2023年承德護(hù)理職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第1頁
2023年承德護(hù)理職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第2頁
2023年承德護(hù)理職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第3頁
2023年承德護(hù)理職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第4頁
2023年承德護(hù)理職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第5頁
已閱讀5頁,還剩41頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

長風(fēng)破浪會有時,直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年承德護(hù)理職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.已知函數(shù)f(x)=x2+px+q與函數(shù)y=f(f(f(x)))有一個相同的零點(diǎn),則f(0)與f(1)()

A.均為正值

B.均為負(fù)值

C.一正一負(fù)

D.至少有一個等于0答案:D2.如圖,O是正方形ABCD對角線的交點(diǎn),四邊形OAED,OCFB都是正方形,在圖中所示的向量中:

(1)與AO相等的向量有

______;

(2)寫出與AO共線的向量有

______;

(3)寫出與AO的模相等的向量有

______;

(4)向量AO與CO是否相等?答

______.答案:(1)與AO相等的向量有BF(2)與AO共線的向量有DE,CO,BF(3)與AO的模相等的向量有DE,

DO,AE,CO,CF,BF,BO(4)模相等,方向相反故AO與CO不相等3.命題“存在x∈Z使x2+2x+m≤0”的否定是()

A.存在x∈Z使x2+2x+m>0

B.不存在x∈Z使x2+2x+m>0

C.對任意x∈Z使x2+2x+m≤0

D.對任意x∈Z使x2+2x+m>0答案:D4.若A為m×n階矩陣,AB=C,則B的階數(shù)可以是下列中的______.

①m×m,②m×n,③n×m,④n×n.答案:兩個矩陣只有當(dāng)前一個矩陣的列數(shù)與后一個矩陣的行數(shù)相等時,才能作乘法.矩陣A是n列矩陣,故矩陣B是n行的矩陣則B的階數(shù)可以是③n×m,④n×n故為:③④5.若{、、}為空間的一組基底,則下列各項(xiàng)中,能構(gòu)成基底的一組向量是[

]A.,+,﹣

B.,+,﹣

C.,+,﹣

D.+,﹣,+2答案:C6.已知點(diǎn)P是拋物線y2=2x上的一個動點(diǎn),則點(diǎn)P到點(diǎn)(0,2)的距離與P到該拋物線準(zhǔn)線的距離之和的最小值為()

A.

B.3

C.

D.答案:A7.有5組(x,y)的統(tǒng)計數(shù)據(jù):(1,2),(2,4),(4,5),(3,10),(10,12),要使剩下的數(shù)據(jù)具有較強(qiáng)的相關(guān)關(guān)系,應(yīng)去掉的一組數(shù)據(jù)是()

A.(1,2)

B.(4,5)

C.(3,10)

D.(10,12)答案:C8.某地區(qū)居民生活用電分為高峰和低谷兩個時間段進(jìn)行分時計價.該地區(qū)的電網(wǎng)銷售電價表如圖:高峰時間段用電價格表低谷時間段用電價格表高峰月用電量

(單位:千瓦時)高峰電價(單位:元/千瓦時)低谷月用電量

(單位:千瓦時)低谷電價(單位:

元/千瓦時)50及以下的部分0.56850及以下的部分0.288超過50至200的部分0.598超過50至200的部分0.318超過200的部分0.668超過200的部分0.388若某家庭5月份的高峰時間段用電量為200千瓦時,低谷時間段用電量為100千瓦時,則按這種計費(fèi)方式該家庭本月應(yīng)付的電費(fèi)為______元(用數(shù)字作答)答案:高峰時間段用電的電費(fèi)為50×0.568+150×0.598=28.4+89.7=118.1(元),低谷時間段用電的電費(fèi)為50×0.288+50×0.318=14.4+15.9=30.3(元),本月的總電費(fèi)為118.1+30.3=148.4(元),故為:148.4.9.如圖,在四邊形ABCD中,++=4,==0,+=4,則(+)的值為()

A.2

B.

C.4

D.

答案:C10.設(shè)m、n是兩條不同的直線,α、β是兩個不同的平面,則下列命題中正確的是()

A.若m∥n,m∥α,則n∥α

B.若α⊥β,m∥α,則m⊥β

C.若α⊥β,m⊥β,則m∥α

D.若m⊥n,m⊥α,n⊥β,則α⊥β答案:D11.若函數(shù)y=f(x)的定義域是[2,4],則y=f(log12x)的定義域是()A.[12,1]B.[4,16]C.[116,14]D.[2,4]答案:∵y=f(log12x),令log12x=t,∴y=f(log12x)=f(t),∵函數(shù)y=f(x)的定義域是[2,4],∴y=f(t)的定義域也為[2,4],即2≤t≤4,∴有2≤log12x≤4,解得:116≤x≤14,∵函數(shù)的定義域即解析式中自變量的取值范圍,∴y=f(log12x)的定義域?yàn)?16≤x≤14,即:[116,14].故選C.12.某賽季,甲、乙兩名籃球運(yùn)動員都參加了7場比賽,他們所有比賽得分的情況用如圖所示的莖葉圖表示,則甲、乙兩名運(yùn)動員得分的平均數(shù)分別為()A.14、12B.13、12C.14、13D.12、14答案:.x甲=8+9+6+15+17+19+247=14,.x乙=8+5+7+11+13+15+257=12.故選A.13.設(shè)四邊形ABCD中,有且,則這個四邊形是()

A.平行四邊形

B.矩形

C.等腰梯形

D.菱形答案:C14.設(shè)a、b為單位向量,它們的夾角為90°,那么|a+3b|等于()A.7B.10C.13D.4答案:∵a,b它們的夾角為90°∴a?b=0∴(a+3b)2=a2+6a?b+9b2=10,|a+3b|=10.故選B.15.下表為廣州亞運(yùn)會官方票務(wù)網(wǎng)站公布的幾種球類比賽的門票價格,某球迷賽前準(zhǔn)備1200元,預(yù)訂15張下表中球類比賽的門票。比賽項(xiàng)目票價(元/場)足球

籃球

乒乓球100

80

60若在準(zhǔn)備資金允許的范圍內(nèi)和總票數(shù)不變的前提下,該球迷想預(yù)訂上表中三種球類比賽門票,其中籃球比賽門票數(shù)與乒乓球比賽門票數(shù)相同,且籃球比賽門票的費(fèi)用不超過足球比賽門票的費(fèi)用,求可以預(yù)訂的足球比賽門票數(shù)。答案:解:設(shè)預(yù)訂籃球比賽門票數(shù)與乒乓球比賽門票數(shù)都是n(n∈N*)張,則足球比賽門票預(yù)訂(15-2n)張,由題意得解得由n∈N*,可得n=5,∴15-2n=5∴可以預(yù)訂足球比賽門票5張。16.下列各式中錯誤的是()

A.||2=2

B.||=||

C.0?=0

D.m(n)=mn(m,n∈R)答案:C17.設(shè)A、B、C表示△ABC的三個內(nèi)角的弧度數(shù),a,b,c表示其對邊,求證:aA+bB+cCa+b+c≥π3.答案:證明:法一、不妨設(shè)A>B>C,則有a>b>c由排序原理:順序和≥亂序和∴aA+bB+cC≥aB+bC+cAaA+bB+cC≥aC+bA+cBaA+bB+cC=aA+bB+cC上述三式相加得3(aA+bB+cC)≥(A+B+C)(a+b+c)=π(a+b+c)∴aA+bB+cCa+b+c≥π3.法二、不妨設(shè)A>B>C,則有a>b>c,由排序不等式aA+bB+cC3≥A+B+C3?a+b+c3,即aA+bB+cC≥π3(a+b+c),∴aA+bB+cCa+b+c≥π3.18.設(shè)A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},其中x∈R,如果A∩B=B,求實(shí)數(shù)a的取值范圍。答案:解A={0,-4}∵A∩B=B

∴BA由x2+2(a+1)x+a2-1=0

得△=4(a+1)2-4(a2-1)=8(a+1)(1)當(dāng)a<-1時△<0

B=φA(2)當(dāng)a=-1時△=0

B={0}A(3)當(dāng)a>-1時△>0

要使BA,則A=B∵0,-4是方程x2+2(a+1)x+a2-1=0的兩根∴解之得a=1綜上可得a≤-1或a=119.M∪{1}={1,2,3}的集合M的個數(shù)是______.答案:∵M(jìn)∪{1}={1,2,3},∴M={1,2,3}或{2,3},則符合題意M的個數(shù)是2.故為:220.敘述并證明勾股定理.答案:證明:如圖左邊的正方形是由1個邊長為a的正方形和1個邊長為b的正方形以及4個直角邊分別為a、b,斜邊為c的直角三角形拼成的.右邊的正方形是由1個邊長為c的正方形和4個直角邊分別為a、b,斜邊為c的直角三角形拼成的.因?yàn)檫@兩個正方形的面積相等(邊長都是a+b),所以可以列出等式a2+b2+4×12ab=c2+4×12ab,化簡得a2+b2=c2.下面是一個錯誤證法:勾股定理:直角三角形的兩直角邊的平方和等于斜邊的平方這一特性叫做勾股定理或勾股弦定理,又稱畢達(dá)哥拉斯定理或畢氏定理證明:作兩個全等的直角三角形,設(shè)它們的兩條直角邊長分別為a、b(b>a),斜邊長為c.再做一個邊長為c的正方形.把它們拼成如圖所示的多邊形,使E、A、C三點(diǎn)在一條直線上.過點(diǎn)Q作QP∥BC,交AC于點(diǎn)P.過點(diǎn)B作BM⊥PQ,垂足為M;再過點(diǎn)F作FN⊥PQ,垂足為N.∵∠BCA=90°,QP∥BC,∴∠MPC=90°,∵BM⊥PQ,∴∠BMP=90°,∴BCPM是一個矩形,即∠MBC=90°.∵∠QBM+∠MBA=∠QBA=90°,∠ABC+∠MBA=∠MBC=90°,∴∠QBM=∠ABC,又∵∠BMP=90°,∠BCA=90°,BQ=BA=c,∴Rt△BMQ≌Rt△BCA.同理可證Rt△QNF≌Rt△AEF.即a2+b2=c221.若已知中心在坐標(biāo)原點(diǎn)的橢圓過點(diǎn)(1,233),且它的一條準(zhǔn)線方程為x=3,則該橢圓的方程為______.答案:設(shè)橢圓的方程是x2a2+y2b2=1,由題設(shè),中心在坐標(biāo)原點(diǎn)的橢圓過點(diǎn)(1,233),且它的一條準(zhǔn)線方程為x=3,∴1a2+43b2=1,a2c=3,又a2=c2+b2三式聯(lián)立可以解得a=3,b=2,c=1或a=7,b=143,c=73故該橢圓的方程為x23+y22=1或x27+y2149=1故應(yīng)填x23+y22=1或x27+y2149=122.如圖所示,I為△ABC的內(nèi)心,求證:△BIC的外心O與A、B、C四點(diǎn)共圓.答案:證明:連接OB、BI、OC,由O是外心知∠IOC=2∠IBC.由I是內(nèi)心知∠ABC=2∠IBC.從而∠IOC=∠ABC.同理∠IOB=∠ACB.而∠A+∠ABC+∠ACB=180°,故∠BOC+∠A=180°,于是O、B、A、C四點(diǎn)共圓.23.拋擲3顆質(zhì)地均勻的骰子,求點(diǎn)數(shù)和為8的概率______.答案:由題意總的基本事件數(shù)為6×6×6=216種點(diǎn)數(shù)和為8的事件包含了向上的點(diǎn)的情況有(1,1,6),(1,2,5),(2,2,4),(2,3,3)有四種情況向上點(diǎn)數(shù)分別為(1,1,6)的事件包含的基本事件數(shù)有3向上點(diǎn)數(shù)分別為(1,2,5)的事件包含的基本事件數(shù)有6向上點(diǎn)數(shù)分別為(2,2,4)的事件包含的基本事件數(shù)有3向上點(diǎn)數(shù)分別為(2,3,3)的事件包含的基本事件數(shù)有3所以點(diǎn)數(shù)和為8的事件包含基本事件數(shù)是3+6+3+3=15種點(diǎn)數(shù)和為8的事件的概率是15216=572故為:572.24.把兩條直線的位置關(guān)系填入結(jié)構(gòu)圖中的M、N、E、F中,順序較為恰當(dāng)?shù)氖牵ǎ?/p>

①平行

②垂直

③相交

④斜交.

A.①②③④

B.①④②③

C.①③②④

D.②①③④

答案:C25.拋物線x2+y=0的焦點(diǎn)位于()

A.y軸的負(fù)半軸上

B.y軸的正半軸上

C.x軸的負(fù)半軸上

D.x軸的正半軸上答案:A26.如圖的曲線是指數(shù)函數(shù)y=ax的圖象,已知a的值取,,,則相應(yīng)于曲線①②③④的a的值依次為()

A.,,,

B.,,,

C.,,,

D.,,,

答案:A27.已知斜二測畫法得到的直觀圖△A′B′C′是正三角形,畫出原三角形的圖形.答案:由斜二測法知:B′C′不變,即BC與B′C′重合,O′A′由傾斜45°變?yōu)榕cx軸垂直,并且O′A′的長度變?yōu)樵瓉淼?倍,得到OA,由此得到原三角形的圖形ABC.28.如圖,圓周上按順時針方向標(biāo)有1,2,3,4,5五個點(diǎn).一只青蛙按順時針方向繞圓從一個點(diǎn)跳到另一個點(diǎn),若它停在奇數(shù)點(diǎn)上,則下次只能跳一個點(diǎn);若停在偶數(shù)點(diǎn)上,則跳兩個點(diǎn).該青蛙從“5”這點(diǎn)起跳,經(jīng)2

011次跳后它停在的點(diǎn)對應(yīng)的數(shù)字是______.答案:起始點(diǎn)為5,按照規(guī)則,跳一次到1,再到2,4,1,2,4,1,2,4,…,“1,2,4”循環(huán)出現(xiàn),而2011=3×670+1.故經(jīng)2011次跳后停在的點(diǎn)是1.故為129.BC是Rt△ABC的斜邊,AP⊥平面ABC,PD⊥BC于點(diǎn)D,則圖中共有直角三角形的個數(shù)是()A.8B.7C.6D.5答案:∵AP⊥平面ABC,BC?平面ABC,∴PA⊥BC,又PD⊥BC于D,連接AD,PD∩PA=A,∴BC⊥平面PAD,AD?平面PAD,∴BC⊥AD;又BC是Rt△ABC的斜邊,∴∠BAC為直角,∴圖中的直角三角形有:△ABC,△PAC,△PAB,△PAD,△PDC,△PDB,△ADC,△ADB.故為:8.30.已知拋物線C:y2=4x的焦點(diǎn)為F,點(diǎn)A在拋物線C上運(yùn)動.

(1)當(dāng)點(diǎn)A,P滿足AP=-2FA,求動點(diǎn)P的軌跡方程;

(2)設(shè)M(m,0),其中m為常數(shù),m∈R+,點(diǎn)A到M的距離記為d,求d的最小值.答案:(1)設(shè)動點(diǎn)P的坐標(biāo)為(x,y),點(diǎn)A的坐標(biāo)為(xA,yA),則AP=(x-xA,y-yA),因?yàn)镕的坐標(biāo)為(1,0),所以FA=(xA-1,yA),因?yàn)锳P=-2FA,所以(x-,y-yA)=-2(xA-1,yA).所以x-xA=-2(xA-1),y-yA=-2yA,所以xA=2-x,yA=-y代入y2=4x,得到動點(diǎn)P的軌跡方程為y2=8-4x;(2)由題意,d=(m-xA)2+yA2=(m-xA)2+4xA=(xA+2-m)2-4-4m∴m-2≤0,即0<m≤2,xA=0時,dmin=m;m-2>0,即m>2,xA=m-2時,dmin=-4-4m.31.函數(shù)f(x)=2x2+1,&x∈[0,2],則函數(shù)f(x)的值域?yàn)椋ǎ〢.[1,32]B.[4,32]C.[2,32]D.[2,4]答案:∵f(x)=2x2+1,x∈[0,2],∴設(shè)y=2t,t=x2+1∈[1,5],∵y=2t是增函數(shù),∴t=1時,ymin=2;t=5時,ymax=25=32.∴函數(shù)f(x)的值域?yàn)閇2,32].故為:C.32.圓C1x2+y2-4y-5=0與圓C2x2+y2-2x-2y+1=0位置關(guān)系是()

A.內(nèi)含

B.內(nèi)切

C.相交

D.外切答案:A33.求過點(diǎn)A(2,3)且被兩直線3x+4y-7=0,3x+4y+8=0截得線段為32的直線方程.答案:設(shè)所求直線l的斜率為k,∵|MN|=32,又在Rt△MNB中,|MB|=3,∴∠MNB=45°,即2條直線的夾角為45°,∴|

k-(-34)1+k(-34)|=tan45°=1,解得k=17,或k=-7,所求直線的方程為y-3=17(x-2),或y-3=-7(x-2),即x-7y+19=0,或7x+y-17=0.34.已知雙曲線的漸近線方程為2x±3y=0,F(xiàn)(0,-5)為雙曲線的一個焦點(diǎn),則雙曲線的方程為()

A.

B.

C.

D.答案:B35.已知拋物線C的參數(shù)方程為x=8t2y=8t(t為參數(shù)),設(shè)拋物線C的焦點(diǎn)為F,準(zhǔn)線為l,P為拋物線上一點(diǎn),PA⊥l,A為垂足,如果直線AF的斜率為-3,那么|PF|=______.答案:把拋物線C的參數(shù)方程x=8t2y=8t(t為參數(shù)),消去參數(shù)化為普通方程為y2=8x.故焦點(diǎn)F(2,0),準(zhǔn)線方程為x=-2,再由直線FA的斜率是-3,可得直線FA的傾斜角為120°,設(shè)準(zhǔn)線和x軸的交點(diǎn)為M,則∠AFM=60°,且MF=p=4,∴∠PAF=180°-120°=60°.∴AM=MF?tan60°=43,故點(diǎn)A(0,43),把y=43代入拋物線求得x=6,∴點(diǎn)P(6,43),故|PF|=(6-2)2+(43-0)2=8,故為8.36.甲射擊運(yùn)動員擊中目標(biāo)為事件A,乙射擊運(yùn)動員擊中目標(biāo)為事件B,則事件A,B為()

A.互斥事件

B.獨(dú)立事件

C.對立事件

D.不相互獨(dú)立事件答案:B37.“因?yàn)橹笖?shù)函數(shù)y=ax是增函數(shù)(大前提),而y=()x是指數(shù)函數(shù)(小前提),所以y=()x是增函數(shù)(結(jié)論)”,上面推理的錯誤是()

A.大前提錯導(dǎo)致結(jié)論錯

B.小前提錯導(dǎo)致結(jié)論錯

C.推理形式錯導(dǎo)致結(jié)論錯

D.大前提和小前提錯都導(dǎo)致結(jié)論錯答案:A38.一個家庭有兩個小孩,假設(shè)生男生女是等可能的,已知這個家庭有一個是女孩的條件下,這時另一個也是女孩的概率是()

A.

B.

C.

D.答案:D39.如圖,A地到火車站共有兩條路徑L1和L2,據(jù)統(tǒng)計,通過兩條路徑所用的時間互不影響,所用時間落在各時間段內(nèi)的頻率如下表:所用時間(分鐘)10~2020~3030~4040~5050~60L1的頻率0.10.20.30.20.2L2的頻率00.10.40.40.1現(xiàn)甲、乙兩人分別有40分鐘和50分鐘時間用于趕往火車站.

(Ⅰ)為了盡最大可能在各自允許的時間內(nèi)趕到火車站,甲和乙應(yīng)如何選擇各自的路徑?

(Ⅱ)用X表示甲、乙兩人中在允許的時間內(nèi)能趕到火車站的人數(shù),針對(Ⅰ)的選擇方案,求X的分布列和數(shù)學(xué)期望.答案:(Ⅰ)Ai表示事件“甲選擇路徑Li時,40分鐘內(nèi)趕到火車站”,Bi表示事件“乙選擇路徑Li時,50分鐘內(nèi)趕到火車站”,i=1,2.用頻率估計相應(yīng)的概率可得∵P(A1)=0.1+0.2+0.3=0.6,P(A2)=0.1+0.4=0.5,∵P(A1)>P(A2)∴甲應(yīng)選擇LiP(B1)=0.1+0.2+0.3+0.2=0.8,P(B2)=0.1+0.4+0.4=0.9,∵P(B2)>P(B1),∴乙應(yīng)選擇L2.(Ⅱ)A,B分別表示針對(Ⅰ)的選擇方案,甲、乙在各自允許的時間內(nèi)趕到火車站,由(Ⅰ)知P(A)=0.6,P(B)=0.9,又由題意知,A,B獨(dú)立,P(X=0)=P(.A.B)=P(.A)P(.B)=0.4×0.1=0.04P(x=1)=P(.AB+A.B)=P(.A)P(B)+P(A)P(.B)=0.4×0.9+0.6×0.1=0.42P(X=2)=P(AB)=P(A)(B)=0.6×0.9=0.54X的分布列EX=0×0.04+1×0.42+2×0.54=1.5.40.用輾轉(zhuǎn)相除法或者更相減損術(shù)求三個數(shù)的最大公約數(shù).答案:同解析解析:解:324=243×1+81

243=81×3+0

則324與243的最大公約數(shù)為81又135=81×1+54

81=54×1+27

54=27×2+0則81與135的最大公約數(shù)為27所以,三個數(shù)324、243、135的最大公約數(shù)為27.另法為所求。41.已知點(diǎn)O為△ABC外接圓的圓心,且有,則△ABC的內(nèi)角A等于()

A.30°

B.60°

C.90°

D.120°答案:A42.直線x3+y4=t被兩坐標(biāo)軸截得的線段長度為1,則t的值是

______.答案:令y=0,得:x=3t;令x=0,得:y=4t,所以被兩坐標(biāo)軸截得的線段長度為(3t)2+(4t)2=|5t|=1所以t=±15故為±1543.若一次函數(shù)y=mx+b在(-∞,+∞)上是增函數(shù),則有()A.b>0B.b<0C.m>0D.m<0答案:∵一次函數(shù)y=mx+b在(-∞,+∞)上是增函數(shù),∴一次項(xiàng)系數(shù)m>0,故選C.44.P是以F1,F(xiàn)2為焦點(diǎn)的橢圓上一點(diǎn),過焦點(diǎn)F2作∠F1PF2外角平分線的垂線,垂足為M,則點(diǎn)M的軌跡是()

A.橢圓

B.圓

C.雙曲線

D.雙曲線的一支答案:B45.命題:“如果ab=0,那么a、b中至少有一個等于0.”的逆否命題為______

______.答案:∵ab=0的否命題是ab≠0,a、b中至少有一個為零的否命題是a≠0,且b≠0,∴命題“若ab=0,則a、b中至少有一個為零”的逆否命題是“若a≠0,且b≠0,則ab≠0.”故:如果a、b都不為等于0.那么ab≠046.選修4-4:坐標(biāo)系與參數(shù)方程

已知極點(diǎn)O與原點(diǎn)重合,極軸與x軸的正半軸重合.點(diǎn)A,B的極坐標(biāo)分別為(2,π),(22,π4),曲線C的參數(shù)方程為答案:(Ⅰ)S△AOB=12×2×247.在極坐標(biāo)系(ρ,θ)(0≤θ<2π)中,曲線ρ=2sinθ與ρcosθ=-1的交點(diǎn)的極坐標(biāo)為

______.答案:兩條曲線的普通方程分別為x2+y2=2y,x=-1.解得x=-1y=1.由x=ρcosθy=ρsinθ得點(diǎn)(-1,1),極坐標(biāo)為(2,3π4).故填:(2,3π4).48.若平面α與β的法向量分別是a=(1,0,-2),b=(-1,0,2),則平面α與β的位置關(guān)系是()A.平行B.垂直C.相交不垂直D.無法判斷答案:∵a=(1,0,-2),b=(-1,0,2),∴a+b=(1-1,0+0,-2+2)=(0,0,0),即a+b=0由此可得a∥b∵a、b分別是平面α與β的法向量∴平面α與β的法向量平行,可得平面α與β互相平行.49.構(gòu)成多面體的面最少是()

A.三個

B.四個

C.五個

D.六個答案:B50.下列命題中,正確的是()

A.若a∥b,則a與b的方向相同或相反

B.若a∥b,b∥c,則a∥c

C.若兩個單位向量互相平行,則這兩個單位向量相等

D.若a=b,b=c,則a=c答案:D第2卷一.綜合題(共50題)1.正方體AC1中,S,T分別是棱AA1,A1B1上的點(diǎn),如果∠TSC=90°,那么∠TSB=______.答案:由題意,BC⊥平面A1B,∵S,T分別是棱AA1,A1B1上的點(diǎn),∴BC⊥ST∵∠TSC=90°,∴ST⊥SC∵BC∩SC=C∴ST⊥平面SBC∴ST⊥SB∴∠TSB=90°,故為:90°2.已知兩個力F1,F(xiàn)2的夾角為90°,它們的合力大小為20N,合力與F1的夾角為30°,那么F1的大小為()A.103NB.10

NC.20

ND.102N答案:設(shè)向F1,F(xiàn)2的對應(yīng)向量分別為OA、OB以O(shè)A、OB為鄰邊作平行四邊形OACB如圖,則OC=OA+OB,對應(yīng)力F1,F(xiàn)2的合力∵F1,F(xiàn)2的夾角為90°,∴四邊形OACB是矩形在Rt△OAC中,∠COA=30°,|OC|=20∴|OA|=|OC|cos30°=103故選:A3.已知F1(-2,0),F(xiàn)2(2,0)兩點(diǎn),曲線C上的動點(diǎn)P滿足|PF1|+|PF2|

=32|F1F2|.

(Ⅰ)求曲線C的方程;

(Ⅱ)若直線l經(jīng)過點(diǎn)M(0,3),交曲線C于A,B兩點(diǎn),且MA=12MB,求直線l的方程.答案:(Ⅰ)由已知可得|PF1|+|PF2|

=32|F1F2|

=6>|F1F2|=4,故曲線C是以F1,F(xiàn)2為焦點(diǎn),長軸長為6的橢圓,其方程為x29+y25=1.(Ⅱ)方法一:設(shè)A(x1,y1),B(x2,y2),由條件可知A為MB的中點(diǎn),則有x129+y125=1,

(1)x229+y225=1,(2)2x1=x2,

(3)2y1=y2+3.

(4)將(3)、(4)代入(2)得4x129+(2y1-3)25=1,整理為4x129+4y125-125y1+45=0.將(1)代入上式得y1=2,再代入橢圓方程解得x1=±35,故所求的直線方程為y=±53x+3.方法二:依題意,直線l的斜率存在,設(shè)其方程為y=kx+3.由y=kx+3x29+y25=1得(5+9k2)x2+54kx+36=0.令△>0,解得k2>49.設(shè)A(x1,y1),B(x2,y2),則x1+x2=-54k5+9k2,①x1x2=365+9k2.②因?yàn)镸A=12MB,所以A為MB的中點(diǎn),從而x2=2x1.將x2=2x1代入①、②,得x1=-18k5+9k2,x12=185+9k2,消去x1得(-18k5+9k2)2=185+9k2,解得k2=59,k=±53.所以直線l的方程為y=±53x+3.4.已知M和N分別是四面體OABC的邊OA,BC的中點(diǎn),且,若=a,=b,=c,則用a,b,c表示為()

A.

B.

C.

D.

答案:B5.橢圓x29+y216=1上一動點(diǎn)P到兩焦點(diǎn)距離之和為()A.10B.8C.6D.不確定答案:根據(jù)橢圓的定義,可知動點(diǎn)P到兩焦點(diǎn)距離之和為2a=8,故選B.6.若F1、F2是橢圓x24+y2=1的左、右兩個焦點(diǎn),M是橢圓上的動點(diǎn),則1|MF1|+1|MF2|的最小值為______.答案:∵F1、F2是橢圓x24+y2=1的左、右兩個焦點(diǎn),M是橢圓上的動點(diǎn),∴1|MF1|+1|MF2|=|MF1|+|MF2||MF1|?|MF2|=4|MF1|?|MF2|,∵|MF1|?|MF2|的最大值為a2=4,∴1|MF1|+1|MF2|的最小值=44=1.故為:1.7.已知平面上的向量PA、PB滿足|PA|2+|PB|2=4,|AB|=2,設(shè)向量PC=2PA+PB,則|PC|的最小值是

______.答案:|PA|2+|PB|2=4,|AB|=2∴|PA|2+|PB|2=|AB|2∴PA?PB=0∴PC2=4PA2+4PA?PB+PB2=3PA2+4≥4∴|PC|≥2故為2.8.閱讀下面的程序框圖,則輸出的S=()A.14B.20C.30D.55答案:∵S1=0,i1=1;S2=1,i2=2;S3=5,i3=3;S4=14,i4=4;S5=30,i=5>4退出循環(huán),故為C.9.在直角三角形ABC中,∠ACB=90°,CD、CE分別為斜邊AB上的高和中線,且∠BCD與∠ACD之比為3:1,求證CD=DE.

答案:證明:∵∠A+∠ACD=∠A+∠B=90°,∴∠ACD=∠B又∵CE是直角△ABC的斜邊AB上的中線∴CE=EB∠B=∠ECB,∠ACD=∠ECB但∵∠BCD=3∠ACD,∠ECD=2∠ACD=12∠ACB=12×90°=45°,△EDC為等腰直角三角形∴CE=DE.10.已知f(x+1)=x2+2x+3,則f(2)的值為______.答案:由f(x+1)=x2+2x+3,得f(1+1)=12+2×1+3=6,故為:6.11.已知a=(a1,a2),b=(b1,b2),丨a丨=5,丨b丨=6,a?b=30,則a1+a2b1+b2=______.答案:因?yàn)樨璦丨=5,丨b丨=6,a?b=30,又a?b=|a|?|b|cos<a,b>=30,即cos<a,b>=1,所以a,b同向共線.設(shè)b=ka,(k>0).則b1=ka1,b2=ka2,所以|b|=k|a|,所以k=65,所以a1+a2b1+b2=a1+a2k(a1+a2)=1k=56.故為:56.12.若a=()x,b=x3,c=logx,則當(dāng)x>1時,a,b,c的大小關(guān)系式()

A.a(chǎn)<b<c

B.c<b<a

C.c<a<b

D.a(chǎn)<c<b答案:C13.一個箱中原來裝有大小相同的

5

個球,其中

3

個紅球,2

個白球.規(guī)定:進(jìn)行一次操

作是指“從箱中隨機(jī)取出一個球,如果取出的是紅球,則把它放回箱中;如果取出的是白

球,則該球不放回,并另補(bǔ)一個紅球放到箱中.”

(1)求進(jìn)行第二次操作后,箱中紅球個數(shù)為

4

的概率;

(2)求進(jìn)行第二次操作后,箱中紅球個數(shù)的分布列和數(shù)學(xué)期望.答案:(1)設(shè)A1表示事件“第一次操作從箱中取出的是紅球”,B1表示事件“第一次操作從箱中取出的是白球”,A2表示事件“第二次操作從箱中取出的是紅球”,B2表示事件“第二次操作從箱中取出的是白球”.則A1B2表示事件“第一次操作從箱中取出的是紅球,第二次操作從箱中取出的是白球”.由條件概率計算公式得P(A1B2)=P(A1)P(B2|A1)=35×25=625.B1A2表示事件“第一次操作從箱中取出的是白球,第二次操作從箱中取出的是紅球”.由條件概率計算公式得P(B1A2)=P(B1)P(A2|B1)=25×45=825.A1B2+B1A2表示“進(jìn)行第二次操作后,箱中紅球個數(shù)為

4”,又A1B2與B1A2是互斥事件.∴P(A1B2+B1A2)=P(A1B2)+P(B1A2)=625+825=1425.(2)設(shè)進(jìn)行第二次操作后,箱中紅球個數(shù)為X,則X=3,4,5.P(X=3)35×35=925,P(X=4)=1425,P(X=5)=25×15=225.進(jìn)行第二次操作后,箱中紅球個數(shù)X的分布列為:進(jìn)行第二次操作后,箱中紅球個數(shù)X的數(shù)學(xué)期望EX=3×925+4×1425+5×225=9325.14.過點(diǎn)A(1,4)且在x、y軸上的截距相等的直線共有______條.答案:當(dāng)直線過坐標(biāo)原點(diǎn)時,方程為y=4x,符合題意;當(dāng)直線不過原點(diǎn)時,設(shè)直線方程為x+y=a,代入A的坐標(biāo)得a=1+4=5.直線方程為x+y=5.所以過點(diǎn)A(1,4)且在x、y軸上的截距相等的直線共有2條.故為2.15.求證:若圓內(nèi)接四邊形的兩條對角線互相垂直,則從對角線交點(diǎn)到一邊中點(diǎn)的線段長等于圓心到該邊對邊的距離.答案:以兩條對角線的交點(diǎn)為原點(diǎn)O、對角線所在直線為坐標(biāo)軸建立直角坐標(biāo)系,(如圖所示)

設(shè)A(-a,0),B(0,-b),C(c,0),D(0,d),則CD的中點(diǎn)E(c2,d2),AB的中點(diǎn)H(-a2,-b2).又圓心G到四個頂點(diǎn)的距離相等,故圓心G的橫坐標(biāo)等于AC中點(diǎn)的橫坐標(biāo),等于c-a2,圓心G的縱坐標(biāo)等于BD中點(diǎn)的縱坐標(biāo),等于d-b2.即圓心G(c-a2,d-b2),∴|OE|2=c2+d24,|GH|2=(c-a2+a2)2+(d-b2+b2)2=c2+d24,∴|OE|=|GH|,故要證的結(jié)論成立.16.某校有老師300人,男學(xué)生1200人,女學(xué)生1000人.現(xiàn)用分層抽樣的方法從所有師生中抽取一個容量為n的樣本,已知從女學(xué)生中抽取的人數(shù)為80,則n=()

A.171

B.184

C.200

D.392答案:C17.根據(jù)一組數(shù)據(jù)判斷是否線性相關(guān)時,應(yīng)選用(

A.散點(diǎn)圖

B.莖葉圖

C.頻率分布直方圖

D.頻率分布折線圖答案:A18.已知兩個力F1,F(xiàn)2的夾角為90°,它們的合力大小為10N,合力與F1的夾角為60°,那么F2的大小為()A.53NB.5NC.10ND.52N答案:由題意可知:對應(yīng)向量如圖由于α=60°,∴F2的大小為|F合|?sin60°=10×32=53.故選A.19.在輸入語句中,若同時輸入多個變量,則變量之間的分隔符號是()

A.逗號

B.空格

C.分號

D.頓號答案:A20.若兩條平行線L1:x-y+1=0,與L2:3x+ay-c=0

(c>0)之間的距離為,則等于()

A.-2

B.-6

C..2

D.0答案:A21.隨機(jī)變量ξ的分布列為k=1、2、3、4,c為常數(shù),則P(<ξ<)的值為()

A.

B.

C.

D.答案:B22.給出下列四個命題:

①若兩個向量相等,則它們的起點(diǎn)相同,終點(diǎn)相同;

②在平行四邊形ABCD中,一定有;

③若則

④若則

其中正確的命題個數(shù)是()

A.1

B.2

C.3

D.4答案:C23.已知集合A={0,2,a2},B={1,a},若A∪B={0,1,2,4},則實(shí)數(shù)a的值為______.答案:根據(jù)題意,集合A={0,2,a2},B={1,a},且A∪B={0,1,2,4},則有a=4,或a=4,a=4時,A={0,2,16},B={1,4},A∪B={0,1,2,4,16},不合題意,舍去;a=2時,A={0,2,4},B={1,2},A∪B={0,1,2,4},符合;故a=2.24.橢圓上有一點(diǎn)P,F(xiàn)1,F(xiàn)2是橢圓的左、右焦點(diǎn),△F1PF2為直角三角形,則這樣的點(diǎn)P有()

A.3個

B.4個

C.6個

D.8個答案:C25.用演繹法證明y=x2是增函數(shù)時的大前提是______.答案:∵證明y=x2是增函數(shù)時,依據(jù)的原理就是增函數(shù)的定義,∴用演繹法證明y=x2是增函數(shù)時的大前提是:增函數(shù)的定義故填增函數(shù)的定義26.在平面直角坐標(biāo)系xOy中,點(diǎn)P(x,y)是橢圓x23+y2=1上的一個動點(diǎn),求S=x+y的最大值.答案:因橢圓x23+y2=1的參數(shù)方程為x=3cos?y=sin?(?為參數(shù))故可設(shè)動點(diǎn)P的坐標(biāo)為(3cos?,sin?),其中0≤?<2π.因此S=x+y=3cos?+sin?=2(32cos?+12sin?)=2sin(?+π3)所以,當(dāng)?=π6時,S取最大值2.27.雙曲線(n>1)的兩焦點(diǎn)為F1、、F2,P在雙曲線上,且滿足|PF1|+|PF2|=2,則△P

F1F2的面積為()

A.

B.1

C.2

D.4答案:B28.若集合A={x|x2-4x-5<0,x∈Z},B={x|y=log0.5x>-3,x∈Z},記x0為拋擲一枚骰子出現(xiàn)的點(diǎn)數(shù),則x0∈A∩B的概率等于______.答案:由x2-4x-5<0,x∈Z,解得:-1<x<5,x∈Z,∴x=0,1,2,3,4.即A={0,1,2,3,4},B={x|y=log0.5x>-3,x∈Z}={1,2,3,4,5,6,7},∴A∩B={1,2,3,4},而x0為拋擲一枚骰子出現(xiàn)的點(diǎn)數(shù)可能有6種,∴P=46=23,故為:23.29.若平面α與β的法向量分別是a=(1,0,-2),b=(-1,0,2),則平面α與β的位置關(guān)系是()A.平行B.垂直C.相交不垂直D.無法判斷答案:∵a=(1,0,-2),b=(-1,0,2),∴a+b=(1-1,0+0,-2+2)=(0,0,0),即a+b=0由此可得a∥b∵a、b分別是平面α與β的法向量∴平面α與β的法向量平行,可得平面α與β互相平行.30.一組數(shù)據(jù)12,15,24,25,31,31,36,36,37,39,44,49,50的中位數(shù)是()

A.31

B.36

C.35

D.34答案:B31.已知實(shí)數(shù)x,y滿足2x+y+5=0,那么x2+y2的最小值為______.答案:x2+y2

表示直線2x+y+5=0上的點(diǎn)與原點(diǎn)的距離,其最小值就是原點(diǎn)到直線2x+y+5=0的距離|0+0+5|4+1=5,故為:5.32.設(shè)集合A={x|x<1,x∈R},B={x|1x>1,x∈R},則下列圖形能表示A與B關(guān)系的是()A.

B.

C.

D.

答案:B={x|1x>1}={x|0<x<1},所以B?A.所以對應(yīng)的關(guān)系選A.故選A.33.不等式|x-500|≤5的解集是______.答案:因?yàn)椴坏仁絴x-500|≤5,由絕對值不等式的幾何意義可知:{x|495≤x≤505}.故為:{x|495≤x≤505}.34.已知直線l的參數(shù)方程為x=-4+4ty=-1-2t(t為參數(shù)),圓C的極坐標(biāo)方程為ρ=22cos(θ+π4),則圓心C到直線l的距離是______.答案:直線l的普通方程為x+2y+6=0,圓C的直角坐標(biāo)方程為x2+y2-2x+2y=0.所以圓心C(1,-1)到直線l的距離d=|1-2+6|5=5.故為5.35.已知|log12x+4i|≥5,則實(shí)數(shù)x

的取值范圍是______.答案:由題意,得(log12x)2+42≥5?|log12x|≥3?0<x≤18或x≥8.∴則實(shí)數(shù)x

的取值范圍是0<x≤18或x≥8.故為:0<x≤18或x≥8.36.如圖,彎曲的河流是近似的拋物線C,公路l恰好是C的準(zhǔn)線,C上的點(diǎn)O到l的距離最近,且為0.4千米,城鎮(zhèn)P位于點(diǎn)O的北偏東30°處,|OP|=10千米,現(xiàn)要在河岸邊的某處修建一座碼頭,并修建兩條公路,一條連接城鎮(zhèn),一條垂直連接公路l,以便建立水陸交通網(wǎng).

(1)建立適當(dāng)?shù)淖鴺?biāo)系,求拋物線C的方程;

(2)為了降低修路成本,必須使修建的兩條公路總長最小,請給出修建方案(作出圖形,在圖中標(biāo)出此時碼頭Q的位置),并求公路總長的最小值(精確到0.001千米)答案:(1)過點(diǎn)O作準(zhǔn)線的垂線,垂足為A,以O(shè)A所在直線為x軸,OA的垂直平分線為y軸,建立平面直角坐標(biāo)系…(2分)由題意得,p2=0.4…(4分)所以,拋物線C:y2=1.6x…(6分)(2)設(shè)拋物線C的焦點(diǎn)為F由題意得,P(5,53)…(8分)根據(jù)拋物線的定義知,公路總長=|QF|+|QP|≥|PF|≈9.806…(12分)當(dāng)Q為線段PF與拋物線C的交點(diǎn)時,公路總長最小,最小值為9.806千米…(16分)37.已知:空間四邊形ABCD,AB=AC,DB=DC,求證:BC⊥AD.答案:取BC的中點(diǎn)為E,∵AB=AC,∴AE⊥BC.∵DB=DC,∴DE⊥BC.這樣,BC就和平面ADE內(nèi)的兩條相交直線AE、DE垂直,∴BC⊥面ADE,∴BC⊥AD.38.若點(diǎn)P分向量AB的比為34,則點(diǎn)A分向量BP的比為()A.-34B.34C.-73D.73答案:由題意可得APPB=|AP||PB|=34,故

A分BP的比為BAAP=-|BA||AP|=-4+33=-73,故選C.39.設(shè)a=log132,b=log1213,c=(12)0.3,則()A.a(chǎn)<b<cB.a(chǎn)<c<bC.b<c<aD.b<a<c答案:解;∵a=log132<log131=0,b=log1213>log1212=1,c=(12)0.3∈(0,1)∴b>c>a.故選B.40.要考察某種品牌的850顆種子的發(fā)芽率,抽取60粒進(jìn)行實(shí)驗(yàn).利用隨機(jī)數(shù)表抽取種子時,先將850顆種子按001,002,…,850進(jìn)行編號,如果從隨機(jī)數(shù)表第8行第11列的數(shù)1開始向右讀,請你依次寫出最先檢測的4顆種子的編號______,______,______,______.

(下面摘取了隨機(jī)數(shù)表第7行至第9行的一部分)

84

42

17

53

31

57

24

55

06

88

77

04

74

47

67

21

76

33

50

25

63

01

63

78

59

16

95

55

67

19

98

10

50

71

75

12

86

73

58

07

44

39

52

38

79

33

21

12

34

29

78

64

56

07

82

52

42

07

44

38.答案:由于隨機(jī)數(shù)表中第8行的數(shù)字為:63

01

63

78

59

16

95

5567

19

98

10

50

71

75

12

86

73

58

07其第11列數(shù)字為1,故產(chǎn)生的第一個數(shù)字為:169,第二個數(shù)字為:555,第三個數(shù)字為:671,第四個數(shù)字為:998(超出編號范圍舍)第五個數(shù)字為:105故為:169,555,671,10541.在平行六面體ABCD-A′B′C′D′中,若AC′=xAB+2yBC-3zC′C,則x+y+z等于______.答案:根據(jù)向量的加法法則可得,AC′=AC+CC′=AB+BC+CC′∵AC′=xAB+2yBC-3zC′C∴x=1,2y=1,-3z=1∴x=1,y=12,z=-13∴x+y+z=1+12-13=76故為:7642.A、B為球面上相異兩點(diǎn),則通過A、B兩點(diǎn)可作球的大圓有()A.一個B.無窮多個C.零個D.一個或無窮多個答案:如果A,B兩點(diǎn)為球面上的兩極點(diǎn)(即球直徑的兩端點(diǎn))則通過A、B兩點(diǎn)可作球的無數(shù)個大圓如果A,B兩點(diǎn)不是球面上的兩極點(diǎn)(即球直徑的兩端點(diǎn))則通過A、B兩點(diǎn)可作球的一個大圓故選:D43.過A(-2,3),B(2,1)兩點(diǎn)的直線的斜率是()

A.

B.

C.-2

D.2答案:B44.對總數(shù)為N的一批零件抽取一個容量為30的樣本,若每個零件被抽取的概率為0.25,則N等于()A.150B.200C.120D.100答案:∵每個零件被抽取的概率都相等,∴30N=0.25,∴N=120.故選C.45.以拋物線的焦點(diǎn)弦為直徑的圓與其準(zhǔn)線的位置關(guān)系是(

A.相切

B.相交

C.相離

D.以上均有可能答案:A46.(選做題)

曲線(θ為參數(shù))與直線y=a有兩個公共點(diǎn),則實(shí)數(shù)a的取值范圍是(

).答案:0<a≤147.一個單位有職工800人,其中具有高級職稱的160人,具有中級職稱的320人,具有初級職稱的200人,其余人員120人,為了解職工收入情況,決定采用分層抽樣的方法從中抽取樣本.若樣本中具有初級職稱的職工為10人,則樣本容量為()

A.10

B.20

C.40

D.50答案:C48.種植兩株不同的花卉,它們的存活率分別為p和q,則恰有一株存活的概率為(

)A.p+q-2pqB.p+q-pqC.p+qD.pq答案:A解析:恰有一株存活的概率為p(1-q)+(1-p)q=p+q-2pq。49.在極坐標(biāo)系中,曲線p=4cos(θ-π3)上任意兩點(diǎn)間的距離的最大值為______.答案:將原極坐標(biāo)方程p=4cos(θ-π3),化為:ρ=2cosθ+23sinθ,∴ρ2=2ρcosθ+23ρsinθ,化成直角坐標(biāo)方程為:x2+y2-2x-23y=0,是一個半徑為2圓.圓上兩點(diǎn)間的距離的最大值即為圓的直徑,故填:4.50.已知拋物線y2=4x的焦點(diǎn)為F,準(zhǔn)線與x軸的交點(diǎn)為M,N為拋物線上的一點(diǎn),且|NF|=32|MN|,則∠NMF=()A.π6B.π4C.π3D.5π12答案:設(shè)N到準(zhǔn)線的距離等于d,由拋物線的定義可得d=|NF|,

由題意得cos∠NMF=d|MN|=|NF||MN|=32,∴∠NMF=π6,故選A.第3卷一.綜合題(共50題)1.若關(guān)于x的不等式(1+k2)x≤k4+4的解集是M,則對任意實(shí)常數(shù)k,總有(

A.

B.

C.

D.,0∈M答案:A2.求證:若圓內(nèi)接五邊形的每個角都相等,則它為正五邊形.答案:證明:設(shè)圓內(nèi)接五邊形為ABCDE,圓心是O.連接OA,OB,OCOD,OE,可得五個三角形∵OA=OB=OC=OD=OE=半徑,∴有五個等腰三角形在△OAB、△OBC、△OCD、△ODE、△OEA中則∠OAB=∠OBA,∠OBC=∠OCB,∠OCD=∠ODC,∠ODE=∠OED,∠OEA=∠OAE因?yàn)樗袃?nèi)角相等,所以∠OAE+∠OAB=∠OBA+∠OBC,所以∠OAE=∠OBC同理證明∠OBA=∠OCD,∠OCB=∠OED,∠ODC=∠OEA,∠OED=∠OAB則△OAB、△OBC、△OCD、△ODE、△OEA中,∠AOB=∠BOC=∠COD=∠DOE=∠EOA∴△OAB≌△OBC≌△OCD≌△ODE≌△OEA

(SAS邊角邊定律)∴AB=BC=CD=DE=EA∴五邊形ABCDE為正五邊形3.用樣本估計總體,下列說法正確的是()A.樣本的結(jié)果就是總體的結(jié)果B.樣本容量越大,估計就越精確C.樣本容量越小,估計就越精確D.樣本的方差可以近似地反映總體的平均狀態(tài)答案:用樣本估計總體時,樣本容量越大,估計就越精確,樣本的平均值可以近似地反映總體的平均狀態(tài),樣本的標(biāo)準(zhǔn)差可以近似地反映總體的波動狀態(tài),數(shù)據(jù)的方差越大,說明數(shù)據(jù)越不穩(wěn)定,樣本的結(jié)果可以粗略的估計總體的結(jié)果,但不就是總體的結(jié)果.故選B.4.設(shè)A、B、C、D是半徑為r的球面上的四點(diǎn),且滿足AB⊥AC、AD⊥AC、AB⊥AD,則S△ABC+S△ABD+S△ACD的最大值是[

]A、r2

B、2r2

C、3r2

D、4r2答案:B5.如圖,在⊙O中,AB是弦,AC是⊙O的切線,A是切點(diǎn),過

B作BD⊥AC于D,BD交⊙O于E點(diǎn),若AE平分∠BAD,則∠BAD=()

A.30°

B.45°

C.50°

D.60°

答案:D6.已知曲線x=3cosθy=4sinθ(θ為參數(shù),0≤θ≤π)上一點(diǎn)P,原點(diǎn)為0,直線P0的傾斜角為π4,則P點(diǎn)的坐標(biāo)是______.答案:根據(jù)題意,曲線x=3cosθy=4sinθ(θ為參數(shù),0≤θ≤π)消去參數(shù)化成普通方程,得x29+y216=1(y≥0)∵直線P0的傾斜角為π4,∴P點(diǎn)在直線y=x上,將其代入橢圓方程得x29+x216=1,解之得x=y=125(舍負(fù)),因此點(diǎn)P的坐標(biāo)為(125,125)故為:(125,125)7.已知a,b

,c滿足a+2c=b,且a⊥c,|a|=1,|c|=2,則|b|=______.答案:根據(jù)題意,a⊥c?a?c=0,則|b|2=(a+2c)2=a2+4c2=17,則|b|=17;故為17.8.如圖,在△ABC中,BC邊上的高所在的直線方程為x-2y+1=0,∠A的平分線所在的直線方程為y=0,若點(diǎn)B的坐標(biāo)為(1,2),求點(diǎn)A和點(diǎn)C的坐標(biāo).答案:點(diǎn)A為y=0與x-2y+1=0兩直線的交點(diǎn),∴點(diǎn)A的坐標(biāo)為(-1,0).∴kAB=2-01-(-1)=1.又∵∠A的平分線所在直線的方程是y=0,∴kAC=-1.∴直線AC的方程是y=-x-1.而BC與x-2y+1=0垂直,∴kBC=-2.∴直線BC的方程是y-2=-2(x-1).由y=-x-1,y=-2x+4,解得C(5,-6).∴點(diǎn)A和點(diǎn)C的坐標(biāo)分別為(-1,0)和(5,-6)9.已知a=(5,4),b=(3,2),則與2a-3b同向的單位向量為

______.答案:∵a=(5,4),b=(3,2),∴2a-3b=(1,2)設(shè)與2a-3b平行的單位向量為e=(x,y),則2a-3b=λe,|e|=1∴(1,2)=(λx,λy);x2+y2=1∴1=λx2=λyx2+y2=1解之x=55y=255或x=-55y=-255故為e=±(55,255)10.設(shè)拋物線y2=8x上一點(diǎn)P到y(tǒng)軸的距離是4,則點(diǎn)P到該拋物線焦點(diǎn)的距離是()A.4B.6C.8D.12答案:拋物線y2=8x的準(zhǔn)線為x=-2,∵點(diǎn)P到y(tǒng)軸的距離是4,∴到準(zhǔn)線的距離是4+2=6,根據(jù)拋物線的定義可知點(diǎn)P到該拋物線焦點(diǎn)的距離是6故選B11.在下列4個命題中,是真命題的序號為()

①3≥3;

②100或50是10的倍數(shù);

③有兩個角是銳角的三角形是銳角三角形;

④等腰三角形至少有兩個內(nèi)角相等.

A.①

B.①②

C.①②③

D.①②④答案:D12.將某班的60名學(xué)生編號為:01,02,…,60,采用系統(tǒng)抽樣方法抽取一個容量為5的樣本,且隨機(jī)抽得的一個號碼為04,則剩下的四個號碼依次是______.答案:用系統(tǒng)抽樣抽出的5個學(xué)生的號碼從小到大成等差數(shù)列,隨機(jī)抽得的一個號碼為04則剩下的四個號碼依次是16、28、40、52.故為:16、28、40、5213.若x,y∈R,x>0,y>0,且x+2y=1,則xy的最大值為______.答案:∵x,y∈R,x>0,y>0,且x+2y=1,∴1=x+2y≥2x?2y,∴22×xy≤1,∴xy≤

122=24,所以xy≤18.當(dāng)且僅當(dāng)x=2yx+2y=1時,即x=12,y=14時,取等號.故為:18.14.△ABC是邊長為1的正三角形,那么△ABC的斜二測平面直觀圖△A′B′C′的面積為(

A.

B.

C.

D.答案:D15.在平面直角坐標(biāo)系xOy中,設(shè)P(x,y)是橢圓上的一個動點(diǎn),則S=x+y的最大值是()

A.1

B.2

C.3

D.4答案:B16.直線y=2x+1的參數(shù)方程是()

A.(t為參數(shù))

B.(t為參數(shù))

C.(t為參數(shù))

D.(θ為參數(shù))

答案:B17.已知圖形F上的點(diǎn)A按向量平移前后的坐標(biāo)分別是和,若B()是圖形F上的又一點(diǎn),則在F按向量平移后得到的圖形F,上B,的坐標(biāo)是(

)A.B.C.D.答案:選D解析:設(shè)向量,則平移公式為依題意有∴平移公式為將B點(diǎn)坐標(biāo)代入可得B,點(diǎn)的坐標(biāo)為.所以選D.18.設(shè)a=(-1,1),b=(x,3),c=(5,y),d=(8,6),且b∥d,(4a+d)⊥c.

(1)求b和c;

(2)求c在a方向上的射影;

(3)求λ1和λ2,使c=λ1a+λ2b.答案:(1)∵b∥d,∴6x-24=0.∴x=4.∴b=(4,3).∵4a+d=(4,10),(4a+d

)⊥c,∴5×4+10y=0.∴y=-2.∴c=(5,-2).(2)cos<a,c>=a?c|a|

|c|=-5-22?29=-75858,∴c在a方向上的投影為|c|cos<a,c>=-722.(3)∵c=λ1a+λ2b,∴5=-λ1+4λ2-2=λ1+3λ2,解得λ1=-237,λ2=37.19.長方體的長、寬、高之比是1:2:3,對角線長是214,則長方體的體積是

______.答案:長方體的長、寬、高之比是1:2:3,所以長方體的長、寬、高是x:2x:3x,對角線長是214,所以,x2+(2x)2+(3x)2=(214)2,x=2,長方體的長、寬、高是2,4,6;長方體的體積是:2×4×6=48故為:4820.

如圖,已知平行六面體OABC-O1A1B1C1,點(diǎn)G是上底面O1A1B1C1的中心,且,則用

表示向量為(

A.

B.

C.

D.

答案:A21.是平面直角坐標(biāo)系(坐標(biāo)原點(diǎn)為O)內(nèi)分別與x軸、y軸正方向相同的兩個單位向量,且則△OAB的面積等于()

A.15

B.10

C.7.5

D.5答案:D22.72的正約數(shù)(包括1和72)共有______個.答案:72=23×32.∴2m?3n(0≤m≤3,0≤n≤2,m,n∈N)都是72的正約數(shù).m的取法有4種,n的取法有3種,由分步計數(shù)原理共3×4個.故為:12.23.直線和圓交于兩點(diǎn),則的中點(diǎn)

坐標(biāo)為(

)A.B.C.D.答案:D解析:,得,中點(diǎn)為24.某學(xué)院有四個飼養(yǎng)房,分別養(yǎng)有18,54,24,48只白鼠供實(shí)驗(yàn)用,某項(xiàng)實(shí)驗(yàn)需要抽取24只白鼠,你認(rèn)為最合適的抽樣方法是()A.在每個飼養(yǎng)房各抽取6只B.把所以白鼠都編上號,用隨機(jī)抽樣法確定24只C.在四個飼養(yǎng)房應(yīng)分別抽取3,9,4,8只D.先確定這四個飼養(yǎng)房應(yīng)分別抽取3,9,4,8只樣品,再由各飼養(yǎng)房將白鼠編號,用簡單隨機(jī)抽樣確定各自要抽取的對象答案:A中對四個飼養(yǎng)房平均攤派,但由于各飼養(yǎng)房所養(yǎng)數(shù)量不一,反而造成了各個個體入選概率的不均衡,是錯誤的方法.B中保證了各個個體入選概率的相等,但由于沒有注意到處在四個不同環(huán)境中會產(chǎn)生差異,不如采用分層抽樣可靠性高,且統(tǒng)一編號統(tǒng)一選擇加大了工作量.C中總體采用了分層抽樣,但在每個層次中沒有考慮到個體的差層(如健壯程度,靈活程度),貌似隨機(jī),實(shí)則各個個體概率不等.故選D.25.命題“零向量與任意向量共線”的否定為______.答案:命題“零向量與任意向量共線”即“任意向量與零向量共線”,是全稱命題,其否定為特稱命題:“有的向量與零向量不共線”.故為:“有的向量與零向量不共線”.26.某校為了研究學(xué)生的性別和對待某一活動的態(tài)度(支持和不支持兩種態(tài)度)的關(guān)系,運(yùn)用2×2列聯(lián)表進(jìn)行獨(dú)立性檢驗(yàn),經(jīng)計算K2=7.069,則所得到的統(tǒng)計學(xué)結(jié)論是:有()的把握認(rèn)為“學(xué)生性別與支持該活動有關(guān)系”.

P(k2≥k0)

0.100

0.050

0.025

0.010

0.001

k0

2.706

3.841

5.024

6.635

10.828

A.0.1%

B.1%

C.99%

D.99.9%答案:C27.設(shè)a,b,c都是正數(shù),求證:

(1)(a+b+c)≥9;

(2)(a+b+c)≥.答案:證明略解析:證明

(1)∵a,b,c都是正數(shù),∴a+b+c≥3,++≥3.∴(a+b+c)≥9,當(dāng)且僅當(dāng)a=b=c時,等號成立.(2)∵(a+b)+(b+c)+(c+a)≥3,又≥,∴(a+b+c)≥,當(dāng)且僅當(dāng)a=b=c時,等號成立.28.如圖所示的圓盤由八個全等的扇形構(gòu)成,指針繞中心旋轉(zhuǎn),可能隨機(jī)停止,則指針停止在陰影部分的概率為()A.12B.14C.16D.18答案:如圖:轉(zhuǎn)動轉(zhuǎn)盤被均勻分成8部分,陰影部分占1份,則指針停止在陰影部分的概率是P=18.故選D.29.已知=(1,2),=(x,1),當(dāng)(+2)⊥(2-)時,實(shí)數(shù)x的值為(

A.6

B.2

C.-2

D.或-2答案:D30.某工廠生產(chǎn)產(chǎn)品,用傳送帶將產(chǎn)品送到下一道工序,質(zhì)檢人員每隔十分鐘在傳送帶的某一個位置取一件檢驗(yàn),則這種抽樣方法是()A.簡單隨機(jī)抽樣B.系統(tǒng)抽樣C.分層抽樣D.非上述答案答案:本題符合系統(tǒng)抽樣的特征:總體中各單位按一定順序排列,根據(jù)樣本容量要求確定抽選間隔,然后隨機(jī)確定起點(diǎn),每隔一定的間隔抽取一個單位的一種抽樣方式.故選B.31.如圖,在梯形ABCD中,AB∥CD,AB=4,C

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論