x0,y0),圓C:x2+y2=r2及直線l:x0x+y0y=r2,給出以下三個命題:

①當(dāng)點A在圓C上時,直線l與圓C相切;

②當(dāng)點A在圓C內(nèi)時,直線l與圓C相離;

③當(dāng)點A在圓C外時,直線l與圓C相交.

其中正確的命題個數(shù)是()

A.0

B.1

C.2

D.3答案:D22.已知x1,x2,…,xn都是正數(shù),且x1+x2+…+xn=1,求證:

++…+≥n2.答案:證明略解析:證明

++…+=(x1+x2+…+xn)(

++…+)≥=n2.23.直線(x+1)a+(y+1)b=0與圓x2+y2=2的位置關(guān)系是______.答案:直線(x+1)a+(y+1)b=0化為ax+by+(a+b)=0,所以圓心點到直線的距離d=|a+b|a2+b2=a2+b2+2aba2+b2≤2(a2+b2)a2+b2=2.所以直線(x+1)a+(y+1)b=0與圓x2+y2=2的位置關(guān)系是:相交或相切.故為:相交或相切.24.用反證法證明命題“三角形中最多只有一個內(nèi)角是鈍角”時,則假設(shè)的內(nèi)容是()

A.三角形中有兩個內(nèi)角是鈍角

B.三角形中有三個內(nèi)角是鈍角

C.三角形中至少有兩個內(nèi)角是鈍角

D.三角形中沒有一個內(nèi)角是鈍角答案:C25.若向量a=(-1,2),b=(-4,3),則a在b方向上的投影為()A.2B.22C.23D.10答案:設(shè)a與

b的夾角為θ,則cosθ=a?b|a|?|b|=4+65×5=25,∴則a在b方向上的投影為|a|?cosθ=5×25=2,故選A.26.若直線l經(jīng)過原點和點A(-2,-2),則它的斜率為()

A.-1

B.1

C.1或-1

D.0答案:B27.設(shè)a1,a2,…,an為正數(shù),求證:a21a2+a22a3+…+a2n-1an+a2na1≥a1+a2+…+an.答案:證明:不妨設(shè)a1>a2>…>an>0,則a12>a22>…>an2,1a1<1a2<…1an由排序原理:亂序和≥反序和,可得:a21a2+a22a3+…+a2n-1an+a2na1≥a12a1+a22a2+…+an2an=a1+a2+…+an.28.已知點A(-3,0),B(3,0),動點C到A、B兩點的距離之差的絕對值為2,點C的軌跡與直線

y=x-2交于D、E兩點,求線段DE的中點坐標(biāo)及其弦長DE.答案:∵|CB|-|CA|=2<23=|AB|,∴點C的軌跡是以A、B為焦點的雙曲線,2a=2,2c=23,∴a=1,c=3,∴b=2,∴點C的軌跡方程為x2-y22=1.把直線

y=x-2代入x2-y22=1化簡可得x2+4x-6=0,△=16-4(-6)=40>0,設(shè)D、E兩點的坐標(biāo)分別為(x1,y1

)、(x2,y2),∴x1+x2=-4,x1?x2=-6.∴線段DE的中點坐標(biāo)為M(-2,4),DE=1+1?|x1-x2|=2?(x1

+x2)2-4x1

?x2

=216-4(-6)=45.29.已知雙曲線的頂點到漸近線的距離為2,焦點到漸近線的距離為6,則該雙曲線的離心率為(

A.

B.

C.3

D.2答案:C30.行駛中的汽車,在剎車時由于慣性作用,要繼續(xù)往前滑行一段距離才能停下,這段距離叫做剎車距離.在某種路面上,某種型號汽車的剎車距離s(m)與汽車的車速v(km/h)滿足下列關(guān)系:s=(n為常數(shù),且n∈N),做了兩次剎車試驗,有關(guān)試驗數(shù)據(jù)如圖所示,其中,

(1)求n的值;

(2)要使剎車距離不超過12.6m,則行駛的最大速度是多少?答案:解:(1)依題意得,解得,又n∈N,所以n=6;(2)s=,因為v≥0,所以0≤v≤60,即行駛的最大速度為60km/h。31.已知向量a,b滿足|a|=2,|b|=3,|2a+b|=則a與b的夾角為()

A.30°

B.45°

C.60°

D.90°答案:C32.x=5

y=6

PRINT

x+y=11

END

上面程序運行時輸出的結(jié)果是()

A.x+y=11

B.11

C.x+y

D.出錯信息答案:B33.若隨機向一個半徑為1的圓內(nèi)丟一粒豆子(假設(shè)該豆子一定落在圓內(nèi)),則豆子落在此圓內(nèi)接正三角形內(nèi)的概率是______.答案:∵圓O是半徑為R=1,圓O的面積為πR2=π則圓內(nèi)接正三角形的邊長為3,而正三角形ABC的面積為343,∴豆子落在正三角形ABC內(nèi)的概率P=334π=334π故為:334π34.若A={(x,y)|4x+y=6},B={(x,y)|3x+2y=7},則A∩B=()

A.{2,1}

B.{(2,1)}

C.{1,2}

D.{(1,2)}答案:D35.已知曲線C的方程是x2+y2+6ax-8ay=0,那么下列各點中不在曲線C上的是()

A.(0,0)

B.(2a,4a)

C.(3a,3a)

D.(-3a,-a)答案:B36.在下列條件中,使M與不共線三點A、B、C,一定共面的是

[

]答案:C37.某計算機程序每運行一次都隨機出現(xiàn)一個五位的二進制數(shù)A=

,其中A的各位數(shù)中,a1=1,ak(k=2,3,4,5)出現(xiàn)0的概率為,出現(xiàn)1的概率為.記ξ=a1+a2+a3+a4+a5,當(dāng)程序運行一次時,ξ的數(shù)學(xué)期望Eξ=()

A.

B.

C.

D.答案:C38.如圖給出了一個算法程序框圖,該算法程序框圖的功能是()A.求a,b,c三數(shù)的最大數(shù)B.求a,b,c三數(shù)的最小數(shù)C.將a,b,c按從小到大排列D.將a,b,c按從大到小排列答案:逐步分析框圖中的各框語句的功能,第一個條件結(jié)構(gòu)是比較a,b的大小,并將a,b中的較小值保存在變量a中,第二個條件結(jié)構(gòu)是比較a,c的大小,并將a,c中的較小值保存在變量a中,故變量a的值最終為a,b,c中的最小值.由此程序的功能為求a,b,c三個數(shù)的最小數(shù).故選B39.若函數(shù)y=f(x)是函數(shù)y=ax(a>0且a≠1)的反函數(shù),且y=f(x)的圖象過點(2,1),則f(x)=______.答案:因為函數(shù)y=f(x)是函數(shù)y=ax(a>0且a≠1)的反函數(shù),且y=f(x)的圖象過點(2,1),所以函數(shù)y=ax經(jīng)過(1,2),所以a=2,所以函數(shù)y=f(x)=log2x.故為:log2x.40.下列函數(shù)中,與函數(shù)y=1x有相同定義域的是()A.f(x)=log2xB.f(x)=1xC.f(x)=|x|D.f(x)=2x答案:∵函數(shù)y=1x定義域為x>0,又函數(shù)f(x)=log2x定義域x>0,故選A.41.若圖中的直線l1、l2、l3的斜率分別為k1、k2、k3,則()A.k1<k2<k3B.k2<k1<k3C.k3<k2<k1D.k1<k3<k2答案:因為直線的斜率是其傾斜角的正切值,當(dāng)傾斜角大于90°小于180°時,斜率為負(fù)值,當(dāng)傾斜角大于0°小于90°時斜率為正值,且正切函數(shù)在(0°,90°)上為增函數(shù),由圖象三條直線的傾斜角可知,k2<k1<k3.故選C.42.復(fù)數(shù)Z=arccosx-π+(-2x)i(x∈R,i是虛數(shù)單位),在復(fù)平面上的對應(yīng)點只可能位于()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限答案:∵a=arccosx-π,arccosx∈[0,π],∴a<0,∵b=-2x<0,∴復(fù)數(shù)Z對應(yīng)的點的實部和虛部都小于零,∴復(fù)數(shù)在第三象限,故選C.43.在平面直角坐標(biāo)系中,已知向量a=(-1,2),又點A(8,0),B(n,t),C(ksinθ,t)(0≤θ≤π2).

(1)若AB⊥a,且|AB|=5|OA|(O為坐標(biāo)原點),求向量OB;

(2)若向量AC與向量a共線,當(dāng)k>4,且tsinθ取最大值4時,求OA?OC.答案:(1)∵點A(8,0),B(n,t),∴AB=(n-8,t),∵AB⊥a,∴AB?a=(n-8,t)?(-1,2)=0,得n=2t+8.則AB=(2t,t),又|AB|=5|OA|,|OA|=8.∴(2t)2+t2=5×64,解得t=±8,當(dāng)t=8時,n=24;當(dāng)t=-8時,n=-8.∴OB=(24,8)或OB=(-8,-8).(2)∵向量AC與向量a共線,∴t=-2ksinθ+16,tsinθ=(-2ksinθ+16)sinθ=-2k(sinθ-4k)2+32k.∵k>4,∴0<4k<1,故當(dāng)sinθ=4k時,tsinθ取最大值32k,有32k=4,得k=8.這時,sinθ=12,k=8,tsinθ=4,得t=8,則OC=(4,8).∴OA?OC=(8,0)?(4,8)=32.44.用反證法證明命題“三角形的內(nèi)角中至多有一個是鈍角”時,第一步是:“假設(shè)______.答案:根據(jù)用反證法證明數(shù)學(xué)命題的方法和步驟,應(yīng)先假設(shè)命題的否定成立,而命題“三角形的內(nèi)角中至多有一個是鈍角”的否定為:“三角形的內(nèi)角中至少有兩個鈍角”,故為“三角形的內(nèi)角中至少有兩個鈍角”.45.算法:第一步

x=a;第二步

若b>x則x=b;第三步

若c>x,則x=c;

第四步

若d>x,則x=d;

第五步

輸出x.則輸出的x表示()A.a(chǎn),b,c,d中的最大值B.a(chǎn),b,c,d中的最小值C.將a,b,c,d由小到大排序D.將a,b,c,d由大到小排序答案:x=a,若b>x,則b>a,x=b,否則x=a,即x為a,b中較大的值;若c>x,則x=c,否則x仍為a,b中較大的值,即x為a,b,c中較大的值;若d>x,則x=d,否則x仍為a,b,c中較大的值,即x為a,b,c中較大的值.故x為a,b,c,d中最大的數(shù),故選A.46.|a|=2,|b|=3,|a+b|=4,則a與b的夾角是______.答案:∵|a+b|=4,∴a2+2a?b+b2=16∴a?b=32∴cos<a,b>=a?b|.a|×|.b|=322×3=14∵<a,b>∈[0°,180°]∴.a與.b的夾角為arccos14故為arccos1447.若將推理“四邊形的內(nèi)角和為360°,所以平行四邊形的內(nèi)角和為360°”改為三段論的形式,則它的小前提是______.答案:將推理“四邊形的內(nèi)角和為360°,所以平行四邊形的內(nèi)角和為360°”改為三段論的形式,因為四邊形的內(nèi)角和為360°,平行四邊形是四邊形,所以平行四邊形的內(nèi)角和為360°大前提:四邊形的內(nèi)角和為360°;小前提:平行四邊形是四邊形;結(jié)論:平行四邊形的內(nèi)角和為360°.故為:平行四邊形是四邊形.48.給出下列四個命題,其中正確的一個是()

A.在線性回歸模型中,相關(guān)指數(shù)R2=0.80,說明預(yù)報變量對解釋變量的貢獻率是80%

B.在獨立性檢驗時,兩個變量的2×2列聯(lián)表中對角線上數(shù)據(jù)的乘積相差越大,說明這兩個變量沒有關(guān)系成立的可能性就越大

C.相關(guān)指數(shù)R2用來刻畫回歸效果,R2越小,則殘差平方和越大,模型的擬合效果越差

D.隨機誤差e是衡量預(yù)報精確度的一個量,它滿足E(e)=0答案:D49.若矩陣滿足下列條件:①每行中的四個數(shù)所構(gòu)成的集合均為{1,2,3,4};②四列中有且只有兩列的上下兩數(shù)是相同的.則這樣的不同矩陣的個數(shù)為()

A.24

B.48

C.144

D.288答案:C50.由直線y=x+1上的一點向圓(x-3)2+y2=1引切線,則切線長的最小值為()

A.1

B.2

C.

D.3答案:C第2卷一.綜合題(共50題)1.如圖程序輸出的結(jié)果是()

a=3,

b=4,

a=b,

b=a,

PRINTa,b

END

A.3,4

B.4,4

C.3,3

D.4,3答案:B2.

已知橢圓(θ為參數(shù))上的點P到它的兩個焦點F1、F2的距離之比,

且∠PF1F2=α(0<α<),則α的最大值為()

A.

B.

C.

D.答案:A3.三棱柱ABC-A1B1C1中,M、N分別是BB1、AC的中點,設(shè),,=,則等于()

A.

B.

C.

D.答案:A4.已知一物體在共點力F1=(lg2,lg2),F(xiàn)2=(lg5,lg2)的作用下產(chǎn)生位移S=(2lg5,1),則這兩個共點力對物體做的總功W為()A.1B.2C.lg2D.lg5答案:∵F1+F2=(lg2,lg2)+(lg5,lg2)=(1,2lg2)又∵在共點力的作用下產(chǎn)生位移S=(2lg5,1)∴這兩個共點力對物體做的總功W為(1,2lg2)?(2lg5,1)=2lg5+2lg2=2故選B5.點P(,)與圓x2+y2=1的位置關(guān)系是()

A.在圓內(nèi)

B.在圓外

C.在圓上

D.與t有關(guān)答案:C6.已知兩個點M(-5,0)和N(5,0),若直線上存在點P,使|PM|-|PN|=6,則稱該直線為“B型直線”給出下列直線①y=x+1;②y=2;③y=x④y=2x+1;其中為“B型直線”的是()

A.①③

B.①②

C.③④

D.①④答案:B7.己知集合A={sinα,cosα},則α的取值范圍是______.答案:由元素的互異性可得sinα≠cosα,∴α≠kπ+π4,k∈z.故α的取值范圍是{α|α≠kπ+π4,k∈z},故為{α|α≠kπ+π4,k∈z}.8.已知f(x)=,a≠b,

求證:|f(a)-f(b)|<|a-b|.答案:證明略解析:方法一

∵f(a)=,f(b)=,∴原不等式化為|-|<|a-b|.∵|-|≥0,|a-b|≥0,∴要證|-|<|a-b|成立,只需證(-)2<(a-b)2.即證1+a2+1+b2-2<a2-2ab+b2,即證2+a2+b2-2<a2-2ab+b2.只需證2+2ab<2,即證1+ab<.當(dāng)1+ab<0時,∵>0,∴不等式1+ab<成立.從而原不等式成立.當(dāng)1+ab≥0時,要證1+ab<,只需證(1+ab)2<()2,即證1+2ab+a2b2<1+a2+b2+a2b2,即證2ab<a2+b2.∵a≠b,∴不等式2ab<a2+b2成立.∴原不等式成立.方法二

∵|f(a)-f(b)|=|-|==,又∵|a+b|≤|a|+|b|=+<+,∴<1.∵a≠b,∴|a-b|>0.∴|f(a)-f(b)|<|a-b|.9.已知某離散型隨機變量ξ的數(shù)學(xué)期望Eξ=76,ξ的分布列如下,則a=______.

答案:∵Eξ=76=0×a+1×13+2×16+3b∴b=16,∵P(ξ=0)+P(ξ=1)+P(ξ=2)+P(ξ=3)=1∴a+13+16+16=1∴a=13.故為:1310.空間中,若向量=(5,9,m),=(1,-1,2),=(2,5,1)共面,則m=()

A.2

B.3

C.4

D.5答案:C11.下列關(guān)于算法的說法中正確的個數(shù)是()

①求解某一類問題的算法是唯一的;

②算法必須在有限步操作之后停止;

③算法的每一步操作必須是明確的,不能有歧義或模糊;

④算法執(zhí)行后一定產(chǎn)生確定的結(jié)果.A.1B.2C.3D.4答案:由算法的概念可知:求解某一類問題的算法不是唯一的,故①不正確;算法是有限步,結(jié)果明確性,②④是正確的.對于③,算法的每一步操作必須是明確的,不能有歧義或模糊是正確的;故③正確.∴關(guān)于算法的說法中正確的個數(shù)是3.故選C.12.(幾何證明選講選做題)已知AD是△ABC的外角∠EAC的平分線,交BC的延長線于點D,延長DA交△ABC的外接圓于點F,連接FB,F(xiàn)C.

(1)求證:FB=FC;

(2)若AB是△ABC外接圓的直徑,∠EAC=120°,BC=33,求AD的長.答案:(1)證明:∵AD平分∠EAC,∴∠EAD=∠DAC;∵四邊形AFBC內(nèi)接于圓,∴∠DAC=∠FBC;

…2′∵∠EAD=∠FAB=∠FCB∴∠FBC=∠FCB∴FB=FC.…5(2)∵AB是圓的直徑,∴∠ACD=90°∵∠EAC=120°,∴∠DAC=60°,∴∠D=30°…7′在Rt△ACB中,∵BC=33,∠BAC=60°,∴AC=3又在Rt△ACD中,∠D=30°,AC=3,∴AD=6

…10′13.當(dāng)x∈N+時,用“>”“<”或“=”填空:

(12)x______1,2x______1,(12)x______2x,(12)x______(13)x,2x______3x.答案:根據(jù)指數(shù)函數(shù)的性質(zhì)得,當(dāng)x∈N+時,(12)x<1,2x>1,則2x>(12)x,且2x<3x,則(12)x>(13)x,故為:<、>、<、>、<.14.已知向量a,b滿足|a|=2,|b|=3,|2a+b|=則a與b的夾角為()

A.30°

B.45°

C.60°

D.90°答案:C15.若方程Ax2+By2=1表示焦點在y軸上的雙曲線,則A、B滿足的條件是()

A.A>0,且B>0

B.A>0,且B<0

C.A<0,且B>0

D.A<0,且B<0答案:C16.設(shè)U={x|x<7,x∈N+}A={1,2,5},B={2,3,4,5},求A∩B,CUA,A∪(CUB).答案:∵U={1,2,3,4,5,6}A∩B={2,5}CUA={3,4,6}A∪CUB={1}17.設(shè)m∈R,向量=(1,m).若||=2,則m等于()

A.1

B.

C.±1

D.±答案:D18.設(shè)A、B、C、D是半徑為r的球面上的四點,且滿足AB⊥AC、AD⊥AC、AB⊥AD,則S△ABC+S△ABD+S△ACD的最大值是[

]A、r2

B、2r2

C、3r2

D、4r2答案:B19.為了了解學(xué)校學(xué)生的身體發(fā)育情況,抽查了該校100名高中男生的體重情況,根據(jù)所得數(shù)據(jù)畫出樣本的頻率分布直方圖如圖所示,根據(jù)此圖,估計該校2000名高中男生中體重大于70.5公斤的人數(shù)為()

A.300B.350C.420D.450答案:∵由圖得,∴70.5公斤以上的人數(shù)的頻率為:(0.04+0.035+0.016)×2=0.181,∴70.5公斤以上的人數(shù)為2000×0.181=362,故選B20.點P從(2,0)出發(fā),沿圓x2+y2=4按逆時針方向運動弧長到達點Q,則點Q的坐標(biāo)為()

A.(-1,

)

B.(-,

-1)

C.(-1,

-)

D.(-,

1)答案:C21.向量化簡后等于()

A.

B.

C.

D.答案:C22.已知點E在△ABC所在的平面且滿足AB+AC=λAE(λ≠0),則點E一定落在()A.BC邊的垂直平分線上B.BC邊的中線所在的直線上C.BC邊的高線所在的直線上D.BC邊所在的直線上答案:因為點E在△ABC所在的平面且滿足AB+AC=λAE(λ≠0)所以,根據(jù)平行四邊形法則,E一定落在這個平行四邊形的起點為A的對角線上,又平行四邊形對角線互相平分,所以E一定落在BC邊的中線所在的直線上,故選B.23.=(2,1),=(3,4),則向量在向量方向上的投影為()

A.

B.

C.2

D.10答案:C24.已知a=(a1,a2),b=(b1,b2),丨a丨=5,丨b丨=6,a?b=30,則a1+a2b1+b2=______.答案:因為丨a丨=5,丨b丨=6,a?b=30,又a?b=|a|?|b|cos<a,b>=30,即cos<a,b>=1,所以a,b同向共線.設(shè)b=ka,(k>0).則b1=ka1,b2=ka2,所以|b|=k|a|,所以k=65,所以a1+a2b1+b2=a1+a2k(a1+a2)=1k=56.故為:56.25.定義xn+1yn+1=1011xnyn為向量OPn=(xn,yn)到向量OPn+1=(xn+1,yn+1)的一個矩陣變換,其中O是坐標(biāo)原點,n∈N*.已知OP1=(2,0),則OP2011的坐標(biāo)為______.答案:由題意,xn+1=xnyn+1=xn+yn∴向量的橫坐標(biāo)不變,縱坐標(biāo)構(gòu)成以0為首項,2為公差的等差數(shù)列∴OP2011的坐標(biāo)為(2,4020)故為:(2,4020)26.某項選拔共有四輪考核,每輪設(shè)有一個問題,能正確回答問題者進入下一輪考核,否則

即被淘汰.已知某選手能正確回答第一、二、三、四輪的問題的概率分別為、、、,且各輪問題能否正確回答互不影響.

(Ⅰ)求該選手進入第四輪才被淘汰的概率;

(Ⅱ)求該選手至多進入第三輪考核的概率.

(注:本小題結(jié)果可用分?jǐn)?shù)表示)答案:(1)該選手進入第四輪才被淘汰的概率.(Ⅱ)該選手至多進入第三輪考核的概率.解析:(Ⅰ)記“該選手能正確回答第輪的問題”的事件為,則,,,,該選手進入第四輪才被淘汰的概率.(Ⅱ)該選手至多進入第三輪考核的概率.27.若矩陣A=是表示我校2011屆學(xué)生高二上學(xué)期的期中成績矩陣,A中元素aij(i=1,2,3,4;j=1,2,3,4,5,6)的含義如下:i=1表示語文成績,i=2表示數(shù)學(xué)成績,i=3表示英語成績,i=4表示語數(shù)外三門總分成績j=k,k∈N*表示第50k名分?jǐn)?shù).若經(jīng)過一定量的努力,各科能前進的名次是一樣的.現(xiàn)小明的各科排名均在250左右,他想盡量提高三門總分分?jǐn)?shù),那么他應(yīng)把努力方向主要放在哪一門學(xué)科上()

A.語文

B.?dāng)?shù)學(xué)

C.外語

D.都一樣答案:B28.“龜兔賽跑”講述了這樣的故事:領(lǐng)先的兔子看著慢慢爬行的烏龜,驕傲起來,睡了一覺,當(dāng)它醒來時,發(fā)現(xiàn)烏龜快到終點了,于是急忙追趕,但為時已晚,烏龜還是先到達了終點…,用S1、S2分別表示烏龜和兔子所行的路程,t為時間,則下圖與故事情節(jié)相吻合的是()

A.

B.

C.

D.

答案:B29.若以連續(xù)擲兩次骰子分別得到的點數(shù)m、n作為點P的坐標(biāo),則點P落在圓x2+y2=16內(nèi)的概率是______.答案:由題意知,本題是一個古典概型,試驗發(fā)生包含的事件是連續(xù)擲兩次骰子分別得到的點數(shù)m、n作為點P的坐標(biāo),共有6×6=36種結(jié)果,而滿足條件的事件是點P落在圓x2+y2=16內(nèi),列舉出落在圓內(nèi)的情況:(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)(3,1)(3,2),共有8種結(jié)果,根據(jù)古典概型概率公式得到P=836=29,故為:2930.某學(xué)校高一、高二、高三共有學(xué)生3500人,其中高三學(xué)生數(shù)是高一學(xué)生數(shù)的兩倍,高二學(xué)生數(shù)比高一學(xué)生數(shù)多300人,現(xiàn)在按的抽樣比用分層抽樣的方法抽取樣本,則應(yīng)抽取高一學(xué)生數(shù)為()

A.8

B.11

C.16

D.10答案:A31.下列各組集合,表示相等集合的是()

①M={(3,2)},N={(2,3)};

②M={3,2},N={2,3};

③M={(1,2)},N={1,2}.A.①B.②C.③D.以上都不對答案:①中M中表示點(3,2),N中表示點(2,3);②中由元素的無序性知是相等集合;③中M表示一個元素,即點(1,2),N中表示兩個元素分別為1,2.所以表示相等的集合是②.故選B.32.已知直線l過點P(1,0,-1),平行于向量=(2,1,1),平面α過直線l與點M(1,2,3),則平面α的法向量不可能是()

A.(1,-4,2)

B.(,-1,)

C.(-,-1,-)

D.(0,-1,1)答案:D33.已知P(B|A)=,P(A)=,則P(AB)等于()

A.

B.

C.

D.答案:C34.已知直線的傾斜角為α,且cosα=45,則此直線的斜率是______.答案:∵直線l的傾斜角為α,cosα=45,∴α的終邊在第一象限,故sinα=35故l的斜率為tanα=sinαcosα=34故為:3435.已知x、y之間的一組數(shù)據(jù)如下:

x0123y8264則線性回歸方程y=a+bx所表示的直線必經(jīng)過點()A.(0,0)B.(2,6)C.(1.5,5)D.(1,5)答案:∵.x=0+1+2+34=1.5,.y=8+2+6+44=5∴線性回歸方程y=a+bx所表示的直線必經(jīng)過點(1.5,5)故選C36.已知拋物線x2=4y上的點p到焦點的距離是10,則p點坐標(biāo)是

______.答案:根據(jù)拋物線方程可求得焦點坐標(biāo)為(0,1)根據(jù)拋物線定義可知點p到焦點的距離與到準(zhǔn)線的距離相等,∴yp+1=10,求得yp=9,代入拋物線方程求得x=±6∴p點坐標(biāo)是(±6,9)故為:(±6,9)37.在面積為S的△ABC的邊AB上任取一點P,則△PBC的面積大于S4的概率是()A.13B.12C.34D.14答案:記事件A={△PBC的面積大于S4},基本事件空間是線段AB的長度,(如圖)因為S△PBC>S4,則有12BC?PE>14×12BC?AD;化簡記得到:PEAD>14,因為PE平行AD則由三角形的相似性PEAD>14;所以,事件A的幾何度量為線段AP的長度,因為AP=34AB,所以△PBC的面積大于S4的概率=APAB=34.故選C.38.在平行四邊形ABCD中,E和F分別是邊CD和BC的中點,若AC=λAE+μAF,其中λ、μ∈R,則λ+μ=______.答案:解析:設(shè)AB=a,AD=b,那么AE=12a+b,AF=a+12b,又∵AC=a+b,∴AC=23(AE+AF),即λ=μ=23,∴λ+μ=43.故為:43.39.離心率e=23,短軸長為85的橢圓標(biāo)準(zhǔn)方程為______.答案:離心率e=23,短軸長為85,所以ca=23;b=45又a2=b2+c2解得a2=144,b2=80所以橢圓標(biāo)準(zhǔn)方程為x2144+y280=1或y2144+x280=1故為x2144+y280=1或y2144+x280=140.已知a,b,c∈R,a+2b+3c=6,則a2+4b2+9c2的最小值為______.答案:∵a+2b+3c=6,∴根據(jù)柯西不等式,得(a+2b+3c)2=(1×a+1×2b+1×3c)2≤(12+12+12)[a2+(2b)2+(3c)2]化簡得62≤3(a2+4b2+9c2),即36≤3(a2+4b2+9c2)∴a2+4b2+9c2≥12,當(dāng)且僅當(dāng)a:2b:3c=1:1:1時,即a=2,b=1,c=23時等號成立由此可得:當(dāng)且僅當(dāng)a=2,b=1,c=23時,a2+4b2+9c2的最小值為12故為:1241.(選做題)已知矩陣.122x.的一個特征值為3,求另一個特征值及其對應(yīng)的一個特征向量.答案:矩陣M的特征多項式為.λ-1-2-2λ-x.=(λ-1)(λ-x)-4…(1分)因為λ1=3方程f(λ)=0的一根,所以x=1…(3分)由(λ-1)(λ-1)-4=0得λ2=-1,…(5分)設(shè)λ2=-1對應(yīng)的一個特征向量為α=xy,則-2x-2y=0-2x-2y=0得x=-y…(8分)令x=1則y=-1,所以矩陣M的另一個特征值為-1,對應(yīng)的一個特征向量為α=1-1…(10分)42.三段論:“①船準(zhǔn)時啟航就能準(zhǔn)時到達目的港,②這艘船準(zhǔn)時到達了目的港,③這艘船是準(zhǔn)時啟航的”中,“小前提”是______.(填序號)答案:三段論:“①船準(zhǔn)時啟航就能準(zhǔn)時到達目的港;②這艘船準(zhǔn)時到達了目的港,③這艘船是準(zhǔn)時啟航的,我們易得大前提是①,小前提是②,結(jié)論是③,故為:②.43.為了檢查某超市貨架上的奶粉是否含有三聚氰胺,要從編號依次為1到50的袋裝奶粉中抽取5袋進行檢驗,用每部分選取的號碼間隔一樣的系統(tǒng)抽樣方法確定所選取的5袋奶粉的編號可能是()

A.5,10,15,20,25

B.2,4,8,16,32

C.1,2,3,4,5

D.7,17,27,37,47答案:D44.在極坐標(biāo)系中,點A的極坐標(biāo)為(2,0),直線l的極坐標(biāo)方程為ρ(cosθ+sinθ)+2=0,則點A到直線l的距離為______.答案:由題意得點A(2,0),直線l為

ρ(cosθ+sinθ)+2=0,即

x+y+2=0,∴點A到直線l的距離為

|2+0+2|2=22,故為22.45.已知0<k<4,直線l1:kx-2y-2k+8=0和直線l:2x+k2y-4k2-4=0與兩坐標(biāo)軸圍成一個四邊形,則使得這個四邊形面積最小的k值為______.答案:如圖所示:直線l1:kx-2y-2k+8=0即k(x-2)-2y+8=0,過定點B(2,4),與y軸的交點C(0,4-k),直線l:2x+k2y-4k2-4=0,即2x-4+k2(y-4)=0,過定點(2,4),與x軸的交點A(2k2+2,0),由題意知,四邊形的面積等于三角形ABD的面積和梯形OCBD的面積之和,故所求四邊形的面積為12×4×(2k2+2-2)+2×(4-k+4)2=4k2-k+8,∴k=18時,所求四邊形的面積最小,故為18.46.圓錐曲線x=4secθ+1y=3tanθ的焦點坐標(biāo)是______.答案:由x=4secθ+1y=3tanθ可得secθ=x-14tanθ=y3,由三角函數(shù)的運算可得tan2θ+1=sec2θ,代入可得(x-14)2-(y3)2=1,即(x-1)216-y29=1,可看作雙曲線x216-y29=1向右平移1個單位得到,而雙曲線x216-y29=1的焦點為(-5,0),(5,0)故所求雙曲線的焦點為(-4,0),(6,0)故為:(-4,0),(6,0)47.用反證法證明“如果a<b,那么“”,假設(shè)的內(nèi)容應(yīng)是()

A.

B.

C.且

D.或

答案:D48.若方程x2+ky2=2表示焦點在y軸上的橢圓,那么實數(shù)k的取值范圍是()A.(0,+∞)B.(0,2)C.(1,+∞)D.(0,1)答案:∵方程x2+ky2=2,即x22+y22k=1表示焦點在y軸上的橢圓∴2k>2故0<k<1故選D.49.極點到直線ρ(cosθ+sinθ)=3的距離是

______.答案:將原極坐標(biāo)方程ρ(cosθ+sinθ)=3化為:直角坐標(biāo)方程為:x+y=3,原點到該直線的距離是:d=|3|2=62.∴所求的距離是:62.故填:62.50.若集合A={1,2,3},則集合A的真子集共有()A.3個B.5個C.7個D.8個答案:由集合A={1,2,3},所以集合A的真子集有?,{1},{2},{3},{1,2},{1,3},{2,3}共7個.故選C.第3卷一.綜合題(共50題)1.4位學(xué)生與2位教師并坐合影留念,針對下列各種坐法,試問:各有多少種不同的坐法?(用數(shù)字作答)

(1)教師必須坐在中間;

(2)教師不能坐在兩端,但要坐在一起;

(3)教師不能坐在兩端,且不能相鄰.答案:(1)先排4位學(xué)生,有A44種坐法,2位教師坐在中間,可以交換位置,有A22種坐法,則共有A22A44=48種坐法;(2)先排4位學(xué)生,有A44種坐法,2位教師坐在一起,將其看成一個整體,可以交換位置,有2種坐法,將這個“整體”插在4個學(xué)生的空位中,又由教師不能坐在兩端,則有3個空位可選,則共有2A44A31=144種坐法;(3)先排4位學(xué)生,有A44種坐法,教師不能相鄰,將其依次插在4個學(xué)生的空位中,又由教師不能坐在兩端,則有3個空位可選,有A32種坐法,則共有A44A32=144種坐法..2.已知數(shù)列{an}前n項的和為Sn,且滿足an=n2

(n∈N*).

(Ⅰ)求s1、s2、s3的值;

(Ⅱ)用數(shù)學(xué)歸納法證明sn=n(n+1)(2n+1)6

(n∈N*).答案:(Ⅰ)∵an=n2,n∈N*∴s1=a1=1,s2=a1+a2=1+4=5,s3=a1+a2+a3=1+4+9=14.…(6分)(Ⅱ)證明:(1)當(dāng)n=1時,左邊=s1=1,右邊=1×(1+1)(2+1)6=1,所以等式成立.…(8分)(2)假設(shè)n=k(k∈N*)時結(jié)論成立,即Sk=k(k+1)(2k+1)6,…(10分)那么,Sk+1=Sk+(k+1)2=k(k+1)(2k+1)6+(k+1)2=k(k+1)(2k+1)+6(k+1)26=(k+1)(k+2)(2k+3)6=(k+1)[(k+1)+1][2(k+1)+1]6即n=k+1時,等式也成立.…(13分)根據(jù)(1)(2)可知對任意的正整數(shù)n∈N*都成立.…(14分)3.袋中有4個形狀大小一樣的球,編號分別為1,2,3,4,從中任取2個球,則這2個球的編號之和為偶數(shù)的概率為()A.16B.23C.12D.13答案:根據(jù)題意,從4個球中取出2個,其編號的情況有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6種;其中編號之和為偶數(shù)的有(1,3),(2,4),共2種;則2個球的編號之和為偶數(shù)的概率P=26=13;故選D.4.如圖所示,I為△ABC的內(nèi)心,求證:△BIC的外心O與A、B、C四點共圓.答案:證明:連接OB、BI、OC,由O是外心知∠IOC=2∠IBC.由I是內(nèi)心知∠ABC=2∠IBC.從而∠IOC=∠ABC.同理∠IOB=∠ACB.而∠A+∠ABC+∠ACB=180°,故∠BOC+∠A=180°,于是O、B、A、C四點共圓.5.若集合A={x|3≤x<7},B={x|2<x<10},則A∪B=______.答案:因為集合A={x|3≤x<7},B={x|2<x<10},所以A∪B={x|3≤x<7}∪{x|2<x<10}={x|2<x<10},故為:{x|2<x<10}.6.袋中有4只紅球3只黑球,從袋中任取4只球,取到1只紅球得1分,取到1只黑球得3分,設(shè)得分為隨機變量ξ,則P(ξ≤6)=______.答案:取出的4只球中紅球個數(shù)可能為4,3,2,1個,黑球相應(yīng)個數(shù)為0,1,2,3個.其分值為ξ=4,6,8.P(ξ≤6)=P(ξ=4)+P(ξ=6)=C44C03C47+C34C13C47=1335.故為:1335.7.全稱命題“任意x∈Z,2x+1是整數(shù)”的逆命題是()

A.若2x+1是整數(shù),則x∈Z

B.若2x+1是奇數(shù),則x∈Z

C.若2x+1是偶數(shù),則x∈Z

D.若2x+1能被3整除,則x∈Z

E.若2x+1是整數(shù),則x∈Z答案:A8.教學(xué)大樓共有五層,每層均有兩個樓梯,由一層到五層的走法有()

A.10種

B.25種

C.52種

D.24種答案:D9.通過隨機詢問110名不同的大學(xué)生是否愛好某項運動,得到如下的列聯(lián)表:

男女總計愛好402060不愛好203050總計6050110為了判斷愛好該項運動是否與性別有關(guān),由表中的數(shù)據(jù)此算得k2≈7.8,因為P(k2≥6.635)≈0.01,所以判定愛好該項運動與性別有關(guān),那么這種判斷出錯的可能性為______.答案:由題意知本題所給的觀測值,k2≈7.8∵7.8>6.635,又∵P(k2≥6.635)≈0.01,∴這個結(jié)論有0.01=1%的機會說錯,故為:1%10.某商人將彩電先按原價提高40%,然后在廣告中寫上“大酬賓,八折優(yōu)惠”,結(jié)果是每臺彩電比原價多賺了270元,則每臺彩電原價是______元.答案:設(shè)每臺彩電的原價是x元,則有:(1+40%)x×0.8-x=270,解得:x=2250,故為:2250.11.若集合M={a,b,c}中的元素是△ABC的三邊長,則△ABC一定不是()

A.銳角三角形

B.直角三角形

C.鈍角三角形

D.等腰三角形答案:D12.拋物線y=ax2(其中a>0)的焦點坐標(biāo)是(

A.(,0)

B.(0,)

C.(,0)

D.(0,)答案:D13.直線(t為參數(shù))被圓x2+y2=9截得的弦長為()

A.

B.

C.

D.答案:B14.袋子A和袋子B均裝有紅球和白球,從A中摸出一個紅球的概率是13,從B中摸出一個紅球的概率是P.

(1)從A中有放回地摸球,每次摸出一個,共摸5次,求恰好有3次摸到紅球的概率;

(2)若A、B兩個袋子中的總球數(shù)之比為1:2,將A、B中的球裝在一起后,從中摸出一個紅球的概率為25,求P的值.答案:(1)每次從A中摸一個紅球的概率是13,摸不到紅球的概率為23,根據(jù)獨立重復(fù)試驗的概率公式,故共摸5次,恰好有3次摸到紅球的概率為:P=C35(13)3(23)2=10×127×49=40243.(2)設(shè)A中有m個球,A、B兩個袋子中的球數(shù)之比為1:2,則B中有2m個球,∵將A、B中的球裝在一起后,從中摸出一個紅球的概率是25,∴13m+2mp3m=25,解得p=1330.15.設(shè),是互相垂直的單位向量,向量=(m+1)-3,=-(m-1),(+)⊥(-)則實數(shù)m為()

A.-2

B.2

C.-

D.不存在答案:A16.命題“若a>3,則a>5”的逆命題是______.答案:∵原命題“若a>3,則a>5”的條件是a>3,結(jié)論是a>5∴逆命題是“若a>5,則a>3”故為:若a>5,則a>317.若直線x=1的傾斜角為α,則α等于

______.答案:因為直線x=1與y軸平行,所以直線x=1的傾斜角為90°.故為:90°18.(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系(ρ,θ)(ρ>0,0≤θ<π2)中,曲線ρ=2sinθ與ρ=2cosθ的交點的極坐標(biāo)為______.答案:兩式ρ=2sinθ與ρ=2cosθ相除得tanθ=1,∵0≤θ<π2,∴θ=π4,∴ρ=2sinπ4=2,故交點的極坐標(biāo)為(2,π4).故為:(2,π4).19.如果如圖所示的程序中運行后輸出的結(jié)果為132,那么在程序While后面的“條件”應(yīng)為______.答案:第一次循環(huán)之后s=12,i=11;第二次循環(huán)之后結(jié)果是s=132,i=10,已滿足題意跳出循環(huán).由于此循環(huán)體是當(dāng)型循環(huán)i=12、11都滿足條件,i=10不滿足條件.故為:i≥1120.直線(x+1)a+(y+1)b=0與圓x2+y2=2的位置關(guān)系是______.答案:直線(x+1)a+(y+1)b=0化為ax+by+(a+b)=0,所以圓心點到直線的距離d=|a+b|a2+b2=a2+b2+2aba2+b2≤2(a2+b2)a2+b2=2.所以直線(x+1)a+(y+1)b=0與圓x2+y2=2的位置關(guān)系是:相交或相切.故為:相交或相切.21.已知向量a,b,向量c=2a+b,且|a|=1,|b|=2,a與b的夾角為60°

(1)求|c|2;(2)若向量d=ma-b,且d∥c,求實數(shù)m的值.答案:(1)∵|a|=1,|b|=2,a和b的夾角為60°∴a?b=|a||b|cos60°=1∴|c|2=(

2a+b)2=4a2+4ab+b2=4+4+4=12(2)∵d∥c∴存在實數(shù)λ使得d=λc即ma-b=λ(2a+b)又∵a,b不共線∴2λ=m,λ=-1∴m=-222.已知直線l的參數(shù)方程為x=-4+4ty=-1-2t(t為參數(shù)),圓C的極坐標(biāo)方程為ρ=22cos(θ+π4),則圓心C到直線l的距離是______.答案:直線l的普通方程為x+2y+6=0,圓C的直角坐標(biāo)方程為x2+y2-2x+2y=0.所以圓心C(1,-1)到直線l的距離d=|1-2+6|5=5.故為5.23.已知直線l:(t為參數(shù))的傾斜角是()

A.

B.

C.

D.答案:D24.圓錐曲線x=4secθ+1y=3tanθ的焦點坐標(biāo)是______.答案:由x=4secθ+1y=3tanθ可得secθ=x-14tanθ=y3,由三角函數(shù)的運算可得tan2θ+1=sec2θ,代入可得(x-14)2-(y3)2=1,即(x-1)216-y29=1,可看作雙曲線x216-y29=1向右平移1個單位得到,而雙曲線x216-y29=1的焦點為(-5,0),(5,0)故所求雙曲線的焦點為(-4,0),(6,0)故為:(-4,0),(6,0)25.已知直線a、b、c,其中a、b是異面直線,c∥a,b與c不相交.用反證法證明b、c是異面直線.答案:證明:假設(shè)b、c不是異面直線,則b、c共面.∵b與c不相交,∴b∥c.又∵c∥a,∴根據(jù)公理4可知b∥a.這與已知a、b是異面直線相矛盾.故b、c是異面直線.26.已知:如圖,四邊形ABCD內(nèi)接于⊙O,,過A點的切線交CB的延長線于E點,求證:AB2=BE·CD。

答案:證明:連結(jié)AC,因為EA切⊙O于A,所以∠EAB=∠ACB,因為,所以∠ACD=∠ACB,AB=AD,于是∠EAB=∠ACD,又四邊形ABCD內(nèi)接于⊙O,所以∠ABE=∠D,所以△ABE∽△CDA,于是,即AB·DA=BE·CD,所以。27.函數(shù)f(x)=x+1x的定義域是______.答案:要使原函數(shù)有意義,則x≥0x≠0,所以x>0.所以原函數(shù)的定義域為(0,+∞).故為(0,+∞).28.設(shè)兩個正態(tài)分布N(μ1,σ12)(σ1>0)和N(μ2,σ22)(σ2>0)曲線如圖所示,則有()

A.μ1<μ2,σ1>σ2

B.μ1<μ2,σ1<σ2

C.μ1>μ2,σ1>σ2

D.μ1>μ2,σ1<σ2

答案:A29.已知M(-2,0),N(2,0),|PM|-|PN|=3,則動點P的軌跡是()A.雙曲線B.雙曲線右支C.一條射線D.不存在答案:∵|PM|-|PN|=3,M(-2,0),N(2,0),且3<4=|MN|,根據(jù)雙曲線的定義,∴點P是以M(-2,0),N(2,0)為兩焦點的雙曲線的右支.故選B.30.不等式log12(x2-2x-15)>log12(x+13)的解集為______.答案:滿足log0.5(x2-2x-15)>log0.5(x+13),得x2-2x-15<x+13x2-2x-15>0x+13>0解得:-4<x<-3,或5<x<7,則不等式log12(x2-2x-15)>log12(x+13)的解集為(-4,-3)∪(5,7)故為:(-4,-3)∪(5,7).31.設(shè)集合A={1,3},集合B={1,2,4,5},則集合A∪B=()A.{1,3,1,2,4,5}B.{1}C.{1,2,3,4,5}D.{2,3,4,5}答案:∵集合A={1,3},集合B={1,2,4,5},∴集合A∪B={1,2,3,4,5}.故選C.32.在直角梯形ABCD中,已知A(-5,-10),B(15,0),C(5,10),AD是腰且垂直兩底,求頂點D的坐標(biāo).答案:設(shè)D(x,y),則∵DC∥AB,∴y-10x-5=0+1015+5,又∵DA⊥AB,∴y+10x+5?0+1015+5=-1.由以上方程組解得:x=-11,y=2.∴D(-11,2).33.若kxy-8x+9y-12=0表示兩條直線,則實數(shù)k的值及兩直線所成的角分別是()

A.8,60°

B.4,45°

C.6,90°

D.2,30°答案:C34.下列有關(guān)相關(guān)指數(shù)R2的說法正確的有()

A.R2的值越大,說明殘差平方和越小

B.R2越接近1,表示回歸效果越差

C.R2的值越小,說明殘差平方和越小

D.如果某數(shù)據(jù)可能采取幾種不同回歸方程進行回歸分析,一般選擇R2小的模型作為這組數(shù)據(jù)的模型答案:A35.已知正方體ABCD-A1B1C1D1,點E,F(xiàn)分別是上底面A1C1和側(cè)面CD1的中心,求下列各式中的x,y的值:

(1)AC1=x(AB+BC+CC1),則x=______;

(2)AE=AA1+xAB+yAD,則x=______,y=______;

(3)AF=AD+xAB+yAA1,則x=______,y=______.答案:(1)根據(jù)向量加法的首尾相連法則,x=1;(2)由向量加法的三角形法則得,AE=AA1+A1E,由四邊形法則和向量相等得,A1E=12(A1B1+A1D1)=12(AB+AD);∴AE=AA1+12AB+12AD,∴x=y=12;(3)由向量加法的三角形法則得,AF=AD+DF,由四邊形法則和向量相等得,DF=12(DC+DD1)=12(AB+AA1);∴AF=AD+12AB+12AA1,∴x=y=12.36.如圖是某賽季甲、乙兩名籃球運動員每場比賽得分的莖葉圖,中間的數(shù)字表示得分的十位數(shù),下列對乙運動員的判斷錯誤的是(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論