2023年民辦合肥經(jīng)濟技術(shù)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第1頁
2023年民辦合肥經(jīng)濟技術(shù)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第2頁
2023年民辦合肥經(jīng)濟技術(shù)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第3頁
2023年民辦合肥經(jīng)濟技術(shù)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第4頁
2023年民辦合肥經(jīng)濟技術(shù)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第5頁
已閱讀5頁,還剩37頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

長風(fēng)破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年民辦合肥經(jīng)濟技術(shù)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.如圖,⊙O是Rt△ABC的外接圓,點O在AB上,BD⊥AB,點B是垂足,OD∥AC,連接CD.

求證:CD是⊙O的切線.答案:證明:連接CO,(1分)∵OD∥AC,∴∠COD=∠ACO,∠CAO=∠DOB.(3分)∵∠ACO=∠CAO,∴∠COD=∠DOB.(6分)∵OD=OD,OC=OB,∴△COD≌△BOD.(8分)∴∠OCD=∠OBD=90°.∴OC⊥CD,即CD是⊙O的切線.(10分)2.若a2+b2+c2=1,則a+2b+3c的最大值為______.答案:因為已知a、b、c是實數(shù),且a2+b2+c2=1根據(jù)柯西不等式(a2+b2+c2)(x2+y2+z2)≥(ax+by+cz)2故有(a2+b2+c2)(12+22+32)≥(a+2b+3c)2故(a+2b+3c)2≤14,即2a+b+2c≤14.即a+2b+3c的最大值為14.故為:14.3.已知兩個非空集合A、B滿足A∪B={1,2,3},則符合條件的有序集合對(A,B)個數(shù)是()A.6B.8C.25D.27答案:按集合A分類討論若A={1,2,3},則B是A的子集即可滿足題意,故B有7種情況,即有序集合對(A,B)個數(shù)為7若A={1,2,}或{1,3}或{2,3}時,集合B中至少有一個元素,故每種情況下,B都有4種情況,故有序集合對(A,B)個數(shù)為4×3=12若A={1}或{3}或{2}時集合中至少有二個元素,故每種情況下,B都有2種情況,故有序集合對(A,B)個數(shù)為2×3=6綜上,符合條件的有序集合對(A,B)個數(shù)是7+12+6=25故選C4.函數(shù)f(x)為偶函數(shù),其圖象與x軸有四個交點,則該函數(shù)的所有零點之和為()A.4B.2C.1D.0答案:因為函數(shù)f(x)為偶函數(shù),所以函數(shù)圖象關(guān)于y軸對稱.又其圖象與x軸有四個交點,所以四個交點關(guān)于y軸對稱,不妨設(shè)四個交點的橫坐標(biāo)為x1,x2,x3,x4,則根據(jù)對稱性可知x1+x2+x3+x4=0.故選D.5.如圖在長方形ABCD中,AB=,BC=1,E為線段DC上一動點,現(xiàn)將△AED沿AE折起,使點D在面ABC上的射影K在直線AE上,當(dāng)E從D運動到C,則K所形成軌跡的長度為()

A.

B.

C.

D.答案:B6.已知三個數(shù)a=60.7,b=0.76,c=log0.76,則a,b,c從小到大的順序為______.答案:因為a=60.7>60=1,b=0.76<0.70=1,且b>0,c=log0.76<0,所以c<b<a.故為c<b<a.7.用反證法證明某命題時,對結(jié)論:“自然數(shù)a,b,c中恰有一個偶數(shù)”正確的假設(shè)為()

A.a(chǎn),b,c都是奇數(shù)

B.a(chǎn),b,c都是偶數(shù)

C.a(chǎn),b,c中至少有兩個偶數(shù)

D.a(chǎn),b,c中至少有兩個偶數(shù)或都是奇數(shù)答案:D8.若直線ax+by+1=0與圓x2+y2=1相離,則點P(a,b)的位置是()

A.在圓上

B.在圓外

C.在圓內(nèi)

D.以上都有可能答案:C9.在我市新一輪農(nóng)村電網(wǎng)改造升級過程中,需要選一個電阻調(diào)試某村某設(shè)備的線路,但調(diào)試者手中必有阻值分別為0.5KΩ,1KΩ,1.3KΩ,2KΩ,3KΩ,5KΩ,5.5KΩ等七種阻值不等的定值電阻,他用分?jǐn)?shù)法進(jìn)行優(yōu)選試驗時,依次將電阻從小到大安排序號,如果第1個試點與第2個試點比較,第1個試點是一個好點,則第3個試點值的阻值為[

]A、1KΩ

B、1.3KΩ

C、5KΩ

D、1KΩ或5KΩ答案:C10.拋擲兩個骰子,若至少有一個1點或一個6點出現(xiàn),就說這次試驗失?。敲?,在3次試驗中成功2次的概率為()

A.

B.

C.

D.答案:D11.求證:若圓內(nèi)接四邊形的兩條對角線互相垂直,則從對角線交點到一邊中點的線段長等于圓心到該邊對邊的距離.答案:以兩條對角線的交點為原點O、對角線所在直線為坐標(biāo)軸建立直角坐標(biāo)系,(如圖所示)

設(shè)A(-a,0),B(0,-b),C(c,0),D(0,d),則CD的中點E(c2,d2),AB的中點H(-a2,-b2).又圓心G到四個頂點的距離相等,故圓心G的橫坐標(biāo)等于AC中點的橫坐標(biāo),等于c-a2,圓心G的縱坐標(biāo)等于BD中點的縱坐標(biāo),等于d-b2.即圓心G(c-a2,d-b2),∴|OE|2=c2+d24,|GH|2=(c-a2+a2)2+(d-b2+b2)2=c2+d24,∴|OE|=|GH|,故要證的結(jié)論成立.12.安排6名演員的演出順序時,要求演員甲不第一個出場,也不最后一個出場,則不同的安排方法種數(shù)是()

A.120

B.240

C.480

D.720答案:C13.F1,F(xiàn)2是橢圓x2a2+y2b2=1的兩個焦點,點P是橢圓上任意一點,從F1引∠F1PF2的外角平分線的垂線,交F2P的延長線于M,則點M的軌跡是______.答案:設(shè)從F1引∠F1PF2的外角平分線的垂線,垂足為R∵△PF1M中,PR⊥F1M且PR是∠F1PM的平分線∴|MP|=|F1P|,可得|PF1|+|PF2|=|PM|+|PF2|=|MF2|根據(jù)橢圓的定義,可得|PF1|+|PF2|=2a,∴|MF2|=2a,即動點M到點F2的距離為定值2a,因此,點M的軌跡是以點F2為圓心,半徑為2a的圓.故為:以點F2為圓心,半徑為2a的圓.14.把下列命題寫成“若p,則q”的形式,并指出條件與結(jié)論.

(1)相似三角形的對應(yīng)角相等;

(2)當(dāng)a>1時,函數(shù)y=ax是增函數(shù).答案:(1)若兩個三角形相似,則它們的對應(yīng)角相等.條件p:三角形相似,結(jié)論q:對應(yīng)角相等.(2)若a>1,則函數(shù)y=ax是增函數(shù).條件p:a>1,結(jié)論q:函數(shù)y=ax是增函數(shù).15.用反證法證明:“方程ax2+bx+c=0,且a,b,c都是奇數(shù),則方程沒有整數(shù)根”正確的假設(shè)是方程存在實數(shù)根x0為()

A.整數(shù)

B.奇數(shù)或偶數(shù)

C.正整數(shù)或負(fù)整數(shù)

D.自然數(shù)或負(fù)整數(shù)答案:A16.直線l只經(jīng)過第一、三、四象限,則直線l的斜率k()

A.大于零

B.小于零

C.大于零或小于零

D.以上結(jié)論都有可能答案:A17.在畫兩個變量的散點圖時,下面哪個敘述是正確的(

A.預(yù)報變量x軸上,解釋變量y軸上

B.解釋變量x軸上,預(yù)報變量y軸上

C.可以選擇兩個變量中任意一個變量x軸上

D.可以選擇兩個變量中任意一個變量y軸上答案:B18.某研究小組在一項實驗中獲得一組數(shù)據(jù),將其整理得到如圖所示的散點圖,下列函數(shù)中,最能近似刻畫y與t之間關(guān)系的是(

A.y=2t

B.y=2t2

C.y=t3

D.y=log2t

答案:D19.某校對文明班的評選設(shè)計了a,b,c,d,e五個方面的多元評價指標(biāo),并通過經(jīng)驗公式樣S=ab+cd+1e來計算各班的綜合得分,S的值越高則評價效果越好,若某班在自測過程中各項指標(biāo)顯示出0<c<d<e<b<a,則下階段要把其中一個指標(biāo)的值增加1個單位,而使得S的值增加最多,那么該指標(biāo)應(yīng)為()A.a(chǎn)B.bC.cD.d答案:因a,b,cde都為正數(shù),故分子越大或分母越小時,S的值越大,而在分子都增加1的前提下,分母越小時,S的值增長越多,由于0<c<d<e<b<a,分母中d最小,所以c增大1個單位會使得S的值增加最多.故選C.20.設(shè)O是坐標(biāo)原點,F(xiàn)是拋物線y2=2px(p>0)的焦點,A是拋物線上的一點,F(xiàn)A與x軸正向的夾角為60°,則|OA|為______.答案:過A作AD⊥x軸于D,令FD=m,則FA=2m,p+m=2m,m=p.∴OA=(p2+p)2+(3p)2=212p.故為:212p21.在平面直角坐標(biāo)系中,雙曲線Γ的中心在原點,它的一個焦點坐標(biāo)為(5,0),e1=(2,1)、e2=(2,-1)分別是兩條漸近線的方向向量.任取雙曲線Γ上的點P,若OP=ae1+be2(a、b∈R),則a、b滿足的一個等式是______.答案:因為e1=(2,1)、e2=(2,-1)是漸進(jìn)線方向向量,所以雙曲線漸近線方程為y=±12x,又c=5,∴a=2,b=1雙曲線方程為x24-y2=1,OP=ae1+be2=(2a+2b,a-b),∴(2a+2b)24-(a-b)2=1,化簡得4ab=1.故為4ab=1.22.已知函數(shù)f(x)=f(x+1)(x<4)2x(x≥4),則f(log23)=______.答案:因為1<log23<2,所以4<log23+3<5,所以f(log23)=f(log23+3)=f(log224)=2log224=24.故為:24.23.在正方體ABCD-A1B1C1D1中,直線BC1與平面A1BD所成角的余弦值是______.答案:分別以DA、DC、DD1為x、y、z軸建立如圖所示空間直角坐標(biāo)系設(shè)正方體的棱長等于1,可得D(0,0,0),B(1,1,0),C1(0,1,1),A1(1,0,1),∴BC1=(-1,0,1),A1D=(-1,0,-1),BD=(-1,-1,0)設(shè)n=(x,y,z)是平面A1BD的一個法向量,則n?A1D=-x-z=0n?BD=-x-y=0,取x=1,得y=z=-1∴平面A1BD的一個法向量為n=(1,-1,-1)設(shè)直線BC1與平面A1BD所成角為θ,則sinθ=|cos<BC1,n>|=BC1?n|BC1|?n=63∴cosθ=1-sin2θ=33,即直線BC1與平面A1BD所成角的余弦值是33故為:3324.直線(t為參數(shù))的傾斜角是()

A.20°

B.70°

C.45°

D.135°答案:D25.已知sint+cost=1,設(shè)s=cost+isint,求f(s)=1+s+s2+…sn.答案:sint+cost=1∴(sint+cost)2=1+2sint?cost=1∴2sint?cost=sin2t=0則cost=0,sint=1或cost=1,sint=0,當(dāng)cost=0,sint=1時,s=cost+isint=i則f(s)=1+s+s2+…sn=1+i,n=4k+1i,n=4k+20,n=4k+31,n=4(k+1)(k∈N+)當(dāng)cost=1,sint=0時,s=cost+isint=1則f(s)=1+s+s2+…sn=n+126.已知ABCD是平行四邊形,P點是ABCD所在平面外的一點,連接PA、PB、PC、PD.設(shè)點E、F、G、H分別為△PAB、△PBC、△PCD、△PDA的重心.

(1)試用向量方法證明E、F、G、H四點共面;

(2)試判斷平面EFGH與平面ABCD的位置關(guān)系,并用向量方法證明你的判斷.答案:(1)證明略(2)平面EFGH∥平面ABCD解析:(1)

分別延長PE、PF、PG、PH交對邊于M、N、Q、R點,因為E、F、G、H分別是所在三角形的重心,所以M、N、Q、R為所在邊的中點,順次連接M、N、Q、R得到的四邊形為平行四邊形,且有=,=,=,

=∴=+=(-)+(-)=(-)+(-)=(+)又∵=-=-=∴=(+),∴=+由共面向量定理知:E、F、G、H四點共面.(2)

由(1)得=,故∥.又∵平面ABC,EG平面ABC.∴EG∥平面ABC.又∵=-=-=∴MN∥EF,又∵M(jìn)N平面ABC,EF平面ABC,EF∥平面ABC.∵EG與EF交于E點,∴平面EFGH∥平面ABCD.27.若橢圓x2+4(y-a)2=4與拋物線x2=2y有公共點,則實數(shù)a的取值范圍是______.答案:橢圓x2+4(y-a)2=4與拋物線x2=2y聯(lián)立可得2y=4-4(y-a)2,∴2y2-(4a-1)y+2a2-2=0.∵橢圓x2+4(y-a)2=4與拋物線x2=2y有公共點,∴方程2y2-(4a-1)y+2a2-2=0至少有一個非負(fù)根.∴△=(4a-1)2-16(a2-1)=-8a+17≥0,∴a≤178.又∵兩根皆負(fù)時,由韋達(dá)定理可得2a2>2,4a-1<0,∴-1<a<1且a<14,即a<-1.∴方程2y2-(4a-1)y+2a2-2=0至少有一個非負(fù)根時,-1≤a≤178故為:-1≤a≤17828.命題:“方程X2-2=0的解是X=±2”中使用邏輯聯(lián)系詞的情況是()A.沒有使用邏輯連接詞B.使用了邏輯連接詞“且”C.使用了邏輯連接詞“或”D.使用了邏輯連接詞“非”答案:命題:“方程X2-2=0的解是X=±2”可以化為:“方程X2-2=0的解是X=2,或X=-2”故命題:“方程X2-2=0的解是X=±2”中使用邏輯聯(lián)系詞為:或故選C29.如圖,PA,PB切⊙O于

A,B兩點,AC⊥PB,且與⊙O相交于

D,若∠DBC=22°,則∠APB═______.答案:連接AB根據(jù)弦切角有∠DBC=∠DAB=22°

∠PAC=∠DBA因為垂直∠DCB=90°根據(jù)外角∠ADB=∠DBC+∠DCB=112°

∵∠DBC=∠DAB∴∠DBA=180°-∠ADB-∠DAB=46°∴∠PAC=∠DBA=46°∴∠P=180°-∠PAC-∠PCA=44°故為:44°30.(幾何證明選講選做題)

如圖,已知AB是⊙O的一條弦,點P為AB上一點,PC⊥OP,PC交⊙O于C,若AP=4,PB=2,則PC的長是______.答案:∵AB是⊙O的一條弦,點P為AB上一點,PC⊥OP,PC交⊙O于C,∴AP×PB=PC2,∵AP=4,PB=2,∴PC2=8,解得PC=22.故為:22.31.“因為對數(shù)函數(shù)y=logax是增函數(shù)(大前提),而y=logx是對數(shù)函數(shù)(小前提),所以y=logx是增函數(shù)(結(jié)論).”上面推理的錯誤是()

A.大前提錯導(dǎo)致結(jié)論錯

B.小前提錯導(dǎo)致結(jié)論錯

C.推理形式錯導(dǎo)致結(jié)論錯

D.大前提和小前提都錯導(dǎo)致結(jié)論錯答案:A32.正方體ABCD-A1B1C1D1的棱長為1,點M是棱AB的中點,點P是平面ABCD上的一動點,且點P到直線A1D1的距離兩倍的平方比到點M的距離的平方大4,則點P的軌跡為()A.圓B.橢圓C.雙曲線D.拋物線答案:在平面ABCD上,以AD為x軸,以AB為y軸建立平面直角坐標(biāo)系,則M(,12,0),設(shè)P(x,y)則|MP|2=y2+(x-12)2點P到直線A1D1的距離為x2+1由題意得4(x2+1)=

y2+(x-12)2+4即3(x+12)2-y2=74選C33.已知在△ABC中,A(2,-5,3),AB=(4,1,2),BC=(3,-2,5),則C點坐標(biāo)為

______.答案:設(shè)C(x,y,z),則:

AC=AB+BC即:(x-2,y+5,z-3)=(4,1,2)+(3,-2,5)=(7,-1,7)所以得:x-2=7y+5=-1z-3=7,即x=9y=-6z=10故為:(9,-6,10)34.在線性回歸模型y=bx+a+e中,下列說法正確的是()A.y=bx+a+e是一次函數(shù)B.因變量y是由自變量x唯一確定的C.隨機誤差e是由于計算不準(zhǔn)確造成的,可以通過精確計算避免隨機誤差e的產(chǎn)生D.因變量y除了受自變量x的影響外,可能還受到其它因素的影響,這些因素會導(dǎo)致隨機誤差e的產(chǎn)生答案:線性回歸是利用數(shù)理統(tǒng)計中的回歸分析,來確定兩種或兩種以上變量間相互依賴的定量關(guān)系的一種統(tǒng)計分析方法之一,分析按照自變量和因變量之間的關(guān)系類型,可分為線性回歸分析和非線性回歸分析.A不正確,根據(jù)線性回歸方程做出的y的值是一個預(yù)報值,不是由x唯一確定,故B不正確,隨機誤差不是由于計算不準(zhǔn)造成的,故C不正確,y除了受自變量x的影響之外還受其他因素的影響,故D正確,故選D.35.在極坐標(biāo)系中,點A(2,π2)關(guān)于直線l:ρcosθ=1的對稱點的一個極坐標(biāo)為______.答案:在直角坐標(biāo)系中,A(0,2),直線l:x=1,A關(guān)于直線l的對稱點B(2,2).由于|OB|=22,OB直線的傾斜角等于π4,且點B在第一象限,故B的極坐標(biāo)為(22,π4),故為

(22,π4).36.若2x1+3y1=4,2x2+3y2=4,則過點A(x1,y1),B(x2,y2)的直線方程是______.答案:∵2x1+3y1=4,2x2+3y2=4,∴點A(x1,y1),B(x2,y2)在直線2x+3y=4上,又因為過兩點確定一條直線,故所求直線方程為2x+3y=4故為:2x+3y=437.已知點M(a,b)在直線3x+4y=15上,則a2+b2的最小值為______.答案:a2+b2的幾何意義是到原點的距離,它的最小值轉(zhuǎn)化為原點到直線3x+4y=15的距離:d=155=3.故為3.38.已知直線ax+by+c=0(a,b,c都是正數(shù))與圓x2+y2=1相切,則以a,b,c為三邊長的三角形()

A.是銳角三角形

B.是鈍角三角形

C.是直角三角形

D.不存在答案:C39.將包含甲、乙兩人的4位同學(xué)平均分成2個小組參加某項公益活動,則甲、乙兩名同學(xué)分在同一小組的概率為()

A.

B.

C.

D.答案:C40.若集合A={x|x2-4x-5<0,x∈Z},B={x|y=log0.5x>-3,x∈Z},記x0為拋擲一枚骰子出現(xiàn)的點數(shù),則x0∈A∩B的概率等于______.答案:由x2-4x-5<0,x∈Z,解得:-1<x<5,x∈Z,∴x=0,1,2,3,4.即A={0,1,2,3,4},B={x|y=log0.5x>-3,x∈Z}={1,2,3,4,5,6,7},∴A∩B={1,2,3,4},而x0為拋擲一枚骰子出現(xiàn)的點數(shù)可能有6種,∴P=46=23,故為:23.41.在直角三角形ABC中,∠ACB=90°,CD、CE分別為斜邊AB上的高和中線,且∠BCD與∠ACD之比為3:1,求證CD=DE.

答案:證明:∵∠A+∠ACD=∠A+∠B=90°,∴∠ACD=∠B又∵CE是直角△ABC的斜邊AB上的中線∴CE=EB∠B=∠ECB,∠ACD=∠ECB但∵∠BCD=3∠ACD,∠ECD=2∠ACD=12∠ACB=12×90°=45°,△EDC為等腰直角三角形∴CE=DE.42.已知點P(t,t),t∈R,點M是圓x2+(y-1)2=上的動點,點N是圓(x-2)2+y2=上的動點,則|PN|-|PM|的最大值是(

A.-1

B.

C.2

D.1答案:C43.若向量a⊥b,且向量a=(2,m),b=(3,1)則m=______.答案:因為向量a=(2,m),b=(3,1),又a⊥b,所以2×3+m=0,所以m=-6.故為-6.44.已知:如圖,CD是⊙O的直徑,AE切⊙O于點B,DC的延長線交AB于點A,∠A=20°,則

∠DBE=______.答案:連接BC,∵CD是⊙O的直徑,∴∠CBD=90°,∵AE是⊙O的切線,∴∠DBE=∠1,∠2=∠D;又∵∠1+∠D=90°,即∠1+∠2=90°---(1),∠A+∠2=∠1----(2),(1)-(2)得∠1=55°即∠DBE=55°.故為:∠DBE=55°.45.已知向量a表示“向東航行1km”,向量b表示“向北航行3km”,則向量a+b表示()A.向東北方向航行2kmB.向北偏東30°方向航行2kmC.向北偏東60°方向航行2kmD.向東北方向航行(1+3)km答案:如圖,作OA=a,OB=b.則OC=a+b,所以|OC|=3+1=2,且sin∠BOC=12,所以∠BOC=30°.因此

a+b表示向北偏東30°方向航行2km.故選B.46.在△ABC所在平面存在一點O使得OA+OB+OC=0,則面積S△OBCS△ABC=______.答案:∵OA+OB+OC=0,∴OB+

OC=AO,設(shè)OB+OC=OD∴O是AD的中點,要求面積之比的兩個三角形是同底的三角形,∴面積之比等于三角形的高之比,∴比值是13,故為:13.47.甲、乙兩人共同投擲一枚硬幣,規(guī)定硬幣正面朝上甲得1分,否則乙得1分,先積3分者獲勝,并結(jié)束游戲.

①求在前3次投擲中甲得2分,乙得1分的概率.

②設(shè)ξ表示到游戲結(jié)束時乙的得分,求ξ的分布列以及期望.答案:(1)由題意知本題是一個古典概型試驗發(fā)生的事件是擲一枚硬幣3次,出現(xiàn)的所有可能情況共有以下8種.(正正正)、(正正反)、(正反反)、(反反反)、(正反正)、(反正正)、(反反正)、(反正反)、其中甲得(2分),乙得(1分)的情況有以下3種,(正正反)、(正反正)、(反正正)∴所求概率P=38(2)ξ的所有可能值為:0、1、2、3P(ξ=0)=12×12×12=18P(ξ=1)=C13×12×(12)2×12=316,P(ξ=2)=C24(12)2(12)212=316P(ξ=3)=12×12×12+C1312(12)212+C24(12)2(12)212=12∴ξ的分布列為:∴Eξ=1×316+2×316+3×12=331648.對于回歸方程y=4.75x+2.57,當(dāng)x=28時,y

的估計值是______.答案:∵回歸方程y=4.75x+2.57,∴當(dāng)x=28時,y的估計值是4.75×28+2.57=135.57.故為:135.57.49.設(shè)函數(shù)f(x)的定義域為D,如果對于任意的x1∈D,存在唯一的x2∈D,使得

f(x1)+f(x2)2=C成立(其中C為常數(shù)),則稱函數(shù)y=f(x)在D上的均值為C,現(xiàn)在給出下列4個函數(shù):①y=x3②y=4sinx③y=lgx④y=2x,則在其定義域上的均值為

2的所有函數(shù)是下面的()A.①②B.③④C.①③④D.①③答案:由題意可得,均值為2,則f(x1)+f(x2)2=2即f(x1)+f(x2)=4①:y=x3在定義域R上單調(diào)遞增,對應(yīng)任意的x1,則存在唯一x2滿足x13+x23=4①正確②:y=4sinx,滿足4sinx1+4sinx2=4,令x1=π2,則根據(jù)三角函數(shù)的周期性可得,滿足sinx2=0的x2無窮多個,②錯誤③y=lgx在(0,+∞)單調(diào)遞增,對應(yīng)任意的x1>0,則滿足lgx1+lgx2=4的x2唯一存在③正確④y=2x滿足2x1+2x2=4,令x1=3時x2不存在④錯誤故選D.50.在平行六面體ABCD-A′B′C′D′中,向量是()

A.有相同起點的向量

B.等長的向量

C.共面向量

D.不共面向量答案:C第2卷一.綜合題(共50題)1.正方體的全面積為18cm2,則它的體積是()A.4cm3B.8cm3C.11272cm3D.33cm3答案:設(shè)正方體邊長是acm,根據(jù)題意得6a2=18,解得a=3,∴正方體的體積是33cm3.故選D.2.選修4-5;不等式選講.

當(dāng)n>2時,求證:logn(n-1)logn(n+1)<1.答案:∵n>2,∴l(xiāng)og(n-1)n>0,log(n+1)n>0,且log(n-1)n≠log(n+1)n,∴l(xiāng)og(n-1)n×log(n+1)n<(log(n-1)n+log(n+1)n2)2=(log(n2-1)n2)2<(logn2n2)2=(22)2=1,∴當(dāng)n>2時,logn(n-1)logn(n+1)<1.3.己知集合A={sinα,cosα},則α的取值范圍是______.答案:由元素的互異性可得sinα≠cosα,∴α≠kπ+π4,k∈z.故α的取值范圍是{α|α≠kπ+π4,k∈z},故為{α|α≠kπ+π4,k∈z}.4.已知a=3i+2j-k,b=i-j+2k,則5a與3b的數(shù)量積等于______.答案:a=3i+2j-k=(3,2,-1),5a=(15,10,-5)b=i-j+2k=(1,-1,2),3b=(3,-3,6)5a?3b=15×3+10×(-3)+(-5)×6=-15故為:-155.設(shè)F1,F(xiàn)2為定點,|F1F2|=6,動點M滿足|MF1|+|MF2|=6,則動點M的軌跡是()A.橢圓B.直線C.圓D.線段答案:對于在平面內(nèi),若動點M到F1、F2兩點的距離之和等于6,而6正好等于兩定點F1、F2的距離,則動點M的軌跡是以F1,F(xiàn)2為端點的線段.故選D.6.一個正三棱錐的底面邊長等于一個球的半徑,該正三棱錐的高等于這個球的直徑,則球的體積與正三棱錐體積的比值為()

A.

B.

C.

D.答案:A7.利用計算機在區(qū)間(0,1)上產(chǎn)生兩個隨機數(shù)a和b,則方程有實根的概率為()

A.

B.

C.

D.1答案:A8.已知a=log132,b=(13)12,c=(23)12,則a,b,c大小關(guān)系為______.答案:∵a=log132<log131=0,又∵函數(shù)y=x12在(0,+∞)是增函數(shù),∴(23)12>(13)12>0.所以,c>b>a.故為c>b>a.9.已知直線l的方程為x=2-4

ty=1+3

t,則直線l的斜率為______.答案:直線x=2-4

ty=1+3

t,所以直線的普通方程為:(y-1)=-34(x-2);所以直線的斜率為:-34;故為:-34.10.直線x+y-1=0到直線xsinα+ycosα-1=0(<α<)的角是()

A.α-

B.-α

C.α-

D.-α答案:D11.選做題:如圖,點A、B、C是圓O上的點,且AB=4,∠ACB=30°,則圓O的面積等于______.答案:連接OA,OB,∵∠ACB=30°,∴∠AoB=60°,∴△AOB是一個等邊三角形,∴OA=AB=4,∴⊙O的面積是16π故為16π12.用數(shù)學(xué)歸納法證明等式時,第一步驗證n=1時,左邊應(yīng)取的項是()

A.1

B.1+2

C.1+2+3

D.1+2+3+4答案:D13.已知x1、x2是關(guān)于x1的方程x2-(k-2)x+k2+3k+5=0的兩個實根,那么x12+x22的最大值是[

]

A.19

B.17

C.

D.18答案:D14.寫出按從小到大的順序重新排列x,y,z三個數(shù)值的算法.答案:算法如下:(1).輸入x,y,z三個數(shù)值;(2).從三個數(shù)值中挑出最小者并換到x中;(3).從y,z中挑出最小者并換到y(tǒng)中;(4).輸出排序的結(jié)果.15.已知雙曲線x2-y23=1,過P(2,1)點作一直線交雙曲線于A、B兩點,并使P為AB的中點,則直線AB的斜率為______.答案:設(shè)A(x1,y1)、B(x2,y2),代入雙曲線方程x2-y23=1相減得直線AB的斜率kAB=y1-y2x1-x2=3(x1+x2)y1+y2=3×x1+x22y1+y22=3×21=6.故為:616.已知的單調(diào)區(qū)間;

(2)若答案:(1)(2)證明略解析:(1)對已知函數(shù)進(jìn)行降次分項變形

,得,(2)首先證明任意事實上,而

.17.若向量e1,e2不共線,且ke1+e2與e1+ke2可以作為平面內(nèi)的一組基底,則實數(shù)k的取值范圍為______.答案:∵當(dāng)(ke1+e2)∥(e1+ke2),∴ke1+e2=λ(e1+ke2),∴ke1+e2=λe1+λke2,∴k=λ,1=λk,∴k2=1,k=±1,故ke1+e2與e1+ke2可以作為平面內(nèi)的一組基底,則實數(shù)k的取值范圍為k≠±1.故為:k≠±1.18.兩個樣本甲和乙,其中=10,=10,=0.055,=0.015,那么樣本甲比樣本乙波動()

A.大

B.相等

C.小

D.無法確定答案:A19.已知方程(1+k)x2-(1-k)y2=1表示焦點在x軸上的雙曲線,則k的取值范圍為(

A.-1<k<1

B.k>1

C.k<-1

D.k>1或k<-1答案:A20.若向量=(1,λ,2),=(2,-1,2)且與的夾角余弦為,則λ等于(

A.2

B.-2

C.-2或

D.2或答案:C21.下列關(guān)于算法的說法中正確的個數(shù)是()

①求解某一類問題的算法是唯一的;

②算法必須在有限步操作之后停止;

③算法的每一步操作必須是明確的,不能有歧義或模糊;

④算法執(zhí)行后一定產(chǎn)生確定的結(jié)果.A.1B.2C.3D.4答案:由算法的概念可知:求解某一類問題的算法不是唯一的,故①不正確;算法是有限步,結(jié)果明確性,②④是正確的.對于③,算法的每一步操作必須是明確的,不能有歧義或模糊是正確的;故③正確.∴關(guān)于算法的說法中正確的個數(shù)是3.故選C.22.關(guān)于x的不等式(k2-2k+)x(k2-2k+)1-x的解集是()

A.x>

B.x<

C.x>2

D.x<2答案:B23.若方程sin2x+4sinx+m=0有實數(shù)解,則m的取值范圍是(

A、R

B、(-∞,-5]∪[3,+∞)

C、(-5,3)

D、[-5,3]答案:D24.命題“p:任意x∈R,都有x≥2”的否定是______.答案:命題“任意x∈R,都有x≥2”是全稱命題,否定時將量詞對任意的x∈R變?yōu)榇嬖趯崝?shù)x,再將不等號≥變?yōu)椋技纯桑蕿椋捍嬖趯崝?shù)x,使得x<2.25.如圖,△ABC中,AD=2DB,AE=3EC,CD與BE交于F,若AF=xAB+yAC,則()A.x=13,y=12B.x=14,y=13C.x=37,y=37D.x=25,y=920答案:過點F作FM∥AC、FN∥AB,分別交AB、AC于點M、N∵FM∥AC,∴FMAC=DMAD且FMAE=BMAB∵AD=2DB,AE=3EC,∴AD=23AB,AE=34AC.由此可得AM=13AB同理可得AN=12AC∵四邊形AMFN是平行四邊形∴由向量加法法則,得AF=13AB+12AC∵AF=xAB+yAC,∴根據(jù)平面向量基本定理,可得x=13,y=12故選:A26.設(shè)集合A={1,2,3,4},集合B={1,3,5,7},則集合A∪B=()A.{1,3}B.{1,2,3,4,5,7}C.{5,7}D.{2,4,5,7}答案:∵A={1,2,3,4},B={1,3,5,7},∴A∪B={1,2,3,4,5,7},故選B.27.已知橢圓的中心在原點,對稱軸為坐標(biāo)軸,焦點在x軸上,短軸的一個頂點B與兩個焦點F1,F(xiàn)2組成的三角形的周長為4+23,且∠F1BF2=2π3,求橢圓的標(biāo)準(zhǔn)方程.答案::設(shè)長軸長為2a,焦距為2c,則在△F2OB中,由∠F2BO=π3得:c=32a,所以△F2BF1的周長為2a+2c=2a+3a=4+23,∴a=2,c=3,∴b2=1;故所求橢圓的標(biāo)準(zhǔn)方程為x24+y2=1.28.拋物線y=-12x2上一點N到其焦點F的距離是3,則點N到直線y=1的距離等于______.答案:∵拋物線y=-12x2化成標(biāo)準(zhǔn)方程為x2=-2y∴拋物線的焦點為F(0,-12),準(zhǔn)線方程為y=12∵點N在拋物線上,到焦點F的距離是3,∴點N到準(zhǔn)線y=12的距離也是3因此,點N到直線y=1的距離等于3+(1-12)=72故為:7229.若A為m×n階矩陣,AB=C,則B的階數(shù)可以是下列中的______.

①m×m,②m×n,③n×m,④n×n.答案:兩個矩陣只有當(dāng)前一個矩陣的列數(shù)與后一個矩陣的行數(shù)相等時,才能作乘法.矩陣A是n列矩陣,故矩陣B是n行的矩陣則B的階數(shù)可以是③n×m,④n×n故為:③④30.某學(xué)校三個社團的人員分布如下表(每名同學(xué)只參加一個社團):

聲樂社排球社武術(shù)社高一4530a高二151020學(xué)校要對這三個社團的活動效果里等抽樣調(diào)查,按分層抽樣的方法從社團成員中抽取30人,結(jié)果聲樂社被抽出12人,則a=______.答案:根據(jù)分層抽樣的定義和方法可得,1245+15=30120+a,解得a=30,故為3031.已知直線l過點P(1,0,-1),平行于向量=(2,1,1),平面α過直線l與點M(1,2,3),則平面α的法向量不可能是()

A.(1,-4,2)

B.(,-1,)

C.(-,-1,-)

D.(0,-1,1)答案:D32.已知頂點在坐標(biāo)原點,焦點在x軸上的拋物線被直線y=2x+1截得的弦長為15,求此拋物線方程.答案:由題意可設(shè)拋物線的方程y2=2px(p≠0),直線與拋物線交與A(x1,y1),B(x2,y2)聯(lián)立方程y2=2pxy=2x+1可得,4x2+(4-2p)x+1=0則x1+x2=12p-1,x1x2=14,y1-y2=2(x1-x2)AB=(x1-x2)2+(y1-y2)2=5(x1-x2)2=5[(x1+x2)2-4x1x2

]=5(12p-1)2-5=15解得p=6或p=-2∴拋物線的方程為y2=12x或y2=-4x33.已知數(shù)列{an}的前n項和Sn=an2+bn=c

(a、b、c∈R),則“c=0”是“{an}是等差數(shù)列”的()A.充分非必要條件B.必要非充分條件C.充要條件D.既非充分也非必要條件答案:數(shù)列{an}的前n項和Sn=an2+bn+c根據(jù)等差數(shù)列的前n項和的公式,可以看出當(dāng)c=0時,Sn=an2+bn表示等差數(shù)列的前n項和,則數(shù)列是一個等差數(shù)列,當(dāng)數(shù)列是一個等差數(shù)列時,表示前n項和時,c=0,故前者可以推出后者,后者也可以推出前者,∴前者是后者的充要條件,故選C.34.用長為4、寬為2的矩形做側(cè)面圍成一個高為2的圓柱,此圓柱的軸截面面積為()A.8B.8πC.4πD.2π答案:∵用長為4、寬為2的矩形做側(cè)面圍成一個圓柱,且圓柱高為h=2∴底面圓周由長為4的線段圍成,可得底面圓直徑2r=4π∴此圓柱的軸截面矩形的面積為S=2r×h=8π故選:B35.如圖是一個方形迷宮,甲、乙兩人分別位于迷宮的A、B兩處,兩人同時以每一分鐘一格的速度向東、西、南、北四個方向行走,已知甲向東、西行走的概率都為14,向南、北行走的概率為13和p,乙向東、西、南、北四個方向行走的概率均為q

(1)p和q的值;

(2)問最少幾分鐘,甲、乙二人相遇?并求出最短時間內(nèi)可以相遇的概率.答案:(1)∵14+14+13+p=1,∴p=16,∵4q=1,∴q=14(2)t=2甲、乙兩人可以相遇(如圖,在C、D、E三處相遇)

設(shè)在C、D、E三處相遇的概率分別為PC、PD、PE,則:PC=(16×16)×(14×14)=1576PD=2(16×14)×2(14×14)=196PE=(14×14)×(14×14)=1256PC+PD+PE=372304即所求的概率為37230436.參數(shù)方程x=2cosαy=3sinα(a為參數(shù))化成普通方程為______.答案:∵x=2cosαy=3sinα,∴cosα=x2sinα=y3∴(x2)2+(y3)2=cos2α+sin2α=1.即:參數(shù)方程x=2cosαy=3sinα化成普通方程為:x24+y29=1.故為:x24+y29=1.37.利用“直接插入排序法”給按從大到小的順序排序,

當(dāng)插入第四個數(shù)時,實際是插入哪兩個數(shù)之間(

)A.與B.與C.與D.與答案:B解析:先比較與,得;把插入到,得;把插入到,得;38.將y=sin2x的圖象向右按作最小的平移,使平移后的圖象在[k,k+](kz)上遞減,試求平移后的函數(shù)解析式和.答案:y=-cos2x,

=(,0)解析:將y=sin2x的圖象向右按作最小的平移,使平移后的圖象在[k,k+](kz)上遞減,試求平移后的函數(shù)解析式和.39.|a|=4,a與b的夾角為30°,則a在b方向上的投影為______.答案:a在b方向上的投影為|a|cos30°=4×32=23故為:2340.如果一個水平放置的圖形的斜二測直觀圖是一個底面為45°,腰和上底均為1的等腰梯形,那么原平面圖形的面積是()

A.2+

B.

C.

D.1+答案:A41.給出以下四個對象,其中能構(gòu)成集合的有()

①教2011屆高一的年輕教師;

②你所在班中身高超過1.70米的同學(xué);

③2010年廣州亞運會的比賽項目;

④1,3,5.A.1個B.2個C.3個D.4個答案:解析:因為未規(guī)定年輕的標(biāo)準(zhǔn),所以①不能構(gòu)成集合;由于②③④中的對象具備確定性、互異性,所以②③④能構(gòu)成集合.故選C.42.下列函數(shù)中,定義域為(0,+∞)的是()A.y=1xB.y=xC.y=1x2D.y=12x答案:由于函數(shù)y=1x的定義域為(0,+∞),函數(shù)y=x的定義域為[0,+∞),函數(shù)y=1x2的定義域為{x|x≠0},函數(shù)y=12x的定義域為R,故只有A中的函數(shù)滿足定義域為(0,+∞),故選A.43.向量a、b滿足|a|=1,|b|=2,且a與b的夾角為π3,則|a+2b|=______.答案:∵|a|=1,|b|=2,且a與b的夾角為π3,∴a?b=|a|?|b|?cosπ3=1因此,(a+2b)2=|a|2+4a?b+4|b|2=12+4×1+4|b|2=21∴|a+2b|=21故為:2144.(坐標(biāo)系與參數(shù)方程選做題)點P(-3,0)到曲線x=t2y=2t(其中參數(shù)t∈R)上的點的最短距離為______.答案:設(shè)點Q(t2,2t)為曲線上的任意一點,則|PQ|=(t2+3)2+(2t)2=(t2+5)2-16≥52-16=3,當(dāng)且僅當(dāng)t=0取等號,此時Q(0,0).故點P(-3,0)到曲線x=t2y=2t(其中參數(shù)t∈R)上的點的最短距離為3.故為3.45.已知橢圓C的中心在原點,焦點F1,F(xiàn)2在軸上,離心率e=22,且經(jīng)過點M(0,2),求橢圓c的方程答案:若焦點在x軸很明顯,過點M(0,2)點M即橢圓的上端點,所以b=2ca=22c2=12a2∵a2=b2+c2所以b2=c2=2a2=4橢圓:x24+y22=1若焦點在y軸,則a=2,ca=22,c=1∴b=1橢圓方程:x22+y2=1.46.命題“存在x0∈R,使x02+1<0”的否定是______.答案:∵命題“存在x0∈R,使x02+1<0”是一個特稱命題∴命題“存在x0∈R,使x02+1<0”的否定是“對任意x0∈R,使x02+1≥0”故為:對任意x0∈R,使x02+1≥047.設(shè),,,則P,Q,R的大小順序是(

)

A.P>Q>R

B.P>R>Q

C.Q>P>R

D.Q>R>P答案:B48.一個凸多面體的各個面都是四邊形,它的頂點數(shù)是16,則它的面數(shù)為()

A.14

B.7

C.15

D.不能確定答案:A49.已知x2+4y2+kz2=36,(其中k>0)且t=x+y+z的最大值是7,則

k=______.答案:因為已知x2+4y2+kz2=36根據(jù)柯西不等式(ax+by+cz)2≤(a2+b2+c2)(x2+y2+z2)構(gòu)造得:即(x+y+z)2≤(x2+4y2+kz2)(12+(12)2+(1k)2)=36×[12+(12)2+(1k)2]=49.故k=9.故為:9.50.不等式|x-500|≤5的解集是______.答案:因為不等式|x-500|≤5,由絕對值不等式的幾何意義可知:{x|495≤x≤505}.故為:{x|495≤x≤505}.第3卷一.綜合題(共50題)1.在極坐標(biāo)系中,曲線ρ=4sinθ和ρcosθ=1相交于點A、B,則|AB|=______.答案:將其化為直角坐標(biāo)方程為x2+y2-4y=0,和x=1,代入得:y2-4y+1=0,則|AB|=|y1-y2|=(y1+y2)2-4y1y1=(4)2-4=23.故為:23.2.如圖,圓O的直徑AB=6,C為圓周上一點,BC=3,過C作圓的切線l,過A作l的垂線AD,AD分別與直線l、圓交于點D、E.求∠DAC的度數(shù)與線段AE的長.答案:如圖,連接OC,因BC=OB=OC=3,因此∠CBO=60°,由于∠DCA=∠CBO,所以∠DCA=60°,又AD⊥DC得∠DAC=30°;(5分)又因為∠ACB=90°,得∠CAB=30°,那么∠EAB=60°,從而∠ABE=30°,于是AE=12AB=3.(10分)3.若不等式(﹣1)na<2+對任意n∈N*恒成立,則實數(shù)a的取值范圍是

[

]A.[﹣2,)

B.(﹣2,)

C.[﹣3,)

D.(﹣3,)答案:A4.若方程2ax2-x-1=0在(0,1)內(nèi)恰有一解,則a的取值范圍是______.答案:當(dāng)a>0時,方程對應(yīng)的函數(shù)f(x)=2ax2-x-1在(0,1)內(nèi)恰有一解,必有f(0)?f(1)<0,即-1×(2a-2)<0,解得a>1當(dāng)a≤0時函數(shù)f(x)=2ax2-x-1在(0,1)內(nèi)恰無解.故為:a>15.已知正方形ABCD的邊長為1,=,=,=,則|++|等于(

A.0

B.2

C.

D.3答案:B6.將正方形ABCD沿對角線BD折起,使平面ABD⊥平面CBD,E是CD中點,則∠AED的大小為()

A.45°

B.30°

C.60°

D.90°答案:D7.一個類似于細(xì)胞分裂的物體,一次分裂為二,兩次分裂為四,如此繼續(xù)分裂有限多次,而隨機終止.設(shè)分裂n次終止的概率是(n=1,2,3,…).記X為原物體在分裂終止后所生成的子塊數(shù)目,則P(X≤10)=()

A.

B.

C.

D.以上均不對答案:A8.空間中,若向量=(5,9,m),=(1,-1,2),=(2,5,1)共面,則m=()

A.2

B.3

C.4

D.5答案:C9.如圖所示的圓盤由八個全等的扇形構(gòu)成,指針繞中心旋轉(zhuǎn),可能隨機停止,則指針停止在陰影部分的概率為()A.12B.14C.16D.18答案:如圖:轉(zhuǎn)動轉(zhuǎn)盤被均勻分成8部分,陰影部分占1份,則指針停止在陰影部分的概率是P=18.故選D.10.已知直線ax+by+c=0(abc≠0)與圓x2+y2=1相離,則以三條邊長分別為|a|,|b|,|c|所構(gòu)成的三角形的形狀是______.答案:直線ax+by+c=0(abc≠0)與圓x2+y2=1相離,即|c|a2+b2>

1即|c|2>a2+b2三角形是鈍角三角形.故為:鈍角三角形.11.一個口袋內(nèi)有4個不同的紅球,6個不同的白球,

(1)從中任取4個球,紅球的個數(shù)不比白球少的取法有多少種?

(2)若取一個紅球記2分,取一個白球記1分,從中任取5個球,使總分不少于7分的取法有多少種?答案:解(1)由題意知本題是一個分類計數(shù)問題,將取出4個球分成三類情況取4個紅球,沒有白球,有C44種取3個紅球1個白球,有C43C61種;取2個紅球2個白球,有C42C62,∴C44+C43C61+C42C62=115種(2)設(shè)取x個紅球,y個白球,則x+y=5(0≤x≤4)2x+y≥7(0≤y≤6)∴x=2y=3或x=3y=2或x=4y=1∴符合題意的取法種數(shù)有C42C63+C43C62+C44C61=186種12.已知函數(shù)f(x)=|x+2|-1,g(x)=|3-x|+2,若不等式f(x)-g(x)≤K的解集為R.則實數(shù)K的取值范圍為______.答案:因為函數(shù)f(x)=|x+2|-1,g(x)=|3-x|+2,所以f(x)-g(x)=|x+2|-|x-3|-3,它的幾何意義是數(shù)軸上的點到-2與到3距離的差再減去3,它的最大值為2,不等式f(x)-g(x)≤K的解集為R.所以K≥2.故為:[2,+∞).13.已知點D是△ABC的邊BC的中點,若記AB=a,AC=b,則用a,b表示AD為______.答案:以AB,AC為臨邊作平行四邊形ACEB,連接其對角線AE、BC交與點D,易知D是△ABC的邊BC的中點,且D是AE的中點,如圖:由向量的平行四邊形法則可得AB+AC=a+b=AE=2AD,解得AD=12(a+b),故為:AD=12(a+b)14.一個長方體共一頂點的三個面的面積分別是2、3、6,這個長方體的體積是()A.6B.6C.32D.23答案:可設(shè)長方體同一個頂點上的三條棱長分別為a,b,c,則有ab=2、bc=3、ca=6,解得:a=2,b=1,c=3故這個長方體的體積是6故為B15.假設(shè)要抽查某種品牌的850顆種子的發(fā)芽率,抽取60粒進(jìn)行實驗.利用隨機數(shù)表抽取種子時,先將850顆種子按001,002,…,850進(jìn)行編號,如果從隨機數(shù)表第8行第2列的數(shù)3開始向右讀,請你依次寫出最先檢測的4顆種子的編號______,______,______,______.

(下面摘取了隨機數(shù)表第7行至第9行)

84

42

17

53

31

57

24

55

06

88

77

04

74

47

67

21

76

33

50

25

83

92

12

06

76

63

01

63

78

59

16

95

55

67

19

98

10

50

71

75

12

86

73

58

07

44

39

52

38

79

33

21

12

34

29

78

64

56

07

82

52

42

07

44

38

15

51

00

13

42

99

66

02

79

54.答案:第8行第2列的數(shù)3開始向右讀第一個小于850的數(shù)字是301,第二個數(shù)字是637,也符合題意,第三個數(shù)字是859,大于850,舍去,第四個數(shù)字是169,符合題意,第五個數(shù)字是555,符合題意,故為:301,637,169,55516.已知|a|=1,|b|=2,<a,b>=60°,則|2a+b|=______.答案:∵|a|=1,|b|=2,<a,b>=60°,∴a?b=|a|×|b|cos60°=1由此可得(2a+b)2=4a2+4a?b+b2=4×12+4×1+22=12∴|2a+b|=(2a+b)2=23故為:2317.一個水平放置的平面圖形,其斜二測直觀圖是一個等腰梯形,其底角為45°,腰和上底均為1(如圖),則平面圖形的實際面積為______.答案:恢復(fù)后的原圖形為一直角梯形,上底為1,高為2,下底為1+2,S=12(1+2+1)×2=2+2.故為:2+218.已知數(shù)列{an}中,a1=1,an+1=an+n,若利用如圖所示的種序框圖計算該數(shù)列的第10項,則判斷框內(nèi)的條件是()

A.n≤8?

B.n≤9?

C.n≤10?

D.n≤11?

答案:B19.賦值語句n=n+1的意思是()

A.n等于n+1

B.n+1等于n

C.將n的值賦給n+1

D.將n的值增加1,再賦給n,即n的值增加1答案:D20.點(2a,a-1)在圓x2+y2-2y-4=0的內(nèi)部,則a的取值范圍是()

A.-1<a<1

B.0<a<1

C.-1<a<

D.-<a<1答案:D21.設(shè)直線y=kx與橢圓x24+y23=1相交于A、B兩點,分別過A、B向x軸作垂線,若垂足恰為橢圓的兩個焦點,則k等于()A.±32B.±23C.±12D.±2答案:將直線與橢圓方程聯(lián)立,y=kxx24+y23=1,化簡整理得(3+4k2)x2=12(*)因為分別過A、B向x軸作垂線,垂足恰為橢圓的兩個焦點,故方程的兩個根為±1.代入方程(*),得k=±32故選A.22.如圖,在梯形ABCD中,對角線AC和BD交于點O,E、F分別是AC和BD的中點,分別寫出

(1)圖中與EF、CO共線的向量;

(2)與EA相等的向量.答案:(1)由圖可知,與EF共線的向量有:CD、AB;與CO共線的向量有:CE、CA、OE、OA、EA;(2)由E為CA的中點可知,CE=EA,即與EA相等的向量為CE;23.如圖,彎曲的河流是近似的拋物線C,公路l恰好是C的準(zhǔn)線,C上的點O到l的距離最近,且為0.4千米,城鎮(zhèn)P位于點O的北偏東30°處,|OP|=10千米,現(xiàn)要在河岸邊的某處修建一座碼頭,并修建兩條公路,一條連接城鎮(zhèn),一條垂直連接公路l,以便建立水陸交通網(wǎng).

(1)建立適當(dāng)?shù)淖鴺?biāo)系,求拋物線C的方程;

(2)為了降低修路成本,必須使修建的兩條公路總長最小,請給出修建方案(作出圖形,在圖中標(biāo)出此時碼頭Q的位置),并求公路總長的最小值(精確到0.001千米)答案:(1)過點O作準(zhǔn)線的垂線,垂足為A,以O(shè)A所在直線為x軸,OA的垂直平分線為y軸,建立平面直角坐標(biāo)系…(2分)由題意得,p2=0.4…(4分)所以,拋物線C:y2=1.6x…(6分)(2)設(shè)拋物線C的焦點為F由題意得,P(5,53)…(8分)根據(jù)拋物線的定義知,公路總長=|QF|+|QP|≥|PF|≈9.806…(12分)當(dāng)Q為線段PF與拋物線C的交點時,公路總長最小,最小值為9.806千米…(16分)24.如圖,某公司制造一種海上用的“浮球”,它是由兩個半球和一個圓柱筒組成.其中圓柱的高為2米,球的半徑r為0.5米.

(1)這種“浮球”的體積是多少立方米(結(jié)果精確到0.1m3)?

(2)假設(shè)該“浮球”的建造費用僅與其表面積有關(guān).已知圓柱形部分每平方米建造費用為20元,半球形部分每平方米建造費用為30元.求該“浮球”的建造費用(結(jié)果精確到1元).答案:(1)∵球的半徑r為0.5米,∴兩個半球的體積之和為V球=43πr3=43π?18=16πm3,∵圓柱的高為2米,∴V圓柱=πr2?h=π×14×2=12πm3,∴該“浮球”的體積是:V=V球+V圓柱=23π≈2.1m3;(2)圓柱筒的表面積為2πrh=2πm2;兩個半球的表面積為4πr2=πm2,∵圓柱形部分每平方米建造費用為20元,半球形部分每平方米建造費用為30元,∴該“浮球”的建造費用為2π×20+π×30=70π≈220元.25.若a=0.30.2,b=20.4,c=0.30.3,則a,b,c三個數(shù)的大小關(guān)系是:______(用符號“>”連接這三個字母)答案:∵1=0.30>0.30.2>0.30.3,又∵20.4>20=1,∴b>a>c.故為:b>a>c.26.已知:空間四邊形ABCD,AB=AC,DB=DC,求證:BC⊥AD.答案:取BC的中點為E,∵AB=AC,∴AE⊥BC.∵DB=DC,∴DE⊥BC.這樣,BC就和平面ADE內(nèi)的兩條相交直線AE、DE垂直,∴BC⊥面ADE,∴BC⊥AD.27.關(guān)于生活中的圓錐曲線,有下面幾個結(jié)論:

(1)標(biāo)準(zhǔn)田徑運動場的內(nèi)道是一個橢圓;

(2)接受衛(wèi)星轉(zhuǎn)播的電視信號的天線設(shè)備,其軸截面與天線設(shè)備的交線是拋物線;

(3)大型熱電廠的冷卻通風(fēng)塔,其軸截面與通風(fēng)塔的交線是雙曲線;

(4)地球圍繞太陽運行的軌跡可以近似地看成一個橢圓.

其中正確命題的序號是______(把你認(rèn)為正確命題的序號都填上).答案:(1)標(biāo)準(zhǔn)田徑運動場的內(nèi)道是有直道和彎道部分是半圓組成,不是橢圓.故錯誤(2)接受衛(wèi)星轉(zhuǎn)播的電視信號的天線設(shè)備,其軸截面與天線設(shè)備的交線是拋物線.故正確.(3)大型熱電廠的冷卻通風(fēng)塔,其軸截面與通風(fēng)塔的交線是雙曲線.故正確.(4)地球圍繞太陽運行的軌跡可以近似地看成一個橢圓.故正確.故為:(2)(3)(4)28.如圖,AB是⊙O的直徑,P是AB延長線上的一點.過P作⊙O的切線,切點為C,PC=23,若∠CAP=30°,則⊙O的直徑AB=______.答案:連接BC,設(shè)圓的直徑是x則三角形ABC是一個含有30°角的三角形,∴BC=12AB,三角形BPC是一個等腰三角形,BC=BP=12AB,∵PC是圓的切線,PA是圓的割線,∴PC2=PB?PC=12x?32x=34x2,∵PC=23,∴x=4,故為:429.已知函數(shù)f(x)=|log2x-1|+|log2x-2|,解不等式f(x)>4.答案:f(x)=|log2x-1|+|log2x-2|,取絕對值得:f(x)=3-2log2x,0<x<21,2≤x≤42log2x-3,x>4所以f(x)>4等價于:0<x≤23-2log2x>4或x≥42log2x-3>4,解得:0<x<22或x>82.30.計算:x10÷x5=______.答案:根據(jù)有理數(shù)指數(shù)冪的運算性質(zhì):x10÷x5=x5故為:x531.已知一物體在共點力F1=(lg2,lg2),F(xiàn)2=(lg5,lg2)的作用下產(chǎn)生位移S=(2lg5,1),則這兩個共點力對物體做的總功W為()A.1B.2C.lg2D.lg5答案:∵F1+F2=(lg2,lg2)+(lg5,lg2)=(1,2lg2)又∵在共點力的作用下產(chǎn)生位移S=(2lg5,1)∴這兩個共點力對物體做的總功W為(1,2lg2)?(2lg5,1)=2lg5+2lg2=2故選B32.若將推理“四邊形的內(nèi)角和為360°,所以平行四邊形的內(nèi)角和為360°”改為三段論的形式,則它的小前提是______.答案:將推理“四邊形的內(nèi)角和為360°,所以平行四邊形的內(nèi)角和為360°”改為三段論的形式,因為四邊形的內(nèi)角和為360°,平行四邊形是四邊形,所以平行四邊形的內(nèi)角和為360°大前提:四邊形的內(nèi)角和為360°;小前提:平行四邊形是四邊形;結(jié)論:平行四邊形的內(nèi)角和為360°.故為:平行四邊形是四邊形.33.

已知向量

=(4,3),=(1,2),若向量

+k

-

垂直,則k的值為(

)A.

233B.7C.-

115D.-

233答案:考點:數(shù)量積判斷兩個平面向量的垂直關(guān)系.34.已知曲線C的參數(shù)方程為x=4t2y=t(t為參數(shù)),若點P(m,2)在曲線C上,則m=______.答案:因為曲線C的參數(shù)方程為x=4t2y=t(t為參數(shù)),消去參數(shù)t得:x=4y2;∵點P(m,2)在曲線C上,所以m=4×4=16.故為:16.35.在平面直角坐標(biāo)系中,已知向量a=(-1,2),又點A(8,0),B(n,t),C(ksinθ,t)(0≤θ≤π2).

(1)若AB⊥a,且|AB|=5|OA|(O為坐標(biāo)原點),求向量OB;

(2)若向量AC與向量a共線,當(dāng)k>4,且tsinθ取最大值4時,求OA?OC.答案:(1)∵點A(8,0),B(n,t),∴AB=(n-8,t),∵AB⊥a,∴AB?a=(n-8,t)?(-1,2)=0,得n=2t+8.則AB=(2t,t),又|AB|=5|OA|,|OA|=8.∴(2t)2+t2=5×64,解得t=±8,當(dāng)t=8時,n=24;當(dāng)t=-8時,n=-8.∴OB=(24,8)或OB=(-8,-8).(2)∵向量AC與向量a共線,∴t=-2ksinθ+16,tsinθ=(-2ksinθ+16)sinθ=-2k(sinθ-4k)2+32k.∵k>4,∴0<4k<1,故當(dāng)sinθ=4k時,tsinθ取最大值32k,有32k=4,得k=8.這時,sinθ=12,k=8,tsinθ=4,得t=8,則OC=(4,8).∴OA?OC=(8,0)?(4,8)=32.36.若向量a=(4,2,-4),b=(6,-

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論