版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
長(zhǎng)風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年廣西演藝職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購(gòu)買!第1卷一.綜合題(共50題)1.已知2,4,2x,4y四個(gè)數(shù)的平均數(shù)是5而5,7,4x,6y四個(gè)數(shù)的平均數(shù)是9,則xy的值是______.答案:因?yàn)?,4,2x,4y四個(gè)數(shù)的平均數(shù)是5,則2+4+2x+4y=4×5,又由5,7,4x,6y四個(gè)數(shù)的平均數(shù)是9,則5+7+4x+6y=4×9,x與y滿足的關(guān)系式為x+2y=72x+3y=12解得x=3y=2故為6.2.在殘差分析中,殘差圖的縱坐標(biāo)為______.答案:有殘差圖的定義知道,作圖時(shí)縱坐標(biāo)為殘差,橫坐標(biāo)可以選為樣本編號(hào),或身高數(shù)據(jù),或體重的估計(jì)值,這樣做出的圖形稱為殘差圖.故為:殘差.3.給出下列結(jié)論:
(1)兩個(gè)變量之間的關(guān)系一定是確定的關(guān)系;
(2)相關(guān)關(guān)系就是函數(shù)關(guān)系;
(3)回歸分析是對(duì)具有函數(shù)關(guān)系的兩個(gè)變量進(jìn)行統(tǒng)計(jì)分析的一種常用方法;
(4)回歸分析是對(duì)具有相關(guān)關(guān)系的兩個(gè)變量進(jìn)行統(tǒng)計(jì)分析的一種常用方法.
以上結(jié)論中,正確的有幾個(gè)?()
A.1
B.2
C.3
D.4答案:A4.對(duì)任意的實(shí)數(shù)k,直線y=kx+1與圓x2+y2=2
的位置關(guān)系一定是()
A.相離
B.相切
C.相交但直線不過圓心
D.相交且直線過圓心答案:C5.圓錐曲線G的一個(gè)焦點(diǎn)是F,與之對(duì)應(yīng)的準(zhǔn)線是,過F作直線與G交于A、B兩點(diǎn),以AB為直徑作圓M,圓M與的位置關(guān)系決定G
是何種曲線之間的關(guān)系是:______
圓M與的位置相離相切相交G
是何種曲線答案:設(shè)圓錐曲線過焦點(diǎn)F的弦為AB,過A、B分別向相應(yīng)的準(zhǔn)線作垂線AA',BB',則由第二定義得:|AF|=e|AA'|,|BF|=e|BB'|,∴|AF|+|BF|2=|AA′|+|BB′|2
?
e.設(shè)以AB為直徑的圓半徑為r,圓心到準(zhǔn)線的距離為d,即有r=de,橢圓的離心率
0<e<1,此時(shí)r<d,圓M與準(zhǔn)線相離;拋物線的離心率
e=1,此時(shí)r=d,圓M與準(zhǔn)線相切;雙曲線的離心率
e>1,此時(shí)r>d,圓M與準(zhǔn)線相交.故為:橢圓、拋物線、雙曲線.6.拋物線頂點(diǎn)在坐標(biāo)原點(diǎn),以y軸為對(duì)稱軸,過焦點(diǎn)且與y軸垂直的弦長(zhǎng)為16,則拋物線方程為______.答案:∵過焦點(diǎn)且與對(duì)稱軸y軸垂直的弦長(zhǎng)等于p的2倍.∴所求拋物線方程為x2=±16y.故為:x2=±16y.7.橢圓=1的焦點(diǎn)為F1,點(diǎn)P在橢圓上,如果線段PF1的中點(diǎn)M在y軸上,那么點(diǎn)M的縱坐標(biāo)是()
A.±
B.±
C.±
D.±答案:A8.如圖,圓心角∠AOB=120°,P是AB上任一點(diǎn)(不與A,B重合),點(diǎn)C在AP的延長(zhǎng)線上,則∠BPC等于______.
答案:解:設(shè)點(diǎn)E是優(yōu)弧AB(不與A、B重合)上的一點(diǎn),∵∠AOB=120°,∴∠AEB=60°,∵∠BPA=180°-∠AEB=180°-∠BPC,∴∠BPC=∠AEB.∴∠BPC=60°.故為60°.9.將包含甲、乙兩人的4位同學(xué)平均分成2個(gè)小組參加某項(xiàng)公益活動(dòng),則甲、乙兩名同學(xué)分在同一小組的概率為()
A.
B.
C.
D.答案:C10.已知a,b,c是三條直線,且a∥b,a與c的夾角為θ,那么b與c夾角是______.答案:∵a∥b,∴b與c夾角等于a與c的夾角又∵a與c的夾角為θ∴b與c夾角也為θ故為:θ11.已知A(3,0),B(0,3),O為坐標(biāo)原點(diǎn),點(diǎn)C在第一象限內(nèi),且∠AOC=60°,設(shè)OC=OA+λOB
(λ∈R),則λ等于()A.33B.3C.13D.3答案:∵OC=OC=OA+λOB(λ∈R),∠AOC=60°∴|λOB|=
3tan60°=33又∵|OB|=3∴λ=3故選D.12.設(shè)A={x|2x2+ax+2=0},B={x|x2+3x+2a=0},A∩B={2}.
(1)求a的值及集合A、B;
(2)設(shè)全集U=A∪B,求(CUA)∪(CUB)的所有子集.答案:解:(1)∵A∩B={2},∴2∈A,∴8+2a+2=0,∴a=﹣5;B={2,﹣5}(2)U=A∪B=,∴CUA={﹣5},CUB=∴(CUA)∪(CUB)=∴(CUA)∪(CUB)的所有子集為:,{﹣5},{},{﹣5,}.13.已知集合A到B的映射f:x→y=2x+1,那么集合A中元素2在B中的象是()A.2B.5C.6D.8答案:∵x=2,∴y=2x+1則y=2×2+1=5,那么集合A中元素2在B中的象是5故選B.14.設(shè)集合A={1,2,4},B={2,6},則A∪B等于()A.{2}B.{1,2,4,6}C.{1,2,4}D.{2,6}答案:∵集合A={1,2,4},B={2,6},∴A∪B={1,2,4}∪{2,6}={1,2,4,6},故選B.15.直線ax+by=1與圓x2+y2=1有兩不同交點(diǎn),則點(diǎn)P(a,b)與圓的位置關(guān)系為______.答案:圓心到直線ax+by=1的距離,1a2+b2,∵直線ax+by=1與圓x2+y2=1有兩不同交點(diǎn),∴1a2+b2<1即a2+b2>1.故為:點(diǎn)在圓外.16.若A∩B=A∪B,則A______B.答案:設(shè)有集合W=A∪B=B∩C,根據(jù)并集的性質(zhì),W=A∪B?A?W,B?W,根據(jù)交集的性質(zhì),W=A∩B?W?A,W?B由集合子集的性質(zhì),A=B=W,故為:=.17.證明空間任意無(wú)三點(diǎn)共線的四點(diǎn)A、B、C、D共面的充分必要條件是:對(duì)于空間任一點(diǎn)O,存在實(shí)數(shù)x、y、z且x+y+z=1,使得OA=xOB+yOC+zOD.答案:(必要性)依題意知,B、C、D三點(diǎn)不共線,則由共面向量定理的推論知:四點(diǎn)A、B、C、D共面?對(duì)空間任一點(diǎn)O,存在實(shí)數(shù)x1、y1,使得OA=OB+x1BC+y1BD=OB+x1(OC-OB)+y1(OD-OB)=(1-x1-y1)OB+x1OC+y1OD,取x=1-x1-y1、y=x1、z=y1,則有OA=xOB+yOC+zOD,且x+y+z=1.(充分性)對(duì)于空間任一點(diǎn)O,存在實(shí)數(shù)x、y、z且x+y+z=1,使得OA=xOB+yOC+zOD.所以x=1-y-z得OA=(1-y-z)OB+yOC+zOD.OA=OB+yBC+zBD,即:BA=yBC+zBD,所以四點(diǎn)A、B、C、D共面.所以,空間任意無(wú)三點(diǎn)共線的四點(diǎn)A、B、C、D共面的充分必要條件是:對(duì)于空間任一點(diǎn)O,存在實(shí)數(shù)x、y、z且x+y+z=1,使得OA=xOB+yOC+zOD.18.如圖,點(diǎn)O是平行六面體ABCD-A1B1C1D1的對(duì)角線BD1與A1C的交點(diǎn),=,=,=,則=()
A.++
B.++
C.--+
D.+-
答案:C19.編號(hào)為A、B、C、D、E的五個(gè)小球放在如圖所示的五個(gè)盒子中,要求每個(gè)盒子只能放一個(gè)小球,且A不能放1,2號(hào),B必需放在與A相鄰的盒子中,則不同的放法有()種.A.42B.36C.30D.28答案:根據(jù)題意,A不能放1,2號(hào),則A可以放在3、4、5號(hào)盒子,分2種情況討論:①當(dāng)A在4、5號(hào)盒子時(shí),B有1種放法,剩下3個(gè)有A33=6種不同放法,此時(shí),共有2×1×6=12種情況;②當(dāng)A在3號(hào)盒子時(shí),B有3種放法,剩下3個(gè)有A33=6種不同放法,此時(shí),共有1×3×6=18種情況;由加法原理,計(jì)算可得共有12+18=30種不同情況;故選C.20.若關(guān)于x的方程3x2-5x+a=0的一個(gè)根在(-2,0)內(nèi),另一個(gè)根在(1,3)內(nèi),求a的取值范圍。答案:解:設(shè)f(x)=3x2-5x+a,則f(x)為開口向上的拋物線,如右圖所示,∵f(x)=0的兩根分別在區(qū)間(-2,0),(1,3)內(nèi),∴,即,解得-12<a<0,故所求a的取值范圍是{a|-12<a<0}。21.如圖,有兩條相交成π3角的直線EF,MN,交點(diǎn)是O.一開始,甲在OE上距O點(diǎn)2km的A處;乙在OM距O點(diǎn)1km的B處.現(xiàn)在他們同時(shí)以2km/h的速度行走.甲沿EF的方向,乙沿NM的方向.設(shè)與OE同向的單位向量為e1,與OM同向的單位向量為e2.
(1)求e1,e2;
(2)若過2小時(shí)后,甲到達(dá)C點(diǎn),乙到達(dá)D點(diǎn),請(qǐng)用e1,e2表示CD;
(3)若過t小時(shí)后,甲到達(dá)G點(diǎn),乙到達(dá)H點(diǎn),請(qǐng)用e1,e2表示GH;
(4)什么時(shí)間兩人間距最短?答案:(1)由題意可得e1=12OA,e2=OB,(2)若過2小時(shí)后,甲到達(dá)C點(diǎn),乙到達(dá)D點(diǎn),則OC=-2e1,OD=5e2,故CD=OD-OC=2e1+5e2,(3)同(2)可得:經(jīng)過t小時(shí)后,甲到達(dá)G點(diǎn),乙到達(dá)H點(diǎn),則OG=(-2t+2)e1,OH=(2t+1)e2,故GH=OH-OG=(2t-2)e1+(2t+1)e2,(4)由(3)可得GH=(2t-2)e1+(2t+1)e2,故兩人間距離y=|GH|=[(2t-2)e1+(2t+1)e2]2=(2t-2)2+(2t+1)2+2(2t-2)(2t+1)×12=12t2-6t+3,由二次函數(shù)的知識(shí)可知,當(dāng)t=--62×12=14時(shí),上式取到最小值32,故14時(shí)兩人間距離最短.22.(坐標(biāo)系與參數(shù)方程選做題)點(diǎn)P(-3,0)到曲線x=t2y=2t(其中參數(shù)t∈R)上的點(diǎn)的最短距離為______.答案:設(shè)點(diǎn)Q(t2,2t)為曲線上的任意一點(diǎn),則|PQ|=(t2+3)2+(2t)2=(t2+5)2-16≥52-16=3,當(dāng)且僅當(dāng)t=0取等號(hào),此時(shí)Q(0,0).故點(diǎn)P(-3,0)到曲線x=t2y=2t(其中參數(shù)t∈R)上的點(diǎn)的最短距離為3.故為3.23.滿足f(xy)=f(x)+f(y)(x>0,y>0)且f(3)=2的函數(shù)可以是f(x)=______.答案:若函數(shù)為對(duì)數(shù)函數(shù),不妨令f(x)=logax則f(xy)=loga(xy)=logax+logay=f(x)+f(y)滿足條件又∵f(3)=2∴l(xiāng)oga3=2解得a=3故f(x)=log3x故為:log3x24.已知空間四邊形ABCD中,M、G分別為BC、CD的中點(diǎn),則等于()
A.
B.
C.
D.
答案:A25.設(shè),,,則P,Q,R的大小順序是(
)
A.P>Q>R
B.P>R>Q
C.Q>P>R
D.Q>R>P答案:B26.如圖,彎曲的河流是近似的拋物線C,公路l恰好是C的準(zhǔn)線,C上的點(diǎn)O到l的距離最近,且為0.4千米,城鎮(zhèn)P位于點(diǎn)O的北偏東30°處,|OP|=10千米,現(xiàn)要在河岸邊的某處修建一座碼頭,并修建兩條公路,一條連接城鎮(zhèn),一條垂直連接公路l,以便建立水陸交通網(wǎng).
(1)建立適當(dāng)?shù)淖鴺?biāo)系,求拋物線C的方程;
(2)為了降低修路成本,必須使修建的兩條公路總長(zhǎng)最小,請(qǐng)給出修建方案(作出圖形,在圖中標(biāo)出此時(shí)碼頭Q的位置),并求公路總長(zhǎng)的最小值(精確到0.001千米)答案:(1)過點(diǎn)O作準(zhǔn)線的垂線,垂足為A,以O(shè)A所在直線為x軸,OA的垂直平分線為y軸,建立平面直角坐標(biāo)系…(2分)由題意得,p2=0.4…(4分)所以,拋物線C:y2=1.6x…(6分)(2)設(shè)拋物線C的焦點(diǎn)為F由題意得,P(5,53)…(8分)根據(jù)拋物線的定義知,公路總長(zhǎng)=|QF|+|QP|≥|PF|≈9.806…(12分)當(dāng)Q為線段PF與拋物線C的交點(diǎn)時(shí),公路總長(zhǎng)最小,最小值為9.806千米…(16分)27.求證:梯形兩條對(duì)角線的中點(diǎn)連線平行于上、下底,且等于兩底差的一半(用解析法證之).答案:證明見過程解析:求證:梯形兩條對(duì)角線的中點(diǎn)連線平行于上、下底,且等于兩底差的一半(用解析法證之).28.過點(diǎn)(1,0)且與直線x-2y-2=0平行的直線方程是()
A.x-2y-1=0
B.x-2y+1=0
C.2x+y-2=0
D.x+2y-1=0答案:A29.已知點(diǎn)M在z軸上,A(1,0,2),B(1,-3,1),且|MA|=|MB|,則點(diǎn)M的坐標(biāo)是
______.答案:∵點(diǎn)M在z軸上,∴設(shè)點(diǎn)M的坐標(biāo)為(0,0,z)又|MA|=|MB|,由空間兩點(diǎn)間的距離公式得:12+02+(z-2)2=12+32+(z-1)2解得:z=-3.故點(diǎn)M的坐標(biāo)是(0,0,-3).故為:(0,0,-3).30.解不等式logx(2x+1)>logx2.答案:當(dāng)0<x<1,logx(2x+1)>logx2?0<2x+1<20<x<1,解得0<x<12;當(dāng)x>1,logx(2x+1)>logx2?2x+1>2x>1,解得x>1.綜上所述,原不等式的解集為{x|0<x<12或x>1}.31.某公司的管理機(jī)構(gòu)設(shè)置是:設(shè)總經(jīng)理一個(gè),副總經(jīng)理兩個(gè),直接對(duì)總經(jīng)理負(fù)責(zé),下設(shè)有6個(gè)部門,其中副總經(jīng)理A管理生產(chǎn)部、安全部和質(zhì)量部,副總經(jīng)理B管理銷售部、財(cái)務(wù)部和保衛(wèi)部.請(qǐng)根據(jù)以上信息補(bǔ)充該公司的人事結(jié)構(gòu)圖,其中①、②處應(yīng)分別填()
A.保衛(wèi)部,安全部
B.安全部,保衛(wèi)部
C.質(zhì)檢中心,保衛(wèi)部
D.安全部,質(zhì)檢中心
答案:B32.(Ⅰ)已知z∈C,且|z|-i=.z+2+3i(i為虛數(shù)單位),求復(fù)數(shù)z2+i的虛部.
(Ⅱ)已知z1=a+2i,z2=3-4i(i為虛數(shù)單位),且z1z2為純虛數(shù),求實(shí)數(shù)a的值.答案:(Ⅰ)設(shè)z=x+yi,代入方程|z|-i=.z+2+3i,得出x2+y2-i=x-yi+2+3i=(x+2)+(3-y)i,故有x2+y2=x+23-y=-1,解得x=3y=4,∴z=3+4i,復(fù)數(shù)z2+i=3+4i2+i=2+i,虛部為1(Ⅱ)z1z2=a+2i3-4i=3a-8+(4a+6)i25,且z1z2為純虛數(shù)則3a-8=0,且4a+6≠0,解得a=8333.若不等式(﹣1)na<2+對(duì)任意n∈N*恒成立,則實(shí)數(shù)a的取值范圍是
[
]A.[﹣2,)
B.(﹣2,)
C.[﹣3,)
D.(﹣3,)答案:A34.半徑為5,圓心在y軸上,且與直線y=6相切的圓的方程為______.答案:如圖所示,因?yàn)榘霃綖?,圓心在y軸上,且與直線y=6相切,所以可知有兩個(gè)圓,上圓圓心為(0,11),下圓圓心為(0,1),所以圓的方程為x2+(y-1)2=25或x2+(y-11)2=25.35.直線(x+1)a+(y+1)b=0與圓x2+y2=2的位置關(guān)系是______.答案:直線(x+1)a+(y+1)b=0化為ax+by+(a+b)=0,所以圓心點(diǎn)到直線的距離d=|a+b|a2+b2=a2+b2+2aba2+b2≤2(a2+b2)a2+b2=2.所以直線(x+1)a+(y+1)b=0與圓x2+y2=2的位置關(guān)系是:相交或相切.故為:相交或相切.36.有一個(gè)容量為66的樣本,數(shù)據(jù)的分組及各組的頻數(shù)如下:
[11.5,15.5)2[15.5,19.5)4[19.5,23.5)9[23.5,27.5)18
[27.5,31.5)11[31.5,35.5)12[35.5,39.5)7[39.5,43.5)3
根據(jù)樣本的頻率分布估計(jì),大于或等于31.5的數(shù)據(jù)約占()A.211B.13C.12D.23答案:根據(jù)所給的數(shù)據(jù)的分組和各組的頻數(shù)知道,大于或等于31.5的數(shù)據(jù)有[31.5,35.5)12;[35.5,39.5)7;[39.5,43.5)3,可以得到共有12+7+3=22,∵本組數(shù)據(jù)共有66個(gè),∴大于或等于31.5的數(shù)據(jù)約占2266=13,故選B37.設(shè)和為不共線的向量,若2-3與k+6(k∈R)共線,則k的值為()
A.k=4
B.k=-4
C.k=-9
D.k=9答案:B38.在語(yǔ)句PRINT
3,3+2的結(jié)果是()
A.3,3+2
B.3,5
C.3,5
D.3,2+3答案:B39.若P(2,-1)為曲線x=1+5cosθy=5sinθ(0≤θ<2π)的弦的中點(diǎn),則該弦所在直線的普通方程為______.答案:∵曲線x=1+5cosθy=5sinθ(0≤θ<2π),∴(x-1)2+y2=25,∵P(2,-1)為曲線x=1+5cosθy=5sinθ(0≤θ<2π)的弦的中點(diǎn),設(shè)過點(diǎn)P(2,-1)的弦與(x-1)2+y2=25交于A(x1,y1),B(x2,y2),則x1+x2=4y1+y2=-2,把A(x1,y1),B(x2,y2)代入(x-1)2+y2=25,得(x1-1)2+y
12=25(x2-1)2+y22=25,∴x12-2x1+1+y12=25,①x22-2x2+1+y22=25,②,①-②,得4(x1-x2)-2(x1-x2)-2(y1-y2)=0,∴k=y1-y2x1-x2=1,∴該弦所在直線的普通方程為y+1=x-2,即x-y-3=0.故為:x-y-3=0.40.位于直角坐標(biāo)原點(diǎn)的一個(gè)質(zhì)點(diǎn)P按下列規(guī)則移動(dòng):質(zhì)點(diǎn)每次移動(dòng)一個(gè)單位,移動(dòng)的方向向左或向右,并且向左移動(dòng)的概率為,向右移動(dòng)的概率為,則質(zhì)點(diǎn)P移動(dòng)五次后位于點(diǎn)(1,0)的概率是()
A.
B.
C.
D.答案:D41.與
向量
=(2,-1,2)共線且滿足方程=-18的向量為()
A.不存在
B.-2
C.(-4,2,-4)
D.(4,-2,4)答案:D42.用數(shù)學(xué)歸納法證明不等式成立,起始值至少應(yīng)取為()
A.7
B.8
C.9
D.10答案:B43.已知數(shù)列{an}中,a1=1,an+1=an+n,若利用如圖所示的種序框圖計(jì)算該數(shù)列的第10項(xiàng),則判斷框內(nèi)的條件是()
A.n≤8?
B.n≤9?
C.n≤10?
D.n≤11?
答案:B44.從點(diǎn)A(2,-1,7)沿向量=(8,9,-12)的方向取線段長(zhǎng)||=34,則B點(diǎn)坐標(biāo)為()
A.(-9,-7,7)
B.(18,17,-17)
C.(9,7,-7)
D.(-14,-19,31)答案:B45.如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于點(diǎn)E,點(diǎn)D在AB上,DE⊥EB.
(Ⅰ)求證:AC是△BDE的外接圓的切線;
(Ⅱ)若AD=23,AE=6,求EC的長(zhǎng).答案:證明:(Ⅰ)取BD的中點(diǎn)O,連接OE.∵BE平分∠ABC,∴∠CBE=∠OBE.又∵OB=OE,∴∠OBE=∠BEO,∴∠CBE=∠BEO,∴BC∥OE.…(3分)∵∠C=90°,∴OE⊥AC,∴AC是△BDE的外接圓的切線.
…(5分)(Ⅱ)設(shè)⊙O的半徑為r,則在△AOE中,OA2=OE2+AE2,即(r+23)2=r2+62,解得r=23,…(7分)∴OA=2OE,∴∠A=30°,∠AOE=60°.∴∠CBE=∠OBE=30°.∴在Rt△BCE中,可得EC=12BE=12×3r=12×3×23=3.
…(10分)46.已知,求證:.答案:證明略解析:因?yàn)槭禽啌Q對(duì)稱不等式,可考慮由局部證整體.,相加整理得.當(dāng)且僅當(dāng)時(shí)等號(hào)成立.【名師指引】綜合法證明不等式常用兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)這一結(jié)論,運(yùn)用時(shí)要結(jié)合題目條件,有時(shí)要適當(dāng)變形.47.設(shè)m、n是兩條不同的直線,α、β是兩個(gè)不同的平面,則下列命題中正確的是()
A.若m∥n,m∥α,則n∥α
B.若α⊥β,m∥α,則m⊥β
C.若α⊥β,m⊥β,則m∥α
D.若m⊥n,m⊥α,n⊥β,則α⊥β答案:D48.某學(xué)院有四個(gè)飼養(yǎng)房,分別養(yǎng)有18,54,24,48只白鼠供實(shí)驗(yàn)用,某項(xiàng)實(shí)驗(yàn)需要抽取24只白鼠,你認(rèn)為最合適的抽樣方法是()A.在每個(gè)飼養(yǎng)房各抽取6只B.把所以白鼠都編上號(hào),用隨機(jī)抽樣法確定24只C.在四個(gè)飼養(yǎng)房應(yīng)分別抽取3,9,4,8只D.先確定這四個(gè)飼養(yǎng)房應(yīng)分別抽取3,9,4,8只樣品,再由各飼養(yǎng)房將白鼠編號(hào),用簡(jiǎn)單隨機(jī)抽樣確定各自要抽取的對(duì)象答案:A中對(duì)四個(gè)飼養(yǎng)房平均攤派,但由于各飼養(yǎng)房所養(yǎng)數(shù)量不一,反而造成了各個(gè)個(gè)體入選概率的不均衡,是錯(cuò)誤的方法.B中保證了各個(gè)個(gè)體入選概率的相等,但由于沒有注意到處在四個(gè)不同環(huán)境中會(huì)產(chǎn)生差異,不如采用分層抽樣可靠性高,且統(tǒng)一編號(hào)統(tǒng)一選擇加大了工作量.C中總體采用了分層抽樣,但在每個(gè)層次中沒有考慮到個(gè)體的差層(如健壯程度,靈活程度),貌似隨機(jī),實(shí)則各個(gè)個(gè)體概率不等.故選D.49.函數(shù)f(x)=ax+loga(x+1)在[0,1]上的最大值和最小值之和為a,則a的值為
______.答案:∵y=ax與y=loga(x+1)具有相同的單調(diào)性.∴f(x)=ax+loga(x+1)在[0,1]上單調(diào),∴f(0)+f(1)=a,即a0+loga1+a1+loga2=a,化簡(jiǎn)得1+loga2=0,解得a=12故為:1250.來(lái)自中國(guó)、英國(guó)、瑞典的乒乓球裁判各兩名,執(zhí)行北京奧運(yùn)會(huì)的一號(hào)、二號(hào)和三號(hào)場(chǎng)地的乒乓球裁判工作,每個(gè)場(chǎng)地由兩名來(lái)自不同國(guó)家的裁判組成,則不同的安排方案總數(shù)有()
A.12種
B.48種
C.90種
D.96種答案:B第2卷一.綜合題(共50題)1.有外形相同的球分裝三個(gè)盒子,每盒10個(gè).其中,第一個(gè)盒子中7個(gè)球標(biāo)有字母A、3個(gè)球標(biāo)有字母B;第二個(gè)盒子中有紅球和白球各5個(gè);第三個(gè)盒子中則有紅球8個(gè),白球2個(gè).試驗(yàn)按如下規(guī)則進(jìn)行:先在第一號(hào)盒子中任取一球,若取得標(biāo)有字母A的球,則在第二號(hào)盒子中任取一個(gè)球;若第一次取得標(biāo)有字母B的球,則在第三號(hào)盒子中任取一個(gè)球.如果第二次取出的是紅球,則稱試驗(yàn)成功,那么試驗(yàn)成功的概率為()
A.0.59
B.0.54
C.0.8
D.0.15答案:A2.已知M(-2,0),N(2,0),|PM|-|PN|=3,則動(dòng)點(diǎn)P的軌跡是()A.雙曲線B.雙曲線右支C.一條射線D.不存在答案:∵|PM|-|PN|=3,M(-2,0),N(2,0),且3<4=|MN|,根據(jù)雙曲線的定義,∴點(diǎn)P是以M(-2,0),N(2,0)為兩焦點(diǎn)的雙曲線的右支.故選B.3.如圖,正方體ABCD-A1B1C1D1的棱長(zhǎng)為1.
(1)求A1C與DB所成角的大?。?/p>
(2)求二面角D-A1B-C的余弦值;
(3)若點(diǎn)E在A1B上,且EB=1,求EC與平面ABCD所成角的大?。鸢福海?)如圖建立空間直角坐標(biāo)系C-xyz,則C(0,0,0),D(1,0,0),B(0,1,0),A1(1,1,1).∴DB=(-1,1,0),CA1=(1,1,1).∴cos<DB,CA1>=DB?CA1|DB|?|CA1|=02?3=0.∴A1C與DB所成角的大小為90°.(2)設(shè)平面A1BD的法向量n1=(x,y,z),則n1⊥DB,n1⊥A1B,可得-x+y=0x+z=0,∴n1=(1,1,-1).同理可求得平面A1BC的一個(gè)法向量n2=(1,0,-1),∴cos<n1,n2>=n1?n2|n1|?|n2|=26=63,∴二面角D-A1B-C的余弦值為63.(3)設(shè)n=(0,0,1)是平面ABCD的一個(gè)法向量,且CE=(22,1,22),∴cos<n,CE>=n?CE|n|?|CE|=12,∴<n,CE>=60°,∴EC與平面ABCD所成的角是30°.4.點(diǎn)P(1,2,2)到原點(diǎn)的距離是()
A.9
B.3
C.1
D.5答案:B5.如圖,平行四邊形ABCD中,AE:EB=1:2,若△AEF的面積等于1cm2,則△CDF的面積等于______cm2.答案:平行四邊形ABCD中,有△AEF~△CDF∴△AEF與△CDF的面積之比等于對(duì)應(yīng)邊長(zhǎng)之比的平方,∵AE:EB=1:2,∴AE:CD=1:3∵△AEF的面積等于1cm2,∴∵△CDF的面積等于9cm2故為:96.=(2,1),=(3,4),則向量在向量方向上的投影為()
A.
B.
C.2
D.10答案:C7.
已知橢圓(θ為參數(shù))上的點(diǎn)P到它的兩個(gè)焦點(diǎn)F1、F2的距離之比,
且∠PF1F2=α(0<α<),則α的最大值為()
A.
B.
C.
D.答案:A8.系數(shù)矩陣為.2132.,解為xy=12的一個(gè)線性方程組是______.答案:可設(shè)線性方程組為2132xy=mn,由于方程組的解是xy=12,∴mn=47,∴所求方程組為2x+y=43x+2y=7,故為:2x+y=43x+2y=7.9.若圖中的直線l1、l2、l3的斜率分別為k1、k2、k3,則()
A.k1<k2<k3
B.k2<k1<k3
C.k3<k2<k1
D.k1<k3<k2
答案:B10.如圖,已知OA、OB是⊙O的半徑,且OA⊥OB,P是線段OA上一點(diǎn),直線BP交⊙O于點(diǎn)Q,過Q作⊙O的切線交直線OA于點(diǎn)E,求證:∠OBP+∠AQE=45°.答案:證明:連接AB,則∠AQE=∠ABP,而OA=OB,所以∠ABO=45°所以∠OBP+∠AQE=∠OBP+∠ABP=∠ABO=45°11.先后拋擲兩枚均勻的正方體骰子(它們的六個(gè)面分別標(biāo)有點(diǎn)數(shù)1、2、3、4、5、6),骰子朝上的面的點(diǎn)數(shù)分別為X、Y,則log2XY=1的概率為()A.16B.536C.112D.12答案:∵log2XY=1∴Y=2X,滿足條件的X、Y有3對(duì)而骰子朝上的點(diǎn)數(shù)X、Y共有36對(duì)∴概率為336=112故選C.12.若一個(gè)圓錐的軸截面是邊長(zhǎng)為4cm的等邊三角形,則這個(gè)圓錐的側(cè)面積為______cm2.答案:如圖所示:∵軸截面是邊長(zhǎng)為4等邊三角形,∴OB=2,PB=4.圓錐的側(cè)面積S=π×2×4=8πcm2.故為8π.13.設(shè)甲、乙兩名射手各打了10發(fā)子彈,每發(fā)子彈擊中環(huán)數(shù)如下:甲:10,7,7,10,8,9,9,10,5,10;
乙:8,7,9,10,9,8,8,9,8,9則甲、乙兩名射手的射擊技術(shù)評(píng)定情況是()
A.甲比乙好
B.乙比甲好
C.甲、乙一樣好
D.難以確定答案:B14.直線(a+1)x-(2a+5)y-6=0必過一定點(diǎn),定點(diǎn)的坐標(biāo)為(
)。答案:(-4,-2)15.下列命題中正確的是()
A.若,則
B.若,則
.若,則
D.若,則答案:C16.△ABC中,,若,則m+n=()
A.
B.
C.
D.1答案:B17.(本小題滿分10分)如圖,D、E分別是AB、AC邊上的點(diǎn),且不與頂點(diǎn)重合,已知為方程的兩根
(1)證明四點(diǎn)共圓
(2)若求四點(diǎn)所在圓的半徑答案:(1)見解析;(2)解析:解:(Ⅰ)如圖,連接DE,依題意在中,,由因?yàn)樗裕?四點(diǎn)C、B、D、E共圓。(Ⅱ)當(dāng)時(shí),方程的根因而,取CE中點(diǎn)G,BD中點(diǎn)F,分別過G,F做AC,AB的垂線,兩垂線交于點(diǎn)H,連接DH,因?yàn)樗狞c(diǎn)C、B、D、E共圓,所以,H為圓心,半徑為DH.,,所以,,點(diǎn)評(píng):此題考查平面幾何中的圓與相似三角形及方程等概念和性質(zhì)。注意把握判定與性質(zhì)的作用。18.已知平面內(nèi)的向量a,b,c兩兩所成的角相等,且|a|=2,|b|=3,|c|=5,則|a+b+c|的值的集合為______.答案:設(shè)平面內(nèi)的向量a,b,c兩兩所成的角為α,|a+b+c|2=4+9+25+12cosα+20cosα+30cosα=38+62cosα,當(dāng)α=0°時(shí),|a+b+c|2=100,|a+b+c|=10,當(dāng)α=120°時(shí),|a+b+c|2=7,|a+b+c|=7.所以,|a+b+c|的值的集合為{7,10}.故為:{7,10}.19.從某校隨機(jī)抽取了100名學(xué)生,將他們的體重(單位:kg)數(shù)據(jù)繪制成頻率分布直方圖(如圖),由圖中數(shù)據(jù)可知m=______,所抽取的學(xué)生中體重在45~50kg的人數(shù)是______.答案:由頻率分步直方圖知,(0.02+m+0.06+0.02)×5=1,∴m=0.1,∴所抽取的體重在45~50kg的人數(shù)是0.1×5×100=50人,故為:0.1;5020.已知向量a,b,向量c=2a+b,且|a|=1,|b|=2,a與b的夾角為60°
(1)求|c|2;(2)若向量d=ma-b,且d∥c,求實(shí)數(shù)m的值.答案:(1)∵|a|=1,|b|=2,a和b的夾角為60°∴a?b=|a||b|cos60°=1∴|c|2=(
2a+b)2=4a2+4ab+b2=4+4+4=12(2)∵d∥c∴存在實(shí)數(shù)λ使得d=λc即ma-b=λ(2a+b)又∵a,b不共線∴2λ=m,λ=-1∴m=-221.定義在R上的二次函數(shù)y=f(x)在(0,2)上單調(diào)遞減,其圖象關(guān)于直線x=2對(duì)稱,則下列式子可以成立的是()
A.
B.
C.
D.答案:D22.過拋物線y2=4x的焦點(diǎn)作直線l交拋物線于A、B兩點(diǎn),若線段AB中點(diǎn)的橫坐標(biāo)為3,則|AB|等于()A.2B.4C.6D.8答案:由題設(shè)知知線段AB的中點(diǎn)到準(zhǔn)線的距離為4,設(shè)A,B兩點(diǎn)到準(zhǔn)線的距離分別為d1,d2,由拋物線的定義知:|AB|=|AF|+|BF|=d1+d2=2×4=8.故選D.23.如圖,△ABC中,AD=2DB,AE=3EC,CD與BE交于F,若AF=xAB+yAC,則()A.x=13,y=12B.x=14,y=13C.x=37,y=37D.x=25,y=920答案:過點(diǎn)F作FM∥AC、FN∥AB,分別交AB、AC于點(diǎn)M、N∵FM∥AC,∴FMAC=DMAD且FMAE=BMAB∵AD=2DB,AE=3EC,∴AD=23AB,AE=34AC.由此可得AM=13AB同理可得AN=12AC∵四邊形AMFN是平行四邊形∴由向量加法法則,得AF=13AB+12AC∵AF=xAB+yAC,∴根據(jù)平面向量基本定理,可得x=13,y=12故選:A24.已知x、y之間的一組數(shù)據(jù)如下:
x0123y8264則線性回歸方程y=a+bx所表示的直線必經(jīng)過點(diǎn)()A.(0,0)B.(2,6)C.(1.5,5)D.(1,5)答案:∵.x=0+1+2+34=1.5,.y=8+2+6+44=5∴線性回歸方程y=a+bx所表示的直線必經(jīng)過點(diǎn)(1.5,5)故選C25.若點(diǎn)M,A,B,C對(duì)空間任意一點(diǎn)O都滿足則這四個(gè)點(diǎn)()
A.不共線
B.不共面
C.共線
D.共面答案:D26.如圖,在梯形ABCD中,AB∥CD,AB=4,CD=2.E,F(xiàn)分別為AD,BC上點(diǎn),且EF=3,EF∥AB,則梯形ABFE與梯形EFCD的面積比為______.答案:∵E,F(xiàn)分別為AD,BC上點(diǎn),且EF=3,EF∥AB,∴EF是梯形的中位線,設(shè)兩個(gè)梯形的高是h,∴梯形ABFE的面積是(4+3)h2=7h2,梯形EFCD的面積(2+3)h2=5h2∴梯形ABFE與梯形EFCD的面積比為7h25h2=75,故為:7:527.圓錐曲線G的一個(gè)焦點(diǎn)是F,與之對(duì)應(yīng)的準(zhǔn)線是,過F作直線與G交于A、B兩點(diǎn),以AB為直徑作圓M,圓M與的位置關(guān)系決定G
是何種曲線之間的關(guān)系是:______
圓M與的位置相離相切相交G
是何種曲線答案:設(shè)圓錐曲線過焦點(diǎn)F的弦為AB,過A、B分別向相應(yīng)的準(zhǔn)線作垂線AA',BB',則由第二定義得:|AF|=e|AA'|,|BF|=e|BB'|,∴|AF|+|BF|2=|AA′|+|BB′|2
?
e.設(shè)以AB為直徑的圓半徑為r,圓心到準(zhǔn)線的距離為d,即有r=de,橢圓的離心率
0<e<1,此時(shí)r<d,圓M與準(zhǔn)線相離;拋物線的離心率
e=1,此時(shí)r=d,圓M與準(zhǔn)線相切;雙曲線的離心率
e>1,此時(shí)r>d,圓M與準(zhǔn)線相交.故為:橢圓、拋物線、雙曲線.28.平行線l1:3x-2y-5=0與l2:6x-4y+3=0之間的距離為______.答案:將l1:3x-2y-5=0化成6x-4y-10=0∴l(xiāng)1:3x-2y-5=0與l2:6x-4y+3=0之間的距離為d=|-10-3|62+(-4)2=1352=132故為:13229.選做題
已知拋物線,過原點(diǎn)O直線與交于兩點(diǎn)。
(1)求的最小值;
(2)求的值答案:解:設(shè)直線的參數(shù)方程為與拋物線方程
聯(lián)立得30.如圖,從圓O外一點(diǎn)A引切線AD和割線ABC,AB=3,BC=2,則切線AD的長(zhǎng)為______.答案:由切割線定理可得AD2=AB?AC=3×5,∴AD=15.故為15.31.棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,BC1?B1D1=()A.22B.4C.-22D.-4答案:棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,BC1與
B1D1的夾角等于BC1與BD的夾角,等于60°.∴BC1?B1D1=22×22cos60°=4,故選B.32.在空間直角坐標(biāo)系O-xyz中,已知=(1,2,3),=(2,1,2),=(1,1,2),點(diǎn)Q在直線OP上運(yùn)動(dòng),則當(dāng)取得最小值時(shí),點(diǎn)Q的坐標(biāo)為()
A.(,,)
B.(,,)
C.(,,)
D.(,,)答案:C33.在△ABC中,D為AB上一點(diǎn),M為△ABC內(nèi)一點(diǎn),且滿足AD=34AB,AM=AD+35BC,則△AMD與△ABC的面積比為()A.925B.45C.916D.920答案:AP=AD+DP=AD+35BC,DP=35BC.∴三角形ADP的高三角形ABC=ADAB=34,∴S△APDS△ABC=35?34=920.故選D.34.如圖,已知△ABC,過頂點(diǎn)A的圓與邊BC切于BC的中點(diǎn)P,與邊AB、AC分別交于點(diǎn)M、N,且CN=2BM,點(diǎn)N平分AC.則AM:BM=()
A.2
B.4
C.6
D.7
答案:D35.有50件產(chǎn)品編號(hào)從1到50,現(xiàn)在從中抽取抽取5件檢驗(yàn),用系統(tǒng)抽樣確定所抽取的編號(hào)為()
A.5,10,15,20,25
B.5,15,20,35,40
C.5,11,17,23,29
D.10,20,30,40,50答案:D36.給出的下列幾個(gè)命題:
①向量共面,則它們所在的直線共面;
②零向量的方向是任意的;
③若則存在唯一的實(shí)數(shù)λ,使
其中真命題的個(gè)數(shù)為()
A.0
B.1
C.2
D.3答案:B37.直線(t為參數(shù))被圓x2+y2=9截得的弦長(zhǎng)為()
A.
B.
C.
D.答案:B38.已知2,4,2x,4y四個(gè)數(shù)的平均數(shù)是5而5,7,4x,6y四個(gè)數(shù)的平均數(shù)是9,則xy的值是______.答案:因?yàn)?,4,2x,4y四個(gè)數(shù)的平均數(shù)是5,則2+4+2x+4y=4×5,又由5,7,4x,6y四個(gè)數(shù)的平均數(shù)是9,則5+7+4x+6y=4×9,x與y滿足的關(guān)系式為x+2y=72x+3y=12解得x=3y=2故為6.39.設(shè)函數(shù)f(x)是定義在[a,b]上的奇函數(shù),則f(a+b)=______.答案:因?yàn)楹瘮?shù)f(x)是定義在[a,b]上的奇函數(shù),所以定義域關(guān)于原點(diǎn)對(duì)稱,所以a+b=0,且f(0)=0.所以f(a+b)=f(0)=0.故為:0.40.已知100件產(chǎn)品中有5件次品,從中任意取出3件產(chǎn)品,設(shè)A表示事件“3件產(chǎn)品全不是次品”,B表示事件“3件產(chǎn)品全是次品”,C表示事件“3件產(chǎn)品中至少有1件次品”,則下列結(jié)論正確的是()
A.B與C互斥
B.A與C互斥
C.任意兩個(gè)事件均互斥
D.任意兩個(gè)事件均不互斥答案:B41.曲線x2+ay+2y+2=0經(jīng)過點(diǎn)(2,-1),則a=______.答案:由題意,∵曲線x2+ay+2y+2=0經(jīng)過點(diǎn)(2,-1),∴22-a-2+2=0∴a=4故為442.設(shè)f(n)=nn+1,g(n)=(n+1)n,n∈N*.
(1)當(dāng)n=1,2,3,4時(shí),比較f(n)與g(n)的大?。?/p>
(2)根據(jù)(1)的結(jié)果猜測(cè)一個(gè)一般性結(jié)論,并加以證明.答案:(1)當(dāng)n=1時(shí),nn+1=1,(n+1)n=2,此時(shí),nn+1<(n+1)n,當(dāng)n=2時(shí),nn+1=8,(n+1)n=9,此時(shí),nn+1<(n+1)n,當(dāng)n=3時(shí),nn+1=81,(n+1)n=64,此時(shí),nn+1>(n+1)n,當(dāng)n=4時(shí),nn+1=1024,(n+1)n=625,此時(shí),nn+1>(n+1)n,(2)根據(jù)上述結(jié)論,我們猜想:當(dāng)n≥3時(shí),nn+1>(n+1)n(n∈N*)恒成立.①當(dāng)n=3時(shí),nn+1=34=81>(n+1)n=43=64即nn+1>(n+1)n成立.②假設(shè)當(dāng)n=k時(shí),kk+1>(k+1)k成立,即:kk+1(k+1)k>1則當(dāng)n=k+1時(shí),(k+1)k+2(k+2)k+1=(k+1)?(k+1k+2)k+1>(k+1)?(kk+1)k+1=kk+1(k+1)k>1即(k+1)k+2>(k+2)k+1成立,即當(dāng)n=k+1時(shí)也成立,∴當(dāng)n≥3時(shí),nn+1>(n+1)n(n∈N*)恒成立.43.六個(gè)不同大小的數(shù)按如圖形式隨機(jī)排列,設(shè)第一行這個(gè)數(shù)為M1,M2,M3分別表示第二、三行中最大數(shù),則滿足M1<M2<M3所有排列的個(gè)數(shù)______.答案:首先M3一定是6個(gè)數(shù)中最大的,設(shè)這六個(gè)數(shù)分別為a,b,c,d,e,f,不妨設(shè)a>b>c>d>e>f.因?yàn)槿绻鸻在第三行,則a一定是M3,若a不在第三行,則a一定是M1或M2,此時(shí)無(wú)法滿足M1<M2<M3,故a一定在第三行.故
M2一定是b,c,d中一個(gè),否則,若M2是e,則第二行另一個(gè)數(shù)只能是f,那么第一行的數(shù)就比e大,無(wú)法滿足M1<M2<M3.當(dāng)M2是b時(shí),此時(shí),a在第三行,b在第二行,其它數(shù)任意排,所有的排法有C31
C21
A44=144(種),當(dāng)M2是c時(shí),此時(shí)a和b必須在第三行,c在第二行,其它數(shù)任意排,所有的排法有A32
C21
A33=72(種),當(dāng)M2是d時(shí),此時(shí),a,b,c在第三行,d在第二行,其它數(shù)任意排,所有的排法有A33
C21
A22=24(種),故滿足M1<M2<M3所有排列的個(gè)數(shù)為:24+72+144=240種,故為:240.44.把一顆骰子擲兩次,觀察出現(xiàn)的點(diǎn)數(shù),并記第一次出現(xiàn)的點(diǎn)數(shù)為a,第二次出現(xiàn)的點(diǎn)數(shù)為b,則點(diǎn)(a,b)在直線x+y=5左下方的概率為()A.16B.56C.112D.1112答案:由題意知本題是一個(gè)古典概型,試驗(yàn)發(fā)生包含的事件數(shù)是6×6=36種結(jié)果,滿足條件的事件是點(diǎn)(a,b)在直線x+y=5左下方即a+b<5,可以列舉出所有滿足的情況(1,1)(1,2)(1,3),(2,1),(2,2)(3,1)共有6種結(jié)果,∴點(diǎn)在直線的下方的概率是636=16故選A.45.a、b、c∈R,則下列命題為真命題的是______.
①若a>b,則ac2>bc2
②若ac2>bc2,則a>b
③若a<b<0,則a2>ab>b2
④若a<b<0,則1a<1b.答案:當(dāng)c=0時(shí),ac2=bc2,故①不成立;若ac2>bc2,則c2≠0,即c2>0,則a>b,故②成立;若a<b<0,則a2>ab且ab>b2,故a2>ab>b2,故③成立;若a<b<0,則ab>0,故aab<bab,即1a>1b,故④不成立故②③為真命題故為:②③46.如圖所示,圓的內(nèi)接三角形ABC的角平分線BD與AC交于點(diǎn)D,與圓交于點(diǎn)E,連接AE,已知ED=3,BD=6,則線段AE的長(zhǎng)=______.答案:∵BD平分角∠CBA,∴∠CBE=∠EBA又∵∠CBE=∠EAD在△EDA和△EAB中,∠E=∠E,∠EAD=∠EBA∴△EDA∽△EAB∴AE:BE=ED:AE∴AE2=ED?BE又∵ED=3,BD=6,∴BE=9∴AE2=27∴AE=33故為:3347.已知{x1,x2,x3,…,xn}的平均數(shù)是2,則3x1+2,3x2+2,…,3xn+2的平均數(shù)=_______.答案:∵x1,x2,x3,…,xn的平均數(shù)是2即(x1+x2+x3+…+xn)÷n=2∴3x1+2,3x2+2,…,3xn+2的平均數(shù)為(3x1+2+3x2+2+…+3xn+2)÷n=[3(x1+x2+x3+…+xn)+2n]÷n=3×2+2=8故為:848.下列幾種說(shuō)法正確的個(gè)數(shù)是()
①相等的角在直觀圖中對(duì)應(yīng)的角仍然相等;
②相等的線段在直觀圖中對(duì)應(yīng)的線段仍然相等;
③平行的線段在直觀圖中對(duì)應(yīng)的線段仍然平行;
④線段的中點(diǎn)在直觀圖中仍然是線段的中點(diǎn).
A.1
B.2
C.3
D.4答案:B49.書架上有5本數(shù)學(xué)書,4本物理書,5本化學(xué)書,從中任取一本,不同的取法有()A.14B.25C.100D.40答案:由題意,∵書架上有5本數(shù)學(xué)書,4本物理書,5本化學(xué)書,∴從中任取一本,不同的取法有5+4+5=14種故選A.50.已知點(diǎn)P(3,m)在以點(diǎn)F為焦點(diǎn)的拋物線x=4t2y=4t(t為參數(shù))上,則|PF|的長(zhǎng)為______.答案:∵拋物線x=4t2y=4t(t為參數(shù))上,∴y2=4x,∵點(diǎn)P(3,m)在以點(diǎn)F為焦點(diǎn)的拋物線x=4t2y=4t(t為參數(shù))上,∴m2=4×3=12,∴P(3,23)∵F(1,0),∴|PF|=22+(23)2=4,故為4.第3卷一.綜合題(共50題)1.有四個(gè)游戲盤,將它們水平放穩(wěn)后,在上面扔一顆玻璃小球,若小球落在陰影部分,則可中獎(jiǎng),小明要想增加中獎(jiǎng)機(jī)會(huì),應(yīng)選擇的游戲盤的序號(hào)______
答案:(1)游戲盤的中獎(jiǎng)概率為
38,(2)游戲盤的中獎(jiǎng)概率為
14,(3)游戲盤的中獎(jiǎng)概率為
26=13,(4)游戲盤的中獎(jiǎng)概率為
13,(1)游戲盤的中獎(jiǎng)概率最大.故為:(1).2.命題“正數(shù)的絕對(duì)值等于它本身”的逆命題是______.答案:將命題“正數(shù)的絕對(duì)值等于它本身”改寫為“若一個(gè)數(shù)是正數(shù),則其絕對(duì)值等于它本身”,所以逆命題是“若一個(gè)數(shù)的絕對(duì)值等于它本身,則這個(gè)數(shù)是正數(shù)”,即“絕對(duì)值等于它本身的數(shù)是正數(shù)”.故為:“絕對(duì)值等于它本身的數(shù)是正數(shù)”.3.若向量的起點(diǎn)與終點(diǎn)M、A、B、C互不重合且無(wú)三點(diǎn)共線,且滿足下列關(guān)系(O為空間任一點(diǎn)),則能使向量成為空間一組基底的關(guān)系是()
A.
B.
C.
D.答案:C4.設(shè)隨機(jī)變量X~B(10,0.8),則D(2X+1)等于()
A.1.6
B.3.2
C.6.4
D.12.8答案:C5.已知直線l過點(diǎn)P(2,1)且與x軸、y軸的正半軸分別交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),則三角形OAB面積的最小值為______.答案:設(shè)A(a,0)、B(0,b),a>0,b>0,AB方程為xa+
yb=1,點(diǎn)P(2,1)代入得2a+1b=1≥22ab,∴ab≥8
(當(dāng)且僅當(dāng)a=4,b=2時(shí),等號(hào)成立),故三角形OAB面積S=12
ab≥4,故為4.6.比較大?。篴=0.20.5,b=0.50.2,則()
A.0<a<b<1
B.0<b<a<1
C.1<a<b
D.1<b<a答案:A7.橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,兩頂點(diǎn)分別是(3,0),(0,2),則此橢圓的方程是______.答案:依題意,此橢圓方程為標(biāo)準(zhǔn)方程,且焦點(diǎn)在x軸上,設(shè)為x2a2+y2b2=1∵橢圓的兩頂點(diǎn)分別是(3,0),(0,2),∴a=3,b=2∵∴此橢圓的標(biāo)準(zhǔn)方程為:x29+y22=1.故為:x29+y22=1.8.若定義運(yùn)算a⊕b=b,a<ba,a≥b則函數(shù)f(x)=2x⊕(12)x的值域?yàn)開_____(用區(qū)間表示).答案:由題意畫出f(x)=2x?(12)x的圖象(實(shí)線部分),由圖可知f(x)的值域?yàn)閇1,+∞).故為:[1,+∞).9.一個(gè)類似于細(xì)胞分裂的物體,一次分裂為二,兩次分裂為四,如此繼續(xù)分裂有限多次,而隨機(jī)終止.設(shè)分裂n次終止的概率是(n=1,2,3,…).記X為原物體在分裂終止后所生成的子塊數(shù)目,則P(X≤10)=()
A.
B.
C.
D.以上均不對(duì)答案:A10.已知直線過點(diǎn)A(2,0),且平行于y軸,方程:|x|=2,則(
)
A.l是方程|x|=2的曲線
B.|x|=2是l的方程
C.l上每一點(diǎn)的坐標(biāo)都是方程|x|=2的解
D.以方程|x|=2的解(x,y)為坐標(biāo)的點(diǎn)都在l上答案:C11.已知向量,,,則(
)A.B.C.5D.25答案:C解析:將平方即可求得C.12.某工程隊(duì)有6項(xiàng)工程需要單獨(dú)完成,其中工程乙必須在工程甲完成后才能進(jìn)行,工程丙必須在工程乙完成后才能進(jìn)行,有工程丁必須在工程丙完成后立即進(jìn)行.那么安排這6項(xiàng)工程的不同排法種數(shù)是______.(用數(shù)字作答)答案:依題意,乙必須在甲后,丙必須在乙后,丙丁必相鄰,且丁在丙后,只需將剩余兩個(gè)工程依次插在由甲、乙、丙丁四個(gè)工程之間即可,第一個(gè)插入時(shí)有4種,第二個(gè)插入時(shí)共5個(gè)空,有5種方法;可得有5×4=20種不同排法.故為:2013.圓C1x2+y2-4y-5=0與圓C2x2+y2-2x-2y+1=0位置關(guān)系是()
A.內(nèi)含
B.內(nèi)切
C.相交
D.外切答案:A14.如圖,平行四邊形ABCD中,AE:EB=1:2,若△AEF的面積等于1cm2,則△CDF的面積等于______cm2.答案:平行四邊形ABCD中,有△AEF~△CDF∴△AEF與△CDF的面積之比等于對(duì)應(yīng)邊長(zhǎng)之比的平方,∵AE:EB=1:2,∴AE:CD=1:3∵△AEF的面積等于1cm2,∴∵△CDF的面積等于9cm2故為:915.圓心在原點(diǎn)且圓周被直線3x+4y+15=0分成1:2兩部分的圓的方程為
______.答案:如圖,因?yàn)閳A周被直線3x+4y+15=0分成1:2兩部分,所以∠AOB=120°.而圓心到直線3x+4y+15=0的距離d=1532+42=3,在△AOB中,可求得OA=6.所以所求圓的方程為x2+y2=36.故為:x2+y2=3616.點(diǎn)(1,-1)在圓(x-a)2+(y-a)2=4的內(nèi)部,則a取值范圍是()
A.-1<a<1
B.0<a<1
C.a(chǎn)<-1或a>1
D.a(chǎn)≠±1答案:A17.(選做題)方程ρ=cosθ與(t為參數(shù))分別表示何種曲線(
)。答案:圓,雙曲線18.下面是某工藝品廠隨機(jī)抽取兩個(gè)批次的初加工矩形寬度與長(zhǎng)度的比值樣本:
甲批次:0.598
0.625
0.628
0.595
0.639
乙批次:0.618
0.613
0.592
0.622
0.620
我們將比值為0.618的矩形稱為“完美矩形”,0.618為標(biāo)準(zhǔn)值,根據(jù)上述兩個(gè)樣本來(lái)估計(jì)兩個(gè)批次的總體平均數(shù),正確結(jié)論是()
A.甲批次的總體平均數(shù)與標(biāo)準(zhǔn)值更接近
B.乙批次的總體平均數(shù)與標(biāo)準(zhǔn)值更接近
C.兩個(gè)批次總體平均數(shù)與標(biāo)準(zhǔn)值接近程度相同
D.以上選項(xiàng)均不對(duì)答案:A19.等腰三角形兩腰所在的直線方程是l1:7x-y-9=0,l2:x+y-7=0,它的底邊所在直線經(jīng)過點(diǎn)A(3,-8),求底邊所在直線方程.答案:設(shè)l1,l2,底邊所在直線的斜率分別為k1,k2,k;由l1:7x-y-9=0得y=7x-9,所以k1=7,由l2:x+y-7=0得y=-x+7,所以k2=-1;…(2分)如圖,由等腰三角形性質(zhì),可知:l到l1的角=l2到l的角;由到角公式得:7-k1+7k=k-(-1)1+k(-1)…(4分)解出:k=-3或k=13…(6分)由已知:底邊經(jīng)過點(diǎn)A(3,-8),代入點(diǎn)斜式,得出直線方程:y-(-8)=(-3)(x-3)或y-(-8)=13(x-3)…(7分)3x+y-1=0或x-3y-27=0.…(8分)20.
選修1:幾何證明選講
如圖,設(shè)AB為⊙O的任一條不與直線l垂直的直徑,P是⊙O與l的公共點(diǎn),AC⊥l,BD⊥l,垂足分別為C,D,且PC=PD,求證:
(1)l是⊙O的切線;
(2)PB平分∠ABD.答案:證明:(1)連接OP,因?yàn)锳C⊥l,BD⊥l,所以AC∥BD.又OA=OB,PC=PD,所以O(shè)P∥BD,從而OP⊥l.因?yàn)镻在⊙O上,所以l是⊙O的切線.(2)連接AP,因?yàn)閘是⊙O的切線,所以∠BPD=∠BAP.又∠BPD+∠PBD=90°,∠BAP+∠PBA=90°,所以∠PBA=∠PBD,即PB平分∠ABD.21.滿足條件|z|=|3+4i|的復(fù)數(shù)z在復(fù)平面上對(duì)應(yīng)點(diǎn)的軌跡是______.答案:|z|=5,即點(diǎn)Z到原點(diǎn)O的距離為5∴z所對(duì)應(yīng)點(diǎn)的軌跡為以(0,0)為圓心,5為半徑的圓.22.設(shè)向量a=(x+1,y),b=(x-1,y),點(diǎn)P(x,y)為動(dòng)點(diǎn),已知|a|+|b|=4.
(1)求點(diǎn)p的軌跡方程;
(2)設(shè)點(diǎn)p的軌跡與x軸負(fù)半軸交于點(diǎn)A,過點(diǎn)F(1,0)的直線交點(diǎn)P的軌跡于B、C兩點(diǎn),試推斷△ABC的面積是否存在最大值?若存在,求其最大值;若不存在,請(qǐng)說(shuō)明理由.答案:(1)由已知,(x+)2+y2+(x-1)2+1=4,所以動(dòng)點(diǎn)P的軌跡M是以點(diǎn)E(-1,0),F(xiàn)(1,0)為焦點(diǎn),長(zhǎng)軸長(zhǎng)為4的橢圓.因?yàn)閏=1,a=2,則b2=a2-c2=3.故動(dòng)點(diǎn)P的軌跡M方程是x24+y23=1(2)設(shè)直線BC的方程x=my+1與(1)中的橢圓方程x24+y23=1聯(lián)立消去x可得(3m2+4)y2+6my-9=0,設(shè)點(diǎn)B(x1,y1),C(x2,y2)則y1+y2=-6m3m2+4,y1y2=-93m2+4,所以|BC|=m2+1(y1+y2)2-4y1y2=12(m2+1)3m2+4點(diǎn)A到直線BC的距離d=31+m2S△ABC=12|BC|d=181+m23m2+4令1+m2=t,t≥1,∴S△ABC=12|BC|d=18t3t2+1=183t+1t≤92故三角形的面積最大值為9223.某校高三年級(jí)舉行一次演講賽共有10位同學(xué)參賽,其中一班有3位,二班有2位,其它班有5位,若采用抽簽的方式確定他們的演講順序,則一班有3位同學(xué)恰好被排在一起(指演講序號(hào)相連),而二班的2位同學(xué)沒有被排在一起的概率為:()A.110B.120C.140D.1120答案:由題意知本題是一個(gè)古典概型,∵試驗(yàn)發(fā)生包含的所有事件是10位同學(xué)參賽演講的順序共有:A1010;滿足條件的事件要得到“一班有3位同學(xué)恰好被排在一起而二班的2位同學(xué)沒有被排在一起的演講的順序”可通過如下步驟:①將一班的3位同學(xué)“捆綁”在一起,有A33種方法;②將一班的“一梱”看作一個(gè)對(duì)象與其它班的5位同學(xué)共6個(gè)對(duì)象排成一列,有A66種方法;③在以上6個(gè)對(duì)象所排成一列的7個(gè)間隙(包括兩端的位置)中選2個(gè)位置,將二班的2位同學(xué)插入,有A72種方法.根據(jù)分步計(jì)數(shù)原理(乘法原理),共有A33?A66?A72種方法.∴一班有3位同學(xué)恰好被排在一起(指演講序號(hào)相連),而二班的2位同學(xué)沒有被排在一起的概率為:P=A33?A66?A27A1010=120.故選B.24.如果命題“曲線C上的點(diǎn)的坐標(biāo)都是方程f(x,y)=0的解”是正確的,則下列命題中正確的是()
A.曲線C是方程f(x,y)=0的曲線
B.方程f(x,y)=0的每一組解對(duì)應(yīng)的點(diǎn)都在曲線C上
C.不滿足方程f(x,y)=0的點(diǎn)(x,y)不在曲線C上
D.方程f(x,y)=0是曲線C的方程答案:C25.已知邊長(zhǎng)為1的正方形ABCD,則|AB+BC+CD|=______.答案:利用向量加法的幾何性質(zhì),得AB+BC=AC∴AB+BC+CD=AD因?yàn)檎叫蔚倪呴L(zhǎng)等于1所以|AB+BC+CD|=|AD|
=1故為:126.參數(shù)方程x=sin2θy=cosθ+sinθ(θ為參數(shù))的普通方程為______.答案:把參數(shù)方程x=sin2θy=cosθ+sinθ(θ為參數(shù))利用同角三角函數(shù)的基本關(guān)系消去參數(shù)化為普通方程為y2=1+x,故為y2=1+x.27.圓心在x軸上,且過兩點(diǎn)A(1,4),B(3,2)的圓的方程為______.答案:設(shè)圓心坐標(biāo)為(m,0),半徑為r,則圓的方程為(x-m)2+y2=r2,∵圓經(jīng)過兩點(diǎn)A(1,4)、B(3,2)∴(1-m)2+42=r2(3-m)2+22=r2解得:m=-1,r2=20∴圓的方程為(x+1)2+y2=20故為:(x+1)2+y2=2028.(1+3x)n(其中n∈N且n≥6)的展開式中x5與x6的系數(shù)相等,則n=()A.6B.7C.8D.9答案:二項(xiàng)式展開式的通項(xiàng)為Tr+1=3rCnrxr∴展開式中x5與x6的系數(shù)分別是35Cn5,36Cn6∴35Cn5=36Cn6解得n=7故選B29.設(shè)集合A={x|},則A∩B等于(
)
A.
B.
C.
D.答案:B30.已知直線的斜率為3,則此直線的傾斜角為()A.30°B.60°C.45°D.120°答案:∵直線的斜率為3,∴直線傾斜角α滿足tanα=3結(jié)合α∈[0°,180°),可得α=60°故選:B31.半徑為5,圓心在y軸上,且與直線y=6相切的圓的方程為______.答案:如圖所示,因?yàn)榘霃綖?,圓心在y軸上,且與直線y=6相切,所以可知有兩個(gè)圓,上圓圓心為(0,11),下圓圓心為(0,1),所以圓的方程為x2+(y-1)2=25或x2+(y-11
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 公積金個(gè)人貸款合同模板
- 銀行授信保證合同模板
- 苗木供應(yīng)商招募公告
- 標(biāo)準(zhǔn)家庭服務(wù)合同案例
- 沼氣工程可行性研究
- 租房協(xié)議合同的簽訂技巧與流程
- 安全欄桿采購(gòu)合同
- 漁業(yè)產(chǎn)品買賣合同
- 在線電子購(gòu)銷合同制作
- 藥材進(jìn)出口合同
- 運(yùn)用PDCA提高患者身份識(shí)別正確率課件
- 部編版八年級(jí)上冊(cè)語(yǔ)文標(biāo)點(diǎn)符號(hào)考點(diǎn)匯總
- 國(guó)家開放大學(xué)電大《藥物化學(xué)》期末題庫(kù)及答案
- T∕CTSS 38-2021 滇紅工夫紅茶
- 品管圈PDCA持續(xù)質(zhì)量改進(jìn)提高靜脈血栓栓塞癥規(guī)范預(yù)防率
- 綜合計(jì)算工時(shí)工作制實(shí)施方案42620
- 重力學(xué):第二章 地球正常重力場(chǎng)
- 路面基層厚度、芯樣完整性試驗(yàn)檢測(cè)記錄表(鉆芯法)
- 露天礦采場(chǎng)現(xiàn)場(chǎng)安全檢查表
- 基于MATLAB的三相交流電機(jī)調(diào)壓調(diào)速系統(tǒng)的仿真
- 事業(yè)單位管理崗位職員等級(jí)晉升審批表
評(píng)論
0/150
提交評(píng)論