2023年棗莊職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第1頁
2023年棗莊職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第2頁
2023年棗莊職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第3頁
2023年棗莊職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第4頁
2023年棗莊職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第5頁
已閱讀5頁,還剩46頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

長(zhǎng)風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年棗莊職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.下列命題:

①用相關(guān)系數(shù)r來刻畫回歸的效果時(shí),r的值越大,說明模型擬合的效果越好;

②對(duì)分類變量X與Y的隨機(jī)變量的K2觀測(cè)值來說,K2越小,“X與Y有關(guān)系”可信程度越大;

③兩個(gè)隨機(jī)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值越接近1;

其中正確命題的序號(hào)是

______.(寫出所有正確命題的序號(hào))答案:①是由于r可能是負(fù)值,要改為|r|的值越大,說明模型擬合的效果越好,故①錯(cuò)誤,②對(duì)分類變量X與Y的隨機(jī)變量的K2觀測(cè)值來說,K2越大,“X與Y有關(guān)系”可信程度越大;故②正確③兩個(gè)隨機(jī)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值越接近1;故③正確,故為:③2.請(qǐng)輸入一個(gè)奇數(shù)n的BASIC語句為______.答案:INPUT表示輸入語句,輸入一個(gè)奇數(shù)n的BASIC語句為:INPUT“輸入一個(gè)奇數(shù)n”;n.故為:INPUT“輸入一個(gè)奇數(shù)n”;n.3.

選修1:幾何證明選講

如圖,設(shè)AB為⊙O的任一條不與直線l垂直的直徑,P是⊙O與l的公共點(diǎn),AC⊥l,BD⊥l,垂足分別為C,D,且PC=PD,求證:

(1)l是⊙O的切線;

(2)PB平分∠ABD.答案:證明:(1)連接OP,因?yàn)锳C⊥l,BD⊥l,所以AC∥BD.又OA=OB,PC=PD,所以O(shè)P∥BD,從而OP⊥l.因?yàn)镻在⊙O上,所以l是⊙O的切線.(2)連接AP,因?yàn)閘是⊙O的切線,所以∠BPD=∠BAP.又∠BPD+∠PBD=90°,∠BAP+∠PBA=90°,所以∠PBA=∠PBD,即PB平分∠ABD.4.如圖,花園中間是噴水池,噴水池周圍的A、B、C、D區(qū)域種植草皮,要求相鄰的區(qū)域種不同顏色的草皮,現(xiàn)有4種不同顏色的草皮可供選用,則共有______種不同的種植方法(以數(shù)字作答).答案:若AD相同,有4×(3+3×2)種種植方法,若AD不同,有4×3×(2+2×1)種種植方法∴共有4×(3+3×2)+4×3×(2+2×1)=36+48=84種不同方法.故為84.5.O、B、C為空間四個(gè)點(diǎn),又、、為空間的一個(gè)基底,則()

A.O、A、B、C四點(diǎn)不共線

B.O、A、B、C四點(diǎn)共面,但不共線

C.O、A、B、C四點(diǎn)中任意三點(diǎn)不共線

D.O、A、B、C四點(diǎn)不共面答案:D6.已知OA=a,OB=b,,且|a|=|b|=2,∠AOB=60°,則|a+b|=______;a+b與b的夾角為______.答案:∵|a+b|2=(a+b)2=a2+b2+2a?b

由|a|=|b|=2,∠AOB=60°,得:a2=b2=

4,a?b

=2∴|a+b|2=12,∴|a+b|=23令a+b與b的夾角為θ則0≤θ≤π,且cosθ=a?(a+b)|a|?|a+b|=32∴θ=π6故為:23,π67.由棱長(zhǎng)為a的正方體的每個(gè)面向外側(cè)作側(cè)棱為a的正四棱錐,以這些棱錐的頂點(diǎn)為頂點(diǎn)的凸多面體的全面積是______.答案:由棱長(zhǎng)為a的正方體的每個(gè)面向外側(cè)作側(cè)棱為a的正四棱錐,共可作6個(gè),得到6個(gè)頂點(diǎn),圍成一個(gè)正八面體.所作的正四棱錐的高為h′=2a2,正八面體相對(duì)的兩頂點(diǎn)的距離應(yīng)為2h′+a=1+2a正八面體的棱長(zhǎng)x滿足2x=(1+2)a,x=(1+22)a,每個(gè)側(cè)面的面積為34x2=34×(1+22)2a2=33+268a2,全面積是8×33+268=33+26故為:(33+26)a28.“a=18”是“對(duì)任意的正數(shù)x,2x+ax≥1的”()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案:當(dāng)“a=18”時(shí),由基本不等式可得:“對(duì)任意的正數(shù)x,2x+ax≥1”一定成立,即“a=18”?“對(duì)任意的正數(shù)x,2x+ax≥1”為真命題;而“對(duì)任意的正數(shù)x,2x+ax≥1的”時(shí),可得“a≥18”即“對(duì)任意的正數(shù)x,2x+ax≥1”?“a=18”為假命題;故“a=18”是“對(duì)任意的正數(shù)x,2x+ax≥1的”充分不必要條件故選A9.如圖為一個(gè)求50個(gè)數(shù)的平均數(shù)的程序,在橫線上應(yīng)填充的語句為()

A.i>50

B.i<50

C.i>=50

D.i<=50

答案:A10.利用計(jì)算機(jī)在區(qū)間(0,1)上產(chǎn)生兩個(gè)隨機(jī)數(shù)a和b,則方程有實(shí)根的概率為()

A.

B.

C.

D.1答案:A11.雙曲線的漸進(jìn)線方程是3x±4y=0,則雙曲線的離心率等于______.答案:由題意可得,當(dāng)焦點(diǎn)在x軸上時(shí),ba=34,∴ca=a2+b2a=a2+(3a4)2a=54.當(dāng)焦點(diǎn)在y軸上時(shí),ab=34,∴ca=a2+b2a=a2+(4a3)2a=53,故為:53

或54.12.設(shè)橢圓的左焦點(diǎn)為F,AB為橢圓中過點(diǎn)F的弦,試分析以AB為直徑的圓與橢圓的左準(zhǔn)線的位置關(guān)系.答案:設(shè)M為弦AB的中點(diǎn)(即以AB為直徑的圓的圓心),A1、B1、M1分別是A、B、M在準(zhǔn)線l上的射影(如圖).由圓錐曲線的共同性質(zhì)得|AB|=|AF|+|BF|=e(|AA1|+|BB1|)=2e|MM1|.∵0<e<1,∴|AB|<2|MM1|,即|AB|2<|MM1|.∴以AB為直徑的圓與左準(zhǔn)線相離.13.“∵四邊形ABCD為矩形,∴四邊形ABCD的對(duì)角線相等”,補(bǔ)充以上推理的大前提為()

A.正方形都是對(duì)角線相等的四邊形

B.矩形都是對(duì)角線相等的四邊形

C.等腰梯形都是對(duì)角線相等的四邊形

D.矩形都是對(duì)邊平行且相等的四邊形答案:B14.設(shè)復(fù)數(shù)z=cosθ+sinθi,0≤θ≤π,則|z+1|的最大值為______.答案:復(fù)數(shù)z=cosθ+sinθi,0≤θ≤π,則|z+1|=|cosθ+1+isinθ|=(1+cosθ)2+sin2θ=2+2cosθ≤2.故為:2.15.過拋物線y2=4x的焦點(diǎn)作直線l交拋物線于A、B兩點(diǎn),若線段AB中點(diǎn)的橫坐標(biāo)為3,則|AB|等于()A.2B.4C.6D.8答案:由題設(shè)知知線段AB的中點(diǎn)到準(zhǔn)線的距離為4,設(shè)A,B兩點(diǎn)到準(zhǔn)線的距離分別為d1,d2,由拋物線的定義知:|AB|=|AF|+|BF|=d1+d2=2×4=8.故選D.16.函數(shù)y=ax+b和y=bax(a≠0,b>0,且b≠1)的圖象只可能是()A.

B.

C.

D.

答案:對(duì)于A:函數(shù)y=ax+b遞增可得a>0,0<b<1;函數(shù)y=bax(a≠0,b>0,且b≠1)遞減可得0<b<1且a>0故A正確對(duì)于B:函數(shù)y=ax+b遞增可得a>0,b>1;函數(shù)y=bax(a≠0,b>0,且b≠1)遞減可得0<b<1且a>0,矛盾,故B不正確對(duì)于C:函數(shù)y=ax+b遞減可得a<0,0<b<1;函數(shù)y=bax(a≠0,b>0,且b≠1)遞減可得0<b<1且a>0,矛盾,故C不正確對(duì)于D:函數(shù)y=ax+b遞減可得a<0,b>1;函數(shù)y=bax(a≠0,b>0,且b≠1)遞增可得b>1且a>0,矛盾,故D不正確故選A17.如圖所示,圖中線條構(gòu)成的所有矩形中(由6個(gè)小的正方形組成),其中為正方形的概率為

______.答案:它的長(zhǎng)有10種取法,由長(zhǎng)與寬的對(duì)稱性,得到它的寬也有10種取法;因?yàn)椋L(zhǎng)與寬相互獨(dú)立,所以得到長(zhǎng)X寬的個(gè)數(shù)有:10X10=100個(gè)即總的矩形的個(gè)數(shù)有:100個(gè)長(zhǎng)=寬的個(gè)數(shù)為:(1X1的正方形的個(gè)數(shù))+(2X2的正方形個(gè)數(shù))+(3X3的正方形個(gè)數(shù))+(4X4的正方形個(gè)數(shù))=16+9+4+1=30個(gè)即正方形的個(gè)數(shù)有:30個(gè)所以為正方形的概率是30100=0.3故為0.318.若命題p:2是偶數(shù);命題q:2是5的約數(shù),則下列命題中為真命題的是()A.p∧qB.(¬p)∧(¬q)C.¬pD.p∨q答案:∵2是偶數(shù),∴命題p為真命題∵2不是5的約數(shù),∴命題q為假命題∴p或q為真命題故選D19.設(shè)復(fù)數(shù)z滿足條件|z|=1,那么|z+22+i|的最大值是______.答案:∵|z|=1,∴可設(shè)z=cosα+sinα,于是|z+22+i|=|cosα+22+(sinα+1)i|=(cosα+22)2+(sinα+1)2=10+6sin(α+θ)≤10+6=4.∴|z+22+i|的最大值是4.故為420.對(duì)變量x,y

有觀測(cè)數(shù)據(jù)(x1,y1)(i=1,2,…,10),得散點(diǎn)圖1;對(duì)變量u,v

有觀測(cè)數(shù)據(jù)(v1,vi)(i=1,2,…,10),得散點(diǎn)圖2.下列說法正確的是()

A.變量x

與y

正相關(guān),u

與v

正相關(guān)

B.變量x

與y

負(fù)相關(guān),u

與v

正相關(guān)

C.變量x

與y

正相關(guān),u

與v

負(fù)相關(guān)

D.變量x

與y

負(fù)相關(guān),u

與v

負(fù)相關(guān)答案:B21.從裝有2個(gè)紅球和2個(gè)黒球的口袋內(nèi)任取2個(gè)球,那么互斥而不對(duì)立的兩個(gè)事件是()

A.至少有一個(gè)黒球與都是紅球

B.至少有一個(gè)黒球與都是黒球

C.至少有一個(gè)黒球與至少有1個(gè)紅球

D.恰有1個(gè)黒球與恰有2個(gè)黒球答案:D22.能較好地反映一組數(shù)據(jù)的離散程度的是()

A.眾數(shù)

B.平均數(shù)

C.標(biāo)準(zhǔn)差

D.極差答案:C23.已知點(diǎn)O為△ABC外接圓的圓心,且有,則△ABC的內(nèi)角A等于()

A.30°

B.60°

C.90°

D.120°答案:A24.用反證法證明“如果a<b,那么“”,假設(shè)的內(nèi)容應(yīng)是()

A.

B.

C.且

D.或

答案:D25.橢圓的長(zhǎng)軸長(zhǎng)為10,短軸長(zhǎng)為8,則橢圓上的點(diǎn)到橢圓中心的距離的取值范圍是______.答案:橢圓上的點(diǎn)到圓心的最小距離為短半軸的長(zhǎng)度,最大距離為長(zhǎng)半軸的長(zhǎng)度因?yàn)闄E圓的長(zhǎng)軸長(zhǎng)為10,短軸長(zhǎng)為8,所以橢圓上的點(diǎn)到圓心的最小距離為4,最大距離為5所以橢圓上的點(diǎn)到橢圓中心距離的取值范圍是[4,5]故為:[4,5]26.已知向量與的夾角為120°,若向量,且,則=()

A.2

B.

C.

D.答案:C27.化簡(jiǎn)的結(jié)果是()

A.a(chǎn)2

B.a(chǎn)

C.a(chǎn)

D.a(chǎn)答案:C28.下列在曲線上的點(diǎn)是(

A.

B.

C.

D.答案:B29.△OAB中,OA=a,OB=b,OP=p,若p=t(a|a|+b|b|),t∈R,則點(diǎn)P一定在()A.∠AOB平分線所在直線上B.線段AB中垂線上C.AB邊所在直線上D.AB邊的中線上答案:∵△OAB中,OA=a,OB=b,OP=p,p=t(a|a|+b|b|),t∈R,∵a|a|

和b|b|

是△OAB中邊OA、OB上的單位向量,∴(a|a|+b|b|

)在∠AOB平分線線上,∴t(a|a|+b|b|

)在∠AOB平分線線上,∴則點(diǎn)P一定在∠AOB平分線線上,故選A.30.若點(diǎn)P分向量AB的比為34,則點(diǎn)A分向量BP的比為()A.-34B.34C.-73D.73答案:由題意可得APPB=|AP||PB|=34,故

A分BP的比為BAAP=-|BA||AP|=-4+33=-73,故選C.31.根據(jù)如圖的框圖,寫出打印的第五個(gè)數(shù)是______.答案:分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是:輸出N<35時(shí),打印A值.程序在運(yùn)行過程中各變量的情況如下表示:

是否繼續(xù)循環(huán)

A

N循環(huán)前

1

1

第一圈

2×1+1=3

2

是第二圈

2×3+1=7

3

是第三圈

2×7+1=15

4

是第四圈

2×15+1=31

5

是…所以這個(gè)打印的第五個(gè)數(shù)是31.故為:3132.若純虛數(shù)z滿足(2-i)z=4-bi,(i是虛數(shù)單位,b是實(shí)數(shù)),則b=()

A.-2

B.2

C.-8

D.8答案:C33.已知點(diǎn)P(3,m)在以點(diǎn)F為焦點(diǎn)的拋物線x=4t2y=4t(t為參數(shù))上,則|PF|的長(zhǎng)為______.答案:∵拋物線x=4t2y=4t(t為參數(shù))上,∴y2=4x,∵點(diǎn)P(3,m)在以點(diǎn)F為焦點(diǎn)的拋物線x=4t2y=4t(t為參數(shù))上,∴m2=4×3=12,∴P(3,23)∵F(1,0),∴|PF|=22+(23)2=4,故為4.34.已知△ABC是邊長(zhǎng)為2a的正三角形,那么它的斜二側(cè)所畫直觀圖△A′B′C′的面積為()

A.a(chǎn)2

B.a(chǎn)2

C.a(chǎn)2

D.a(chǎn)2答案:C35.圓心為(-2,3),且與y軸相切的圓的方程是()A.x2+y2+4x-6y+9=0B.x2+y2+4x-6y+4=0C.x2+y2-4x+6y+9=0D.x2+y2-4x+6y+4=0答案:根據(jù)圓心坐標(biāo)(-2,3)到y(tǒng)軸的距離d=|-2|=2,則所求圓的半徑r=d=2,所以圓的方程為:(x+2)2+(y-3)2=4,化為一般式方程得:x2+y2+4x-6y+9=0.故選A36.如圖,設(shè)P、Q為△ABC內(nèi)的兩點(diǎn),且AP=25AB+15AC,AQ=23AB+14AC,則△ABP的面積與△ABQ的面積之比為()A.15B.45C.14D.13答案:設(shè)AM=25AB,AN=15AC則AP=AM+AN由平行四邊形法則知NP∥AB

所以△ABP的面積△ABC的面積=|AN||AC|=15同理△ABQ的面積△ABC的面積=14故△ABP的面積△ABQ的面積=45為:45故選B.37.如圖,在△OAB中,P為線段AB上的一點(diǎn),,且,則()

A.

B.

C.

D.

答案:A38.某醫(yī)療研究所為了檢驗(yàn)?zāi)撤N血清預(yù)防感冒的作用,把500名使用血清的人與另外500名未用血清的人一年中的感冒記錄作比較,提出假設(shè)H0:“這種血清不能起到預(yù)防感冒的作用”,利用2×2列聯(lián)表計(jì)算得Χ2≈3.918,經(jīng)查對(duì)臨界值表知P(Χ2≥3.841)≈0.05.則下列結(jié)論中,正確結(jié)論的序號(hào)是______

(1)有95%的把握認(rèn)為“這種血清能起到預(yù)防感冒的作用”

(2)若某人未使用該血清,那么他在一年中有95%的可能性得感冒

(3)這種血清預(yù)防感冒的有效率為95%

(4)這種血清預(yù)防感冒的有效率為5%答案:查對(duì)臨界值表知P(Χ2≥3.841)≈0.05,故有95%的把握認(rèn)為“這種血清能起到預(yù)防感冒的作用”950/0僅是指“血清與預(yù)防感冒”可信程度,但也有“在100個(gè)使用血清的人中一個(gè)患感冒的人也沒有”的可能.故為:(1).39.曲線xy=1的參數(shù)方程不可能是()

A.

B.

C.

D.答案:B40.命題“三角形中最多只有一個(gè)內(nèi)角是直角”的結(jié)論的否定是()

A.有兩個(gè)內(nèi)角是直角

B.有三個(gè)內(nèi)角是直角

C.至少有兩個(gè)內(nèi)角是直角

D.沒有一個(gè)內(nèi)角是直角答案:C41.過拋物線y=ax2(a>0)的焦點(diǎn)F作一直線交拋物線交于P、Q兩點(diǎn),若線段PF、FQ的長(zhǎng)分別為p、q,則1p+1q=______.答案:設(shè)PQ的斜率k=0,因拋物線焦點(diǎn)坐標(biāo)為(0,14a),把直線方程y=14a

代入拋物線方程得x=±12a,∴PF=FQ=12a,從而

1p+1q=2a+2a=4a,故為:4a.42.某廠2011年的產(chǎn)值為a萬元,預(yù)計(jì)產(chǎn)值每年以7%的速度增加,則該廠到2022年的產(chǎn)值為______萬元.答案:2011年產(chǎn)值為a,增長(zhǎng)率為7%,2012年產(chǎn)值為a+a×7%=a(1+7%),2013年產(chǎn)值為a(1+7%)+a(1+7%)×7%=a(1+7%)2,…,2022年的產(chǎn)值為a(1+7%)11.故為:a(1+7%)11.43.已知曲線,

θ∈[0,2π)上一點(diǎn)P到點(diǎn)A(-2,0)、B(2,0)的距離之差為2,則△PAB是()

A.銳角三角形

B.鈍角三角形

C.直角三角形

D.等腰三角形答案:C44.如圖,圓周上按順時(shí)針方向標(biāo)有1,2,3,4,5五個(gè)點(diǎn).一只青蛙按順時(shí)針方向繞圓從一個(gè)點(diǎn)跳到另一個(gè)點(diǎn),若它停在奇數(shù)點(diǎn)上,則下次只能跳一個(gè)點(diǎn);若停在偶數(shù)點(diǎn)上,則跳兩個(gè)點(diǎn).該青蛙從“5”這點(diǎn)起跳,經(jīng)2

011次跳后它停在的點(diǎn)對(duì)應(yīng)的數(shù)字是______.答案:起始點(diǎn)為5,按照規(guī)則,跳一次到1,再到2,4,1,2,4,1,2,4,…,“1,2,4”循環(huán)出現(xiàn),而2011=3×670+1.故經(jīng)2011次跳后停在的點(diǎn)是1.故為145.已知函數(shù)f(x)=|x+2|-1,g(x)=|3-x|+2,若不等式f(x)-g(x)≤K的解集為R.則實(shí)數(shù)K的取值范圍為______.答案:因?yàn)楹瘮?shù)f(x)=|x+2|-1,g(x)=|3-x|+2,所以f(x)-g(x)=|x+2|-|x-3|-3,它的幾何意義是數(shù)軸上的點(diǎn)到-2與到3距離的差再減去3,它的最大值為2,不等式f(x)-g(x)≤K的解集為R.所以K≥2.故為:[2,+∞).46.已知點(diǎn)P的坐標(biāo)為(3,4,5),試在空間直角坐標(biāo)系中作出點(diǎn)P.答案:由P(3,4,5)可知點(diǎn)P在Ox軸上的射影為A(3,0,0),在Oy軸上射影為B(0,4,0),以O(shè)A,OB為鄰邊的矩形OACB的頂點(diǎn)C是點(diǎn)P在xOy坐標(biāo)平面上的射影C(3,4,0).過C作直線垂直于xOy坐標(biāo)平面,并在此直線的xOy平面上方截取5個(gè)單位,得到的就是點(diǎn)P.47.與

向量

=(2,-1,2)共線且滿足方程=-18的向量為()

A.不存在

B.-2

C.(-4,2,-4)

D.(4,-2,4)答案:D48.設(shè)直線過點(diǎn)(0,a),其斜率為1,且與圓x2+y2=2相切,則a的值為()

A.±

B.±2

C.±2

D.±4答案:B49.直線x+1=0的傾斜角是______.答案:直線x+1=0與x軸垂直,所以直線的傾斜角為90°.故為:90°.50.已知直線l的參數(shù)方程為x=3+12ty=7+32t(t為參數(shù)),曲線C的參數(shù)方程為x=4cosθy=4sinθ(θ為參數(shù)).

(I)將曲線C的參數(shù)方程轉(zhuǎn)化為普通方程;

(II)若直線l與曲線C相交于A、B兩點(diǎn),試求線段AB的長(zhǎng).答案:(I)由x=4cosθy=4sinθ得x2=16cos2θy2=16sin2θ故圓的方程為x2+y2=16.(II)把x=3+12ty=7+32t代入方程x2+y2=16,得t2+83t+36=0∴線段AB的長(zhǎng)為|AB|=|t1-t2|=(t1+t2)2-4t1t2=43.第2卷一.綜合題(共50題)1.5本不同的書全部分給3個(gè)學(xué)生,每人至少一本,共有()種分法.

A.60

B.150

C.300

D.210答案:B2.已知參數(shù)方程x=1+cosθy=sinθ,(參數(shù)θ∈[0,2π]),則該曲線上的點(diǎn)與定點(diǎn)A(-1,-1)的距離的最小值是

______.答案:∵參數(shù)方程x=1+cosθy=sinθ∴圓的方程為(x-1)2+y2=1∴定點(diǎn)A(-1,-1)到圓心的距離為5∴與定點(diǎn)A(-1,-1)的距離的最小值是d-r=5-1故為5-13.在△ABC中,AB=2,BC=3,∠ABC=60°,AD為BC邊上的高,O為AD的中點(diǎn),若

=λ+μ,則λ+μ=()

A.1

B.

C.

D.答案:D4.如圖,F(xiàn)是定直線l外的一個(gè)定點(diǎn),C是l上的動(dòng)點(diǎn),有下列結(jié)論:若以C為圓心,CF為半徑的圓與l相交于A、B兩點(diǎn),過A、B分別作l的垂線與圓C過F的切線相交于點(diǎn)P和點(diǎn)Q,則必在以F為焦點(diǎn),l為準(zhǔn)線的同一條拋物線上.

(Ⅰ)建立適當(dāng)?shù)淖鴺?biāo)系,求出該拋物線的方程;

(Ⅱ)對(duì)以上結(jié)論的反向思考可以得到另一個(gè)命題:“若過拋物線焦點(diǎn)F的直線與拋物線相交于P、Q兩點(diǎn),則以PQ為直徑的圓一定與拋物線的準(zhǔn)線l相切”請(qǐng)問:此命題是正確?試證明你的判斷;

(Ⅲ)請(qǐng)選擇橢圓或雙曲線之一類比(Ⅱ)寫出相應(yīng)的命題并證明其真假.(只選擇一種曲線解答即可,若兩種都選,則以第一選擇為平分依據(jù))答案:(Ⅰ)過F作l的垂線交l于K,以KF的中點(diǎn)為原點(diǎn),KF所在直線為x軸建立平面直角坐標(biāo)系如圖1,并設(shè)|KF|=p,則可得該拋物線的方程為

y2=2px(p>0);(Ⅱ)該命題為真命題,證明如下:如圖2,設(shè)PQ中點(diǎn)為M,P、Q、M在拋物線準(zhǔn)線l上的射影分別為A、B、D,∵PQ是拋物線過焦點(diǎn)F的弦,∴|PF|=|PA|,|QF|=|QB|,又|MD|是梯形APQB的中位線,∴|MD=12(|PA|+|QB|)=12(|PF|+|QF|)=|PQ|2.∵M(jìn)是以PQ為直徑的圓的圓心,∴圓M與l相切.(Ⅲ)選擇橢圓類比(Ⅱ)所寫出的命題為:“過橢圓一焦點(diǎn)F的直線與橢圓交于P、Q兩點(diǎn),則以PQ為直徑的圓與橢圓相應(yīng)的準(zhǔn)線l相離”.此命題為真命題,證明如下:證明:設(shè)PQ中點(diǎn)為M,橢圓的離心率為e,則0<e<1,P、Q、M在相應(yīng)準(zhǔn)線l上的射影分別為A、B、D,∵|PF|PA=e,∴|PA|=|PF|e,同理得|QB|=|QF|e.∵M(jìn)D是梯形APQB的中位線,∴|MD|=|PA|+|QB|2=12(|PF|e+|QF|e)=|PQ|2e>|PQ|2,∴圓M與準(zhǔn)線l相離.選擇雙曲線類比(Ⅱ)所寫出的命題為:“過雙曲線一焦點(diǎn)F的直線與雙曲線交于P、Q兩點(diǎn),則以PQ為直徑的圓與雙曲線相應(yīng)的準(zhǔn)線l相交”.此命題為真命題,證明如下:證明:設(shè)PQ中點(diǎn)為M,橢圓的離心率為e,則e>1,P、Q、M在相應(yīng)準(zhǔn)線l上的射影分別為A、B、D,∵|PF|PA=e,∴|PA|=|PF|e,同理得|QB|=|QF|e.∵M(jìn)D是梯形APQB的中位線,∴|MD|=|PA|+|QB|2=12(|PF|e+|QF|e)=|PQ|2e<|PQ|2,∴圓M與準(zhǔn)線l相交.5.設(shè)斜率為2的直線l過拋物線y2=ax(a>0)的焦點(diǎn)F,且和y軸交于點(diǎn)A,若△OAF(O為坐標(biāo)原點(diǎn))的面積為4,則拋物線的方程為______.答案:焦點(diǎn)坐標(biāo)(a4,0),|0F|=a4,直線的點(diǎn)斜式方程y=2(x-a4)在y軸的截距是-a2S△OAF=12×a4×a2=4∴a2=64,∵a>0∴a=8,∴y2=8x故為:y2=8x6.把矩陣變?yōu)楹?,與對(duì)應(yīng)的值是()

A.

B.

C.

D.答案:C7.執(zhí)行下列程序后,輸出的i的值是()

A.5

B.6

C.10

D.11答案:D8.已知M為橢圓x2a2+y2b2=1(a>b>0)上的動(dòng)點(diǎn),F(xiàn)1、F2為橢圓焦點(diǎn),延長(zhǎng)F2M至點(diǎn)B,則ρF1MB的外角的平分線為MN,過點(diǎn)F1作

F1Q⊥MN,垂足為Q,當(dāng)點(diǎn)M在橢圓上運(yùn)動(dòng)時(shí),則點(diǎn)Q的軌跡方程是______.答案:點(diǎn)F1關(guān)于∠F1MF2的外角平分線MQ的對(duì)稱點(diǎn)N在直線F1M的延長(zhǎng)線上,故|F1N|=|PF1|+|PF2|=2a(橢圓長(zhǎng)軸長(zhǎng)),又OQ是△F2F1N的中位線,故|OQ|=a,點(diǎn)Q的軌跡是以原點(diǎn)為圓心,a為半徑的圓,點(diǎn)Q的軌跡方程是x2+y2=a2故為:x2+y2=a29.若有以下說法:

①相等向量的模相等;

②若a和b都是單位向量,則a=b;

③對(duì)于任意的a和b,|a+b|≤|a|+|b|恒成立;

④若a∥b,c∥b,則a∥c.

其中正確的說法序號(hào)是()A.①③B.①④C.②③D.③④答案:根據(jù)定義,大小相等且方向相同的兩個(gè)向量相等.因此相等向量的模相等,故①正確;因?yàn)閱挝幌蛄康哪5扔?,而方向不確定.所以若a和b都是單位向量,則不一定有a=b成立,故②不正確;根據(jù)向量加法的三角形法則,可得對(duì)于任意的a和b,都有|a+b|≤|a|+|b|成立,當(dāng)且僅當(dāng)a和b方向相同時(shí)等號(hào)成立,故③正確;若b=0,則有a∥b且c∥b,但是a∥c不成立,故④不正確.綜上所述,正確的命題是①③故選:A10.用黃金分割法尋找最佳點(diǎn),試驗(yàn)區(qū)間為[1000,2000],若第一個(gè)二個(gè)試點(diǎn)為好點(diǎn),則第三個(gè)試點(diǎn)應(yīng)選在(

)。答案:123611.兩個(gè)樣本甲和乙,其中=10,=10,=0.055,=0.015,那么樣本甲比樣本乙波動(dòng)()

A.大

B.相等

C.小

D.無法確定答案:A12.已知拋物線的參數(shù)方程為(t為參數(shù)),其中p>0,焦點(diǎn)為F,準(zhǔn)線為l,過拋物線上一點(diǎn)M作l的垂線,垂足為E.若|EF|=|MF|,點(diǎn)M的橫坐標(biāo)是3,則p=(

)。答案:213.如圖,在扇形OAB中,∠AOB=60°,C為弧AB上且與A,B不重合的一個(gè)動(dòng)點(diǎn),OC=xOA+yOB,若u=x+λy,(λ>0)存在最大值,則λ的取值范圍為()A.(12,1)B.(1,3)C.(12,2)D.(13,3)答案:設(shè)射線OB上存在為B',使OB′=1λOB,AB'交OC于C',由于OC=xOA+yOB=xOA+λy?1λOB=xOA+λy?OB′,設(shè)OC=tOC′,OC′=x′OA+λy′OB′,由A,B',C'三點(diǎn)共線可知x'+λy'=1,所以u(píng)=x+2y=tx'+t?2y'=t,則u=|OC||OC′|存在最大值,即在弧AB(不包括端點(diǎn))上存在與AB'平行的切線,所以λ∈(12,2).故選C.14.直線ax+2y+3=0和直線2x+ay-1=0具有相同的方向向量,則a=______.答案:∵直線ax+2y+3=0和直線2x+ay-1=0具有相同的方向向量∴兩條直線互相平行,可得a2=2a≠3-1,解之得a=±2故為:±215.點(diǎn)(2,0,3)在空間直角坐標(biāo)系中的位置是在()

A.y軸上

B.xOy平面上

C.xOz平面上

D.第一卦限內(nèi)答案:C16.設(shè)m∈R,向量=(1,m).若||=2,則m等于()

A.1

B.

C.±1

D.±答案:D17.若曲線C的極坐標(biāo)方程為

ρcos2θ=2sinθ,則曲線C的普通方程為______.答案:曲線C的極坐標(biāo)方程為ρcos2θ=2sinθ,即ρ2?cos2θ=2ρsinθ,化為直角坐標(biāo)方程為x2=2y,故為x2=2y18.拋物線y=-12x2上一點(diǎn)N到其焦點(diǎn)F的距離是3,則點(diǎn)N到直線y=1的距離等于______.答案:∵拋物線y=-12x2化成標(biāo)準(zhǔn)方程為x2=-2y∴拋物線的焦點(diǎn)為F(0,-12),準(zhǔn)線方程為y=12∵點(diǎn)N在拋物線上,到焦點(diǎn)F的距離是3,∴點(diǎn)N到準(zhǔn)線y=12的距離也是3因此,點(diǎn)N到直線y=1的距離等于3+(1-12)=72故為:7219.已知P(B|A)=,P(A)=,則P(AB)=()

A.

B.

C.

D.答案:D20.已知集合P={(x,y)|y=m},Q={(x,y)|y=ax+1,a>0,a≠1},如果P∩Q有且只有一個(gè)元素,那么實(shí)數(shù)m的取值范圍是

______.答案:如果P∩Q有且只有一個(gè)元素,即函數(shù)y=m與y=ax+1(a>0,且a≠1)圖象只有一個(gè)公共點(diǎn).∵y=ax+1>1,∴m>1.∴m的取值范圍是(1,+∞).故:(1,+∞)21.如圖,過點(diǎn)P作⊙O的割線PAB與切線PE,E為切點(diǎn),連接AE、BE,∠APE的平分線分別與AE、BE相交于點(diǎn)C、D,若∠AEB=30°,則∠PCE=______.答案:如圖,PE是圓的切線,∴∠PEB=∠PAC,∵AE是∠APE的平分線,∴∠EPC=∠APC,根據(jù)三角形的外角與內(nèi)角關(guān)系有:∠EDC=∠PEB+∠EPC;∠ECD=∠PAC+∠APC,∴∠EDC=∠ECD,∴△EDC為等腰三角形,又∠AEB=30°,∴∠EDC=∠ECD=75°,即∠PCE=75°,故為:75°.22.對(duì)于實(shí)數(shù)x、y,若|x-1|≤1,|y-2|≤1,則|x-2y+1|的最大值為______.答案:∵|x-2y+1|=|(x-1)-2(y-1)|≤|x-1|+2|(y-2)+1|≤|x-1|+2|y-2|+2,再由|x-1|≤1,|y-2|≤1可得|x-1|+2|y-2|+2≤1+2+2=5,故|x-2y+1|的最大值為5,故為5.23.一直線傾斜角的正切值為34,且過點(diǎn)P(1,2),則直線方程為______.答案:因?yàn)橹本€傾斜角的正切值為34,即k=3,又直線過點(diǎn)P(1,2),所以直線的點(diǎn)斜式方程為y-2=34(x-1),整理得,3x-4y+5=0.故為3x-4y+5=0.24.一條直線的傾斜角的余弦值為32,則此直線的斜率為()A.3B.±3C.33D.±33答案:設(shè)直線的傾斜角為α,∵α∈[0,π),cosα=32∴α=π6因此,直線的斜率k=tanα=33故選:C25.已知向量a=(2,0),b=(1,x),且a、b的夾角為π3,則x=______.答案:由兩個(gè)向量的數(shù)量積的定義、數(shù)量積公式可得a?b=2+0=21+x2cosπ3=21+x2=12,x2=3,∴x=±3,故為±3.26.(Ⅰ)解關(guān)于x的不等式(lgx)2-lgx-2>0;

(Ⅱ)若不等式(lgx)2-(2+m)lgx+m-1>0對(duì)于|m|≤1恒成立,求x的取值范圍.答案:(Ⅰ)∵(lgx)2-lgx-2>0,∴(lgx+1)(lgx-2)>0.∴l(xiāng)gx<-1或lgx>2.∴0<x<110或x>102.(Ⅱ)設(shè)y=lgx,則原不等式可化為y2-(2+m)y+m-1>0,∴y2-2y-my+m-1>0.∴(1-y)m+(y2-2y-1)>0.當(dāng)y=1時(shí),不等式不成立.設(shè)f(m)=(1-y)m+(y2-2y-1),則f(x)是m的一次函數(shù),且一次函數(shù)為單調(diào)函數(shù).當(dāng)-1≤m≤1時(shí),若要f(m)>0?f(1)>0f(-1)>0.?y2-2y-1+1-y>0y2-2y-1+y-1>0.?y2-3y>0y2-y-2>0.?y<0或y>3y<-1或y>2.則y<-1或y>3.∴l(xiāng)gx<-1或lgx>3.∴0<x<110或x>103.∴x的取值范圍是(0,110)∪(103,+∞).27.圓x2+y2=1上的點(diǎn)到直線x=2的距離的最大值是

______.答案:根據(jù)題意,圓上點(diǎn)到直線距離最大值為:半徑+圓心到直線的距離.而根據(jù)圓x2+y2=1圓心為(0,0),半徑為1∴dmax=1+2=3故為:328.今天為星期六,則今天后的第22010天是()A.星期一B.星期二C.星期四D.星期日答案:∵22010=8670=(7+1)670=C6700×7670×10+C6701×7669×11+C6702×7668×12+…+C6702010×70×1670∴22010除7的余數(shù)是1故今天為星期六,則今天后的第22010天是星期日故選D29.在面積為S的△ABC的邊AB上任取一點(diǎn)P,則△PBC的面積大于S4的概率是()A.13B.12C.34D.14答案:記事件A={△PBC的面積大于S4},基本事件空間是線段AB的長(zhǎng)度,(如圖)因?yàn)镾△PBC>S4,則有12BC?PE>14×12BC?AD;化簡(jiǎn)記得到:PEAD>14,因?yàn)镻E平行AD則由三角形的相似性PEAD>14;所以,事件A的幾何度量為線段AP的長(zhǎng)度,因?yàn)锳P=34AB,所以△PBC的面積大于S4的概率=APAB=34.故選C.30.把10個(gè)相同的小正方體,按如圖所示的位置堆放,它的外表含有若干小正方形。如果將圖中標(biāo)有A的一個(gè)小正方體搬去,這時(shí)外表含有的小正方形個(gè)數(shù)與搬去前相比(

)答案:A31.設(shè)拋物線y2=2px(p>0)上一點(diǎn)A(1,2)到點(diǎn)B(x0,0)的距離等于到直線x=-1的距離,則實(shí)數(shù)x0的值是______.答案:∵點(diǎn)A(1,2)在拋物線y2=2px(p>0)上,∴4=2p,p=2,故拋物線方程為y2=4x,準(zhǔn)線方程為x=1.由點(diǎn)A(1,2)到點(diǎn)B(x0,0)的距離等于到直線x=-1的距離,故點(diǎn)B(x0,0)為拋物線y2=4x的焦點(diǎn),故x0=1.故為1.32.某學(xué)校要從5名男生和2名女生中選出2人作為上海世博會(huì)志愿者,若用隨機(jī)變量ξ表示選出的志愿者中女生的人數(shù),則數(shù)學(xué)期望Eξ______(結(jié)果用最簡(jiǎn)分?jǐn)?shù)表示).答案:用隨機(jī)變量ξ表示選出的志愿者中女生的人數(shù),ξ可取0,1,2,當(dāng)ξ=0時(shí),表示沒有選到女生;當(dāng)ξ=1時(shí),表示選到一個(gè)女生;當(dāng)ξ=2時(shí),表示選到2個(gè)女生,∴P(ξ=0)=C25C27=1021,P(ξ=1)=C15C12C27=1021,P(ξ=2)=C22C27=121,∴Eξ=0×1021+1×1021+2×121=47.故為:4733.如圖⊙0的直徑AD=2,四邊形ABCD內(nèi)接于⊙0,直線MN切⊙0于點(diǎn)B,∠MBA=30°,則AB的長(zhǎng)為______.答案:連BD,則∠MBA=∠ADB=30°,在直角三角形ABD中sin30°=ABAD,∴AB=12×2=1故為:134.有這樣一段“三段論”推理,對(duì)于可導(dǎo)函數(shù)f(x),大前提:如果f’(x0)=0,那么x=x0是函數(shù)f(x)的極值點(diǎn);小前提:因?yàn)楹瘮?shù)f(x)=x3在x=0處的導(dǎo)數(shù)值f’(0)=0,結(jié)論:所以x=0是函數(shù)f(x)=x3的極值點(diǎn).以上推理中錯(cuò)誤的原因是______錯(cuò)誤(填大前提、小前提、結(jié)論).答案:∵大前提是:“對(duì)于可導(dǎo)函數(shù)f(x),如果f'(x0)=0,那么x=x0是函數(shù)f(x)的極值點(diǎn)”,不是真命題,因?yàn)閷?duì)于可導(dǎo)函數(shù)f(x),如果f'(x0)=0,且滿足當(dāng)x>x0時(shí)和當(dāng)x<x0時(shí)的導(dǎo)函數(shù)值異號(hào)時(shí),那么x=x0是函數(shù)f(x)的極值點(diǎn),∴大前提錯(cuò)誤,故為:大前提.35.某公司一年購買某種貨物400噸,每次都購買x噸,運(yùn)費(fèi)為4萬元/次,一年的總存儲(chǔ)費(fèi)用為4x萬元,要使一年的總運(yùn)費(fèi)與總存儲(chǔ)費(fèi)用之和最小,則x=______噸.答案:某公司一年購買某種貨物400噸,每次都購買x噸,則需要購買400x次,運(yùn)費(fèi)為4萬元/次,一年的總存儲(chǔ)費(fèi)用為4x萬元,一年的總運(yùn)費(fèi)與總存儲(chǔ)費(fèi)用之和為400x?4+4x萬元,400x?4+4x≥2(400x×4)×4x=160,當(dāng)且僅當(dāng)1600x=4x即x=20噸時(shí),等號(hào)成立即每次購買20噸時(shí),一年的總運(yùn)費(fèi)與總存儲(chǔ)費(fèi)用之和最?。蕿椋?0.36.某航空公司經(jīng)營A,B,C,D這四個(gè)城市之間的客運(yùn)業(yè)務(wù),它們之間的直線距離的部分機(jī)票價(jià)格如下:AB為2000元;AC為1600元;AD為2500元;CD為900元;BC為1200元,若這家公司規(guī)定的機(jī)票價(jià)格與往返城市間的直線距離成正比,則BD間直線距離的票價(jià)為(設(shè)這四個(gè)城在同一水平面上)()

A.1500元

B.1400元

C.1200元

D.1000元答案:A37.如圖,四面體ABCD中,點(diǎn)E是CD的中點(diǎn),記=(

A.

B.

C.

D.

答案:B38.若矩陣A=

72

69

67

65

62

59

81

74

68

64

59

52

85

79

76

72

69

64

228

219

211

204

195

183

是表示我校2011屆學(xué)生高二上學(xué)期的期中成績(jī)矩陣,A中元素aij(i=1,2,3,4;j=1,2,3,4,5,6)的含義如下:i=1表示語文成績(jī),i=2表示數(shù)學(xué)成績(jī),i=3表示英語成績(jī),i=4表示語數(shù)外三門總分成績(jī)j=k,k∈N*表示第50k名分?jǐn)?shù).若經(jīng)過一定量的努力,各科能前進(jìn)的名次是一樣的.現(xiàn)小明的各科排名均在250左右,他想盡量提高三門總分分?jǐn)?shù),那么他應(yīng)把努力方向主要放在哪一門學(xué)科上()

A.語文

B.?dāng)?shù)學(xué)

C.外語

D.都一樣答案:B39.根據(jù)給出的程序語言,畫出程序框圖,并計(jì)算程序運(yùn)行后的結(jié)果.

答案:程序框圖:模擬程序運(yùn)行:當(dāng)j=1時(shí),n=1,當(dāng)j=2時(shí),n=1,當(dāng)j=3時(shí),n=1,當(dāng)j=4時(shí),n=2,…當(dāng)j=8時(shí),n=2,…當(dāng)j=11時(shí),n=2,當(dāng)j=12時(shí),此時(shí)不滿足循環(huán)條件,退出循環(huán)程序運(yùn)行后的結(jié)果是:2.40.點(diǎn)(1,2)到原點(diǎn)的距離為()

A.1

B.5

C.

D.2答案:C41.某商場(chǎng)舉行購物抽獎(jiǎng)促銷活動(dòng),規(guī)定每位顧客從裝有編號(hào)為0,1,2,3四個(gè)相同小球的抽獎(jiǎng)箱中,每次取出一球記下編號(hào)后放回,連續(xù)取兩次,若取出的兩個(gè)小球號(hào)碼相加之和等于6則中一等獎(jiǎng),等于5中二等獎(jiǎng),等于4或3中三等獎(jiǎng).

(1)求中三等獎(jiǎng)的概率;

(2)求中獎(jiǎng)的概率.答案:(1)設(shè)“中三等獎(jiǎng)”為事件A,“中獎(jiǎng)”為事件B,從四個(gè)小球中有放回的取兩個(gè)共有(0,0),(0,1),(0,2),(0,3),(1,0),(1,1)(1,2),(1,3),(2,0),(2,1),(2,2),(2,3),(3,0),(3,1),(3,2),(3,3)16種不同的結(jié)果兩個(gè)小球號(hào)碼相加之和等于4的取法有3種:(1,3),(2,2),(3,1)兩個(gè)小球號(hào)相加之和等于3的取法有4種:(0,3),(1,2),(2,1),(3,0)由互斥事件的加法公式得:P(A)=316+416=716,即中三等獎(jiǎng)的概率為716;(2)兩個(gè)小球號(hào)碼相加之和等于3的取法有4種;(0,3),(1,2),(2,1),(3,0)兩個(gè)小球相加之和等于4的取法有3種;(1,3),(2,2),(3,1)兩個(gè)小球號(hào)碼相加之和等于5的取法有2種:(2,3),(3,2)兩個(gè)小球號(hào)碼相加之和等于6的取法有1種:(3,3)由互斥事件的加法公式得:P(B)=116+216+316+416=58.即中獎(jiǎng)的概率為:58.42.某研究小組在一項(xiàng)實(shí)驗(yàn)中獲得一組數(shù)據(jù),將其整理得到如圖所示的散點(diǎn)圖,下列函數(shù)中,最能近似刻畫y與t之間關(guān)系的是()

A.y=2t

B.y=2t2

C.y=t3

D.y=log2t

答案:D43.已知二次函數(shù)f(x)=x2+bx+c,f(0)<0,則該函數(shù)零點(diǎn)的個(gè)數(shù)為()

A.1

B.2

C.3

D.0答案:B44.將(x+y+z)5展開合并同類項(xiàng)后共有______項(xiàng),其中x3yz項(xiàng)的系數(shù)是______.答案:將(x+y+z)5展開合并同類項(xiàng)后,每一項(xiàng)都是m?xa?yb?zc

的形式,且a+b+c=5,其中,m是實(shí)數(shù),a、b、c∈N,構(gòu)造8個(gè)完全一樣的小球模型,分成3組,每組至少一個(gè),共有分法C27種,每一組中都去掉一個(gè)小球的數(shù)目分別作為(x+y+z)5的展開式中每一項(xiàng)中x,y,z各字母的次數(shù),小球分組模型與各項(xiàng)的次數(shù)是一一對(duì)應(yīng)的.故將(x+y+z)5展開合并同類項(xiàng)后共有C27=21項(xiàng).把(x+y+z)5的展開式看成5個(gè)因式(x+y+z)的乘積形式.從中任意選3個(gè)因式,這3個(gè)因式都取x,另外的2個(gè)因式分別取y、z,相乘即得含x3yz項(xiàng),故含x3yz項(xiàng)的系數(shù)為C35=20,故為21;20.45.如圖所示,設(shè)P為△ABC所在平面內(nèi)的一點(diǎn),并且AP=15AB+25AC,則△ABP與△ABC的面積之比等于()A.15B.12C.25D.23答案:連接CP并延長(zhǎng)交AB于D,∵P、C、D三點(diǎn)共線,∴AP=λAD+μAC且λ+μ=1設(shè)AB=kAD,結(jié)合AP=15AB+25AC得AP=k5AD+25AC由平面向量基本定理解之,得λ=35,k=3且μ=25∴AP=35AD+25AC,可得PD=25CD,∵△ABP的面積與△ABC有相同的底邊AB高的比等于|PD|與|CD|之比∴△ABP的面積與△ABC面積之比為25故選:C46.已知f(n)=1+12+13+L+1n(n∈N*),用數(shù)學(xué)歸納法證明f(2n)>n2時(shí),f(2k+1)-f(2k)等于______.答案:因?yàn)榧僭O(shè)n=k時(shí),f(2k)=1+12+13+…+12k,當(dāng)n=k+1時(shí),f(2k+1)=1+12+13+…+12k+12k+1+…+12k+1∴f(2k+1)-f(2k)=12k+1+12k+2+…+12k+1故為:12k+1+12k+2+…+12k+147.點(diǎn)P(2,5)關(guān)于直線x+y=1的對(duì)稱點(diǎn)的坐標(biāo)是(

)。答案:(-4,-1)48.鐵路托運(yùn)行李,從甲地到乙地,按規(guī)定每張客票托運(yùn)行李不超過50kg時(shí),每千克0.2元,超過50kg時(shí),超過部分按每千克0.25元計(jì)算,畫出計(jì)算行李價(jià)格的算法框圖.答案:程序框圖:49.①平行向量一定相等;②不相等的向量一定不平行;③相等向量一定共線;④共線向量一定相等;⑤長(zhǎng)度相等的向量是相等向量;⑥平行于同一個(gè)向量的兩個(gè)向量是共線向量,其中正確的命題是______.答案:∵平行向量即為共線向量其定義是方向相同或相反;相等向量的定義是模相等、方向相同;①平行向量不一定相等;故錯(cuò);②不相等的向量也可能不平行;故錯(cuò);③相等向量一定共線;正確;④共線向量不一定相等;故錯(cuò);⑤長(zhǎng)度相等的向量方向相反時(shí)不是相等向量;故錯(cuò);⑥平行于零向量的兩個(gè)向量是不一定是共線向量,故錯(cuò).其中正確的命題是③.故為:③.50.利用獨(dú)立性檢驗(yàn)對(duì)兩個(gè)分類變量是否有關(guān)系進(jìn)行研究時(shí),若有99.5%的把握說事件A和B有關(guān)系,則具體計(jì)算出的數(shù)據(jù)應(yīng)該是()

A.K2≥6.635

B.K2<6.635

C.K2≥7.879

D.K2<7.879答案:C第3卷一.綜合題(共50題)1.已知三個(gè)數(shù)a=60.7,b=0.76,c=log0.76,則a,b,c從小到大的順序?yàn)開_____.答案:因?yàn)閍=60.7>60=1,b=0.76<0.70=1,且b>0,c=log0.76<0,所以c<b<a.故為c<b<a.2.對(duì)任意實(shí)數(shù)x,y,定義運(yùn)算x*y=ax+by+cxy,其中a,b,c是常數(shù),等式右邊的運(yùn)算是通常的加法和乘法運(yùn)算。已知1*2=3,2*3=4,并且有一個(gè)非零常數(shù)m,使得對(duì)任意實(shí)數(shù)x,都有x*m=x,則m的值是(

)。答案:43.若一輛汽車每天行駛的路程比原來多19km,則該汽車在8天內(nèi)行駛的路程s(km)就超過2200km;若它每天行駛的路程比原來少12km,則它行駛同樣的路程s(km)就得花9天多的時(shí)間。這輛汽車原來每天行駛的路程(km)的范圍是(

A.(259,260)

B.(258,260)

C.(257,260)

D.(256,260)答案:D4.已知隨機(jī)變量ξ服從正態(tài)分布N(2,0.2),P(ξ≤4)=0.84,則P(ξ≤0)等于()A.0.16B.0.32C.0.68D.0.84答案:∵隨機(jī)變量ξ服從正態(tài)分布N(2,0.2),μ=2,∴p(ξ≤0)=p(ξ≥4)=1-p(ξ≤4)=0.16.故選A.5.已知變量a,b已被賦值,要交換a、b的值,應(yīng)采用的算法是()

A.a(chǎn)=b,b=a

B.a(chǎn)=c,b=a,c=b

C.a(chǎn)=c,b=a,c=a

D.c=a,a=b,b=c答案:D6.已知函數(shù)f(x)=2-x,x≤112+log2x,x>1,則滿足f(x)≥1的x的取值范圍為______.答案:當(dāng)x≤1時(shí),2-x≥1,解得-x≥0,即x≤0,所以x≤0;當(dāng)x>1時(shí),12+log2x≥1,解得x≥2,所以x≥2.所以滿足f(x)≥1的x的取值范圍為(-∞,0]∪[2,+∞).故為:(-∞,0]∪[2,+∞).7.已知定義在實(shí)數(shù)集上的偶函數(shù)y=f(x)在區(qū)間(0,+∞)上是增函數(shù),那么y1=f(π3),y2=f(3x2+1)和y3=f(log214)之間的大小關(guān)系為()A.y1<y3<y2B.y1<y2<y3C.y3<y1<y2D.y3<y2<y1答案:∵偶函數(shù)y=f(x)在區(qū)間(0,+∞)上是增函數(shù)∴|x|越大,函數(shù)值就越大∵|3x2+1|≥3,|log214|=2∴|3x2+1|>|log214|>π3∴y1<y3<y2故選A8.中心在原點(diǎn),焦點(diǎn)在橫軸上,長(zhǎng)軸長(zhǎng)為4,短軸長(zhǎng)為2,則橢圓方程是(

A.

B.

C.

D.答案:B9.已知兩個(gè)非空集合A、B滿足A∪B={1,2,3},則符合條件的有序集合對(duì)(A,B)個(gè)數(shù)是()A.6B.8C.25D.27答案:按集合A分類討論若A={1,2,3},則B是A的子集即可滿足題意,故B有7種情況,即有序集合對(duì)(A,B)個(gè)數(shù)為7若A={1,2,}或{1,3}或{2,3}時(shí),集合B中至少有一個(gè)元素,故每種情況下,B都有4種情況,故有序集合對(duì)(A,B)個(gè)數(shù)為4×3=12若A={1}或{3}或{2}時(shí)集合中至少有二個(gè)元素,故每種情況下,B都有2種情況,故有序集合對(duì)(A,B)個(gè)數(shù)為2×3=6綜上,符合條件的有序集合對(duì)(A,B)個(gè)數(shù)是7+12+6=25故選C10.對(duì)于一組數(shù)據(jù)的兩個(gè)函數(shù)模型,其殘差平方和分別為153.4

和200,若從中選取一個(gè)擬合程度較好的函數(shù)模型,應(yīng)選殘差平方和為______的那個(gè).答案:殘差的平方和是用來描述n個(gè)點(diǎn)與相應(yīng)回歸直線在整體上的接近程度殘差的平方和越小,擬合效果越好,由于153.4<200,故擬合效果較好的是殘差平方和是153.4的那個(gè)模型.故為:153.4.11.已知某車間加工零件的個(gè)數(shù)x與所花費(fèi)時(shí)間y(h)之間的線性回歸方程為=0.01x+0.5,則加工600個(gè)零件大約需要的時(shí)間為()

A.6.5h

B.5.5h

C.3.5h

D.0.3h答案:A12.三行三列的方陣.a11a12

a13a21a22

a23a31a32

a33.中有9個(gè)數(shù)aji(i=1,2,3;j=1,2,3),從中任取三個(gè)數(shù),則它們不同行且不同列的概率是()A.37B.47C.114D.1314答案:從給出的9個(gè)數(shù)中任取3個(gè)數(shù),共有C39;從三行三列的方陣中任取三個(gè)數(shù),使它們不同行且不同列:從第一行中任取一個(gè)數(shù)有C13種方法,則第二行只能從另外兩列中的兩個(gè)數(shù)任取一個(gè)有C12種方法,第三行只能從剩下的一列中取即可有1中方法,∴共有C13×C12×C11=6.∴從三行三列的方陣中任取三個(gè)數(shù),則它們不同行且同列的概率P=6C39=114.故選C.13.已知橢圓C:+y2=1的右焦點(diǎn)為F,右準(zhǔn)線l,點(diǎn)A∈l,線段AF交C于點(diǎn)B.若=3,則=(

A.

B.2

C.

D.3答案:A14.如圖,四邊形ABCD內(nèi)接于⊙O,AD:BC=1:2,AB=35,PD=40,則過點(diǎn)P的⊙O的切線長(zhǎng)是()A.60B.402C.352D.50答案:作切線PE,由切割線定理知,PE2=PD?PC=PA?PB,所以PAPC=PAPB,又△PAD與△PBC有公共角P,∠PDA=∠PBC,所以△PAD∽△PBC.故PDPB=ADBC=12,即40PB=12所以PB=80,又AB=35,PE2=PA?PB=(PB-AB)?PB=(80-35)×80=602,PE=60.故選A.15.附加題選做題B.(矩陣與變換)

設(shè)矩陣A=m00n,若矩陣A的屬于特征值1的一個(gè)特征向量為10,屬于特征值2的一個(gè)特征向量為01,求實(shí)數(shù)m,n的值.答案:由題意得m00n10=110,m00n01=201,…6分化簡(jiǎn)得m=10?n=00?m=0n=2所以m=1n=2.…10分16.已知直線經(jīng)過點(diǎn),傾斜角,設(shè)與圓相交與兩點(diǎn),求點(diǎn)到兩點(diǎn)的距離之積。答案:2解析:把直線代入得,則點(diǎn)到兩點(diǎn)的距離之積為17.對(duì)于空間四點(diǎn)A、B、C、D,命題p:AB=xAC+yAD,且x+y=1;命題q:A、B、C、D四點(diǎn)共面,則命題p是命題q的()A.充分不必要條件B.必要不充分條件C.充分必要條件D.既不充分也不必要條件答案:根據(jù)命題p:AB=xAC+yAD,且x+y=1,可得AB

、AC

、AD

共面,從而可得命題q:A、B、C、D四點(diǎn)共面成立,故命題p是命題q的充分條件.根據(jù)命題q:A、B、C、D四點(diǎn)共面,可得A、B、C、D四點(diǎn)有可能在同一條直線上,若AB=xAC+yAD,則x+y不一定等于1,故命題p不是命題q的必要條件.綜上,可得命題p是命題q的充分不必要條件.故選:A.18.已知正四棱柱的對(duì)角線的長(zhǎng)為6,且對(duì)角線與底面所成角的余弦值為33,則該正四棱柱的體積等于______.答案::如圖可知:∵AC1=6,cos∠AC1A1=33∴A1C1=2,AA1=2∴正四棱柱的體積等于A1B12?AA1=2故為:219.若方程Ax2+By2=1表示焦點(diǎn)在y軸上的雙曲線,則A、B滿足的條件是()

A.A>0,且B>0

B.A>0,且B<0

C.A<0,且B>0

D.A<0,且B<0答案:C20.根據(jù)下面的要求,求滿足1+2+3+…+n>500的最小的自然數(shù)n.

(1)畫出執(zhí)行該問題的程序框圖;

(2)以下是解決該問題的一個(gè)程序,但有2處錯(cuò)誤,請(qǐng)找出錯(cuò)誤并予以更正.答案:(12分)(1)程序框圖如圖:(兩者選其一即可,不唯一)(2)①直到型循環(huán)結(jié)構(gòu)是直到滿足條件退出循環(huán),While錯(cuò)誤,應(yīng)改成LOOP

UNTIL;②根據(jù)循環(huán)次數(shù)可知輸出n+1

應(yīng)改為輸出n;21.已知Sn=1+12+13+14+…+12n(n>1,n∈N*).求證:S2n>1+n2(n≥2,n∈N*).答案:證明:(1)當(dāng)n=2時(shí),左邊=1+12+13+14=2512,右邊=1+22=2,∴左邊>右邊(2)假設(shè)n=k(k≥2)時(shí)不等式成立,即S

2k=1+12+13+14+…+12k≥1+k2,當(dāng)n=k+1時(shí),不等式左邊S2(k+1)=1+12+13+14+…+12k+1+…+12k+1>1+k2+12k+1+…+12k+1>1+k2+2k2k+2k=1+k2+12=1+k+12,綜上(1)(2)可知S2n>1+n2對(duì)于任意的n≥2正整數(shù)成立.22.如圖,△ABC中,AD=2DB,AE=3EC,CD與BE交于F,若AF=xAB+yAC,則()A.x=13,y=12B.x=14,y=13C.x=37,y=37D.x=25,y=920答案:過點(diǎn)F作FM∥AC、FN∥AB,分別交AB、AC于點(diǎn)M、N∵FM∥AC,∴FMAC=DMAD且FMAE=BMAB∵AD=2DB,AE=3EC,∴AD=23AB,AE=34AC.由此可得AM=13AB同理可得AN=12AC∵四邊形AMFN是平行四邊形∴由向量加法法則,得AF=13AB+12AC∵AF=xAB+yAC,∴根據(jù)平面向量基本定理,可得x=13,y=12故選:A23.設(shè),求證:。答案:證明略解析:證明:因?yàn)?,所以有。又,故有?!?0分于是有得證。

…………20分24.在吸煙與患肺病這兩個(gè)分類變量的計(jì)算中,“若x2的觀測(cè)值為6.635,我們有99%的把握認(rèn)為吸煙與患肺病有關(guān)系”這句話的意思是指()

A.在100個(gè)吸煙的人中,必有99個(gè)人患肺病

B.有1%的可能性認(rèn)為推理出現(xiàn)錯(cuò)誤

C.若某人吸煙,則他有99%的可能性患有肺病

D.若某人患肺病,則99%是因?yàn)槲鼰煷鸢福築25.對(duì)于非零的自然數(shù)n,拋物線y=(n2+n)x2-(2n+1)x+1與x軸相交于An,Bn兩點(diǎn),若以|AnBn|表示這兩點(diǎn)間的距離,則|A1B1|+|A2B2|+|A3B3|+┅+|A2009B2009|的值

等于______.答案:令(n2+n)x2-(2n+1)x+1=0,得x1=1n,x2=1n+1所以An(1n,0),Bn(1n+1,0)所以|AnBn|=1n-1n+1,所以|A1B1|+|A2B2|+|A3B3|+┅+|A2009B2009|=(11-12)+(12-13)+┉+(12009-12010)=1-12010=20092010.故為:20092010.26.全稱命題“任意x∈Z,2x+1是整數(shù)”的逆命題是()

A.若2x+1是整數(shù),則x∈Z

B.若2x+1是奇數(shù),則x∈Z

C.若2x+1是偶數(shù),則x∈Z

D.若2x+1能被3整除,則x∈Z

E.若2x+1是整數(shù),則x∈Z答案:A27.函數(shù)數(shù)列{fn(x)}滿足:f1(x)=x1+x2(x>0),fn+1(x)=f1[fn(x)]

(1)求f2(x),f3(x);

(2)猜想fn(x)的表達(dá)式,并證明你的結(jié)論.答案:(1)f2(x)=f1(f1(x))=f1(x)1+f21(x)=x1+2x2f3(x)=f1(f2(x))=f2(x)1+f22(x)=x1+3x2(2)猜想:fn(x)=x1+nx2(n∈N*)下面用數(shù)學(xué)歸納法證明:①當(dāng)n=1時(shí),f1(x)=x1+x22,已知,顯然成立②假設(shè)當(dāng)n=K(K∈N*)4時(shí),猜想成立,即fk(x)=x1+kx2則當(dāng)n=K+1時(shí),fk+1(x)=f1(fk(x))=fk(x)1+f2k(x)=x1+kx21+(x1+kx2)2=x1+(k+1)x2即對(duì)n=K+1時(shí),猜想也成立.結(jié)合①②可知:猜想fn(x)=x1+nx2對(duì)一切n∈N*都成立.28.已知|log12x+4i|≥5,則實(shí)數(shù)x

的取值范圍是______.答案:由題意,得(log12x)2+42≥5?|log12x|≥3?0<x≤18或x≥8.∴則實(shí)數(shù)x

的取值范圍是0<x≤18或x≥8.故為:0<x≤18或x≥8.29.已知拋物線C:x2=2py(p>0)的焦點(diǎn)為F,拋物線上一點(diǎn)A的橫坐標(biāo)為x1(x1>0),過點(diǎn)A作拋物線C的切線l1交x軸于點(diǎn)D,交y軸于點(diǎn)Q,交直線l:y=p2于點(diǎn)M,當(dāng)|FD|=2時(shí),∠AFD=60°.

(1)求證:△AFQ為等腰三角形,并求拋物線C的方程;

(2)若B位于y軸左側(cè)的拋物線C上,過點(diǎn)B作拋物線C的切線l2交直線l1于點(diǎn)P,交直線l于點(diǎn)N,求△PMN面積的最小值,并求取到最小值時(shí)的x1值.答案:(1)設(shè)A(x1,x122p),則A處的切線方程為l1:y=x1px-x122p,可得:D(x12,0),Q(0,-x212p)∴|FQ|=p2+x212p=|AF|;∴△AFQ為等腰三角形.由點(diǎn)A,Q,D的坐標(biāo)可知:D為線段AQ的中點(diǎn),∴|AF|=4,得:p2+x212p=4x21+p2=16∴p=2,C:x2=4y.(2)設(shè)B(x2,y2)(x2<0),則B處的切線方程為y=x22x-x224聯(lián)立y=x22x-x224y=x12x-x214得到點(diǎn)P(x1+x22,x1x24),聯(lián)立y=x12x-x214y=1得到點(diǎn)M(x12+2x1,1).同理N(x22+2x2,1),設(shè)h為點(diǎn)P到MN的距離,則S△=12|MN|?h=12×(x12+2x1-x22-2x2)(1-x1x24)=(x2-x1)(4-x1x2)216x1x2

①設(shè)AB的方程為y=kx+b,則b>0,由y=kx+bx2=4y得到x2-4kx-4b=0,得x1+x2=4kx1x2=-4b代入①得:S△=16k2+16b(4+4b)264b=(1+b)2k2+bb,要使面積最小,則應(yīng)k=0,得到S△=(1+b)2bb②令b=t,得S△(t)=(1+t2)2t=t3+2t+1t,則S′△(t)=(3t2-1)(t2+1)t2,所以當(dāng)t∈(0,33)時(shí),S(t)單調(diào)遞減;當(dāng)t∈(33,+∞)時(shí),S(t)單調(diào)遞增,所以當(dāng)t=33時(shí),S取到最小值為1639,此時(shí)b=t2=13,k=0,所以y1=13,解得x1=233.故△PMN面積取得最小值時(shí)的x1值為233.30.電子跳蚤游戲盤是如圖所示的△ABC,AB=8,AC=9,BC=10,如果跳蚤開始時(shí)在BC邊的點(diǎn)P0處,BP0=4.跳蚤第一步從P0跳到AC邊的P1(第1次落點(diǎn))處,且CP1=CP0;第二步從P1跳到AB邊的P2(第2次落點(diǎn))處,且AP2=AP1;第三步從P2跳到BC邊的P3(第3次落點(diǎn))處,且BP3=BP2;跳蚤按上述規(guī)則一直跳下去,第n次落點(diǎn)為Pn(n為正整數(shù)),則點(diǎn)P2010與C間的距離為______答案:∵由題意可以發(fā)現(xiàn)每邊各有兩點(diǎn),其中BC邊上P0,P6,P12…重合,P3,P9,P15…重合,AC邊上P1,P7,P13…重合,P4,P10,P16…重合,AB邊上P2,P8,P14…重合,P5,P11,P17…重合.發(fā)現(xiàn)規(guī)律2010為六的倍數(shù)所以與P0重合,∴與C點(diǎn)之間的距離為6故為:631.如圖,已知⊙O是△ABC的外接圓,AB是⊙O的直徑,D是AB延長(zhǎng)線上一點(diǎn),AE⊥DC交DC的延長(zhǎng)線于點(diǎn)E,且AC平分∠EAB.

(1)求證:DE是⊙O的切線;

(2)若AB=6,AE=245,求BD和BC的長(zhǎng).答案:(1)證明:連接OC∵AC平分∠EAB∴∠EAC=∠BAC又在圓中OA=OC∴∠AC0=∠BAC∴∠EAC=∠ACO∴OC∥AE(內(nèi)錯(cuò)角相等,兩直線平行)則由AE⊥DC知OC⊥DC即DE是⊙O的切線.(2)∵∠D=∠D,∠E=∠OCD=90°∴△DCO∽△DEA∴BD=2∵Rt△EAC∽R(shí)t△CAB.∴AC2=1445由勾股定理得BC=655.32.把兩條直線的位置關(guān)系填入結(jié)構(gòu)圖中的M、N、E、F中,順序較為恰當(dāng)?shù)氖牵ǎ?/p>

①平行

②垂直

③相交

④斜交.

A.①②③④

B.①④②③

C.①③②④

D.②①③④

答案:C33.用“斜二測(cè)畫法”作正三角形ABC的水平放置的直觀圖△A′B′C′,則△A′B′C′與△ABC的面積之比為______.答案:設(shè)正三角形的標(biāo)出為:1,正三角形

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論