版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
長風(fēng)破浪會有時,直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年江蘇建筑職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.如圖,已知⊙O的直徑AB=5,C為圓周上一點(diǎn),BC=4,過點(diǎn)C作⊙O的切線l,過點(diǎn)A作l的垂線AD,垂足為D,則CD=______.
答案:如圖,連接OC,由題意DC是切線可得出OC⊥DC,再過過A作AE⊥OC于E,故有四邊形AECD是矩形,可得AE=CD又⊙O的直徑AB=5,C為圓周上一點(diǎn),BC=4,∴AC=3故S△AOC=12S△ABC=12×12×4×3=3又OC=52,故12×52×AE=3解得AE=125所以CD=125故為:125.2.設(shè)a=log32,b=log23,c=,則()
A.c<b<a
B.a(chǎn)<c<b
C.c<a<b
D.b<c<a答案:C3.引入復(fù)數(shù)后,數(shù)系的結(jié)構(gòu)圖為()
A.
B.
C.
D.
答案:A4.選修4-2:矩陣與變換
已知矩陣A=33cd,若矩陣A屬于特征值6的一個特征向量為α1=11,屬于特征值1的一個特征向量為α2=3-2.求矩陣A的逆矩陣.答案:由矩陣A屬于特征值6的一個特征向量為α1=11,可得33cd11=611,即c+d=6;由矩陣A屬于特征值1的一個特征向量為α2=3-2可得,33cd3-2=3-2,即3c-2d=-2,解得c=2d=4,即A=3324,A逆矩陣是23-12-1312.5.若平面α與β的法向量分別是a=(1,0,-2),b=(-1,0,2),則平面α與β的位置關(guān)系是()A.平行B.垂直C.相交不垂直D.無法判斷答案:∵a=(1,0,-2),b=(-1,0,2),∴a+b=(1-1,0+0,-2+2)=(0,0,0),即a+b=0由此可得a∥b∵a、b分別是平面α與β的法向量∴平面α與β的法向量平行,可得平面α與β互相平行.6.底面直徑和高都是4cm的圓柱的側(cè)面積為______cm2.答案:∵圓柱的底面直徑和高都是4cm,∴圓柱的底面圓的周長是2π×2=4π∴圓柱的側(cè)面積是4π×4=16π,故為:16π.7.盒子中有10張獎券,其中3張有獎,甲、乙先后從中各抽取1張(不放回),記“甲中獎”為A,“乙中獎”為B.
(1)求P(A),P(B),P(AB),P(A|B);
(2)A與B是否相互獨(dú)立,說明理由.答案:(1)P(A)==,P(B)=,P(AB)==,P(A|B)=.(2)因?yàn)镻(A)≠P(A|B),所以A與B不相互獨(dú)立.解析:(1)P(A)==,P(B)=,P(AB)==,P(A|B)=.(2)因?yàn)镻(A)≠P(A|B),所以A與B不相互獨(dú)立.8.若A∩B=A∪B,則A______B.答案:設(shè)有集合W=A∪B=B∩C,根據(jù)并集的性質(zhì),W=A∪B?A?W,B?W,根據(jù)交集的性質(zhì),W=A∩B?W?A,W?B由集合子集的性質(zhì),A=B=W,故為:=.9.某種產(chǎn)品的廣告費(fèi)支出x與銷售額y(單位:萬元)之間有如下一組數(shù)據(jù):
x24568y3040605070若y與x之間的關(guān)系符合回歸直線方程y=6.5x+a,則a的值是()A.17.5B.27.5C.17D.14答案:由表格得.x=5,.y=50.
∵y關(guān)于x的線性回歸方程為y=6.5x+a,∴50=6.5×5+a,∴a=17.5.故選A.10.設(shè)15000件產(chǎn)品中有1000件次品,從中抽取150件進(jìn)行檢查,則查得次品數(shù)的數(shù)學(xué)期望為______.答案:∵15000件產(chǎn)品中有1000件次品,從中抽取150件進(jìn)行檢查,∴查得次品數(shù)的數(shù)學(xué)期望為150×100015000=10.故為10.11.俊、杰兄弟倆分別在P、Q兩籃球隊(duì)效力,P隊(duì)、Q隊(duì)分別有14和15名球員,且每個隊(duì)員在各自隊(duì)中被安排首發(fā)上場的機(jī)會是均等的,則P、Q兩隊(duì)交戰(zhàn)時,俊、杰兄弟倆同為首發(fā)上場交戰(zhàn)的概率是(首發(fā)上場各隊(duì)五名隊(duì)員)(
)A.B.C.D.答案:B解析:解:P(俊首發(fā))=
P(杰首發(fā))==P(俊、杰同首發(fā))=
選B評析:考察考生等可能事件的概率與相互獨(dú)立事件的概率問題。12.已知z=1+i,則|z|=______.答案:由z=1+i,所以|z|=12+12=2.故為2.13.在三棱錐O-ABC中,M,N分別是OA,BC的中點(diǎn),點(diǎn)G是MN的中點(diǎn),則OG可用基底{OA,OB,OC}表示成:OG=______.答案:如圖,連接ON,在△OBC中,點(diǎn)N是BC中點(diǎn),則由平行四邊形法則得ON=12(OB+OC)在△OMN中,點(diǎn)G是MN中點(diǎn),則由平行四邊形法則得OG=12(OM+ON)=12OM+12ON=14OA+12?12(OB+OC)14(OA+OB+OC),故為:14(OA+OB+OC).14.圓心在原點(diǎn)且圓周被直線3x+4y+15=0分成1:2兩部分的圓的方程為
______.答案:如圖,因?yàn)閳A周被直線3x+4y+15=0分成1:2兩部分,所以∠AOB=120°.而圓心到直線3x+4y+15=0的距離d=1532+42=3,在△AOB中,可求得OA=6.所以所求圓的方程為x2+y2=36.故為:x2+y2=3615.已知集合A={0,2,a2},B={1,a},若A∪B={0,1,2,4},則實(shí)數(shù)a的值為______.答案:根據(jù)題意,集合A={0,2,a2},B={1,a},且A∪B={0,1,2,4},則有a=4,或a=4,a=4時,A={0,2,16},B={1,4},A∪B={0,1,2,4,16},不合題意,舍去;a=2時,A={0,2,4},B={1,2},A∪B={0,1,2,4},符合;故a=2.16.已知實(shí)數(shù)a,b滿足等式2a=3b,下列五個關(guān)系式:①0<b<a;②a<b<0;③0<a<b;④b<a<0;
⑤a=b.其中可能成立的關(guān)系式有()
A.①②③
B.①②⑤
C.①③⑤
D.③④⑤答案:B17.若A(x,5-x,2x-1),B(1,x+2,2-x),當(dāng)||取最小值時,x的值等于(
)
A.
B.
C.
D.答案:C18.設(shè)a,b,c是正實(shí)數(shù),求證:aabbcc≥(abc)a+b+c3.答案:證明:不妨設(shè)a≥b≥c>0,則lga≥lgb≥lgc.據(jù)排序不等式有:alga+blgb+clgc≥blga+clgb+algcalga+blgb+clgc≥clga+algb+blgcalga+blgb+clgc=alga+blgb+clgc上述三式相加得:3(alga+blgb+clgc)≥(a+b+c)(lga+lgb+lgc)即lg(aabbcc)≥a+b+c3lg(abc)故aabbcc≥(abc)a+b+c3.19.設(shè)求證:答案:證明見解析解析:證明:∵
∴∴,∴本題利用,對中每項(xiàng)都進(jìn)行了放縮,從而得到可以求和的數(shù)列,達(dá)到化簡的目的。20.下列命題中,錯誤的是()
A.平行于同一條直線的兩個平面平行
B.平行于同一個平面的兩個平面平行
C.一個平面與兩個平行平面相交,交線平行
D.一條直線與兩個平行平面中的一個相交,則必與另一個相交答案:A21.(幾何證明選講選選做題)如圖,AC是⊙O的直徑,B是⊙O上一點(diǎn),∠ABC的平分線與⊙O相交于.D已知BC=1,AB=3,則AD=______;過B、D分別作⊙O的切線,則這兩條切線的夾角θ=______.答案:∵AC是⊙O的直徑,B是⊙O上一點(diǎn)∴∠ABC=90°∵∠ABC的平分線與⊙O相交于D,BC=1,AB=3∴∠C=60°,∠BAC=30°,∠ABD=∠CBD=45°由圓周角定理可知∠C=∠ADB=60°△ABD中,由正弦定理可得ABsin60°=ADsin45°即AD=3sin60°×sin45°=2∵∠BAD=30°+45°=75°∴∠BOD=2∠BAD=150°設(shè)所作的兩切線交于點(diǎn)P,連接OB,OD,則可得OB⊥PB,OD⊥PD即∠OBP=∠ODP=90°∴點(diǎn)ODPB共圓∴∠P+∠BOD=180°∴∠P=30°故為:2,30°22.給出以下四個對象,其中能構(gòu)成集合的有()
①教2011屆高一的年輕教師;
②你所在班中身高超過1.70米的同學(xué);
③2010年廣州亞運(yùn)會的比賽項(xiàng)目;
④1,3,5.A.1個B.2個C.3個D.4個答案:解析:因?yàn)槲匆?guī)定年輕的標(biāo)準(zhǔn),所以①不能構(gòu)成集合;由于②③④中的對象具備確定性、互異性,所以②③④能構(gòu)成集合.故選C.23.我們稱正整數(shù)n為“好數(shù)”,如果n的二進(jìn)制表示中1的個數(shù)多于0的個數(shù).如6=(110):為好數(shù),1984=(11111000000);不為好數(shù),則:
(1)二進(jìn)制表示中恰有5位數(shù)碼的好數(shù)共有______個;
(2)不超過2012的好數(shù)共有______個.答案:(1)二進(jìn)制表示中恰有5位數(shù)碼的二進(jìn)制數(shù)分別為:10000,10001,10010,10011,10100,10101,10110,10111,11000,11001,11010,11011,11100,11101,11110,11111,共十六個數(shù),再結(jié)合好數(shù)的定義,得到其中好數(shù)有11個;(2)整數(shù)2012的二進(jìn)制數(shù)為:11111011100,它是一個十一位的二進(jìn)制數(shù).其中一位的二進(jìn)制數(shù)是:1,共有C11個;其中二位的二進(jìn)制數(shù)是:11,共有C22個;
其中三位的二進(jìn)制數(shù)是:101,110,111,共有C12+C22個;
其中四位的二進(jìn)制數(shù)是:1011,1101,1110,1111,共有C23+C33個;
其中五位的二進(jìn)制數(shù)是:10011,10101,10110,11001,11010,11100,10111,11011,11101,11110,11111,共有C24+C34+C44個;
以此類推,其中十位的二進(jìn)制數(shù)是:共有C49+C59+C69+C79+C89+C99個;其中十一位的小于2012二進(jìn)制數(shù)是:共有24+4個;一共不超過2012的好數(shù)共有1164個.故1065個24.設(shè)D為△ABC的邊AB上一點(diǎn),P為△ABC內(nèi)一點(diǎn),且滿足AD=23AB,AP=AD+14BC,則S△APDS△ABC=()A.29B.16C.754D.427答案:由題意,AP=AD+DP,AP=AD+14BC∴DP=14BC∴三角形ADP的高三角形ABC=ADAB=23∴S△APDS△ABC=23×14=16故選B.25.已知矩陣A=12-14,向量a=74.
(1)求矩陣A的特征值λ1、λ2和特征向量α1、α2;
(2)求A5α的值.答案:(1)矩陣A的特征多項(xiàng)式為f(λ)=.λ-1-21λ-4.=λ2-5λ+6,令f(λ)=0,得λ1=2,λ2=3,當(dāng)λ1=2時,得α1=21,當(dāng)λ2=3時,得α2=11.(7分)(2)由α=mα1+nα2得2m+n=7m+n=4,得m=3,n=1.∴A5α=A5(3α1+α2)=3(A5α1)+A5α2=3(λ51α1)+λ52α2=3×2521+3511=435339.(15分)26.已知空間四邊形ABCD中,M、G分別為BC、CD的中點(diǎn),則等于()
A.
B.
C.
D.
答案:A27.已知隨機(jī)變量X~B(n,0.8),D(X)=1.6,則n的值是()
A.8
B.10
C.12
D.14答案:B28.圓錐的側(cè)面展開圖是一個半徑長為4的半圓,則此圓錐的底面半徑為
______.答案:設(shè)圓錐的底面半徑為R,則由題意得,2πR=π×4,即R=2,故為:2.29.拋物線y2=8x的焦點(diǎn)坐標(biāo)是______答案:拋物線y2=8x,所以p=4,所以焦點(diǎn)(2,0),故為(2,0)..30.擲一顆均勻的骰子,若隨機(jī)事件A表示“出現(xiàn)奇數(shù)點(diǎn)”,則A的對立事件B表示______.答案:擲一顆均勻的骰子,結(jié)果只有2種:出現(xiàn)奇數(shù)點(diǎn)、出現(xiàn)偶數(shù)點(diǎn).若隨機(jī)事件A表示“出現(xiàn)奇數(shù)點(diǎn)”,則A的對立事件B表示:“出現(xiàn)偶數(shù)點(diǎn)”,故為出現(xiàn)偶數(shù)點(diǎn).31.從甲、乙兩人手工制作的圓形產(chǎn)品中,各自隨機(jī)抽取6件,測得其直徑如下(單位:cm):
甲:9.00,9.20,9.00,8.50,9.10,9.20
乙:8.90,9.60,9.50,8.54,8.60,8.90
據(jù)以上數(shù)據(jù)估計(jì)兩人的技術(shù)穩(wěn)定性,結(jié)論是()
A.甲優(yōu)于乙
B.乙優(yōu)于甲
C.兩人沒區(qū)別
D.無法判斷答案:A32.若直線x=1的傾斜角為α,則α等于
______.答案:因?yàn)橹本€x=1與y軸平行,所以直線x=1的傾斜角為90°.故為:90°33.如圖,已知圓中兩條弦AB與CD相交于點(diǎn)F,E是AB延長線上一點(diǎn),且
DF=CF=2,AF:FB:BE=4:2:1.若CE與圓相切,則CE的長為.答案:設(shè)AF=4k,BF=2k,BE=k,由DF?FC=AF?BF,得2=8k2,即k=12,∴AF=2,BF=1,BE=12,AE=72,由切割定理得CE2=BE?EA=12×72=74∴CE=7234.解關(guān)于x的不等式(k≥0,k≠1).答案:不等式的解集為{x|x2}解析:原不等式即,1°若k=0,原不等式的解集為空集;2°若1-k>0,即0,所以原不等式的解集為{x|x2}.</k<1,由原不等式的解集為{x|2<x<</k<1時,原不等式等價于35.在復(fù)數(shù)范圍內(nèi)解方程|z|2+(z+.z)i=3-i2+i(i為虛數(shù)單位).答案:原方程化簡為|z|2+(z+.z)i=1-i,設(shè)z=x+yi(x、y∈R),代入上述方程得x2+y2+2xi=1-i,∴x2+y2=1且2x=-1,解得x=-12且y=±32,∴原方程的解是z=-12±32i.36.“龜兔賽跑”講述了這樣的故事:領(lǐng)先的兔子看著慢慢爬行的烏龜,驕傲起來,睡了一覺,當(dāng)它醒來時,發(fā)現(xiàn)烏龜快到終點(diǎn)了,于是急忙追趕,但為時已晚,烏龜還是先到達(dá)了終點(diǎn)…,用S1、S2分別表示烏龜和兔子所行的路程,t為時間,則下圖與故事情節(jié)相吻合的是()
A.
B.
C.
D.
答案:B37.已知雙曲線x2-y23=1,過P(2,1)點(diǎn)作一直線交雙曲線于A、B兩點(diǎn),并使P為AB的中點(diǎn),則直線AB的斜率為______.答案:設(shè)A(x1,y1)、B(x2,y2),代入雙曲線方程x2-y23=1相減得直線AB的斜率kAB=y1-y2x1-x2=3(x1+x2)y1+y2=3×x1+x22y1+y22=3×21=6.故為:638.曲線的極坐標(biāo)方程ρ=4sinθ化為直角坐標(biāo)方程為______.答案:將原極坐標(biāo)方程ρ=4sinθ,化為:ρ2=4ρsinθ,化成直角坐標(biāo)方程為:x2+y2-4y=0,即x2+(y-2)2=4.故為:x2+(y-2)2=4.39.某教師出了一份三道題的測試卷,每道題1分,全班得3分、2分、1分和0分的學(xué)生所占比例分別為30%、50%、10%和10%,則全班學(xué)生的平均分為______分.答案:∵全班得3分、2分、1分和0分的學(xué)生所占比例分別為30%、50%、10%和10%,∴全班的平均分是3×30%+2×50%+1×10%+0×10%=2,故為:240.探照燈反射鏡的縱斷面是拋物線的一部分,光源在拋物線的焦點(diǎn),已知燈口直徑是60
cm,燈深40
cm,則光源到反射鏡頂點(diǎn)的距離是
______cm.答案:設(shè)拋物線方程為y2=2px(p>0),點(diǎn)(40,30)在拋物線y2=2px上,∴900=2p×40.∴p=454.∴p2=458.因此,光源到反射鏡頂點(diǎn)的距離為458cm.41.設(shè)a=0.7,b=0.8,c=log30.7,則()
A.c<b<a
B.c<a<b
C.a(chǎn)<b<c
D.b<a<c答案:B42.已知a=0.80.7,b=0.80.9,c=1.20.8,則a、b、c按從小到大的順序排列為
______.答案:由指數(shù)函數(shù)y=0.8x知,∵0.7<0.9,∴0.80.9<0.80.7<1,即b<a,又c=1.20.8>1,∴b<a<c.b<a<c43.已知兩定點(diǎn)F1(5,0),F(xiàn)2(-5,0),曲線C上的點(diǎn)P到F1、F2的距離之差的絕對值是8,則曲線C的方程為()A.x29-y216=1B.x216-y29=1C.x225-y236=1D.y225-x236=1答案:據(jù)雙曲線的定義知:P的軌跡是以F1(5,0),F(xiàn)2(-5,0)為焦點(diǎn),以實(shí)軸長為8的雙曲線.所以c=5,a=4,b2=c2-a2=9,所以雙曲線的方程為:x216-y29=1故選B44.已知ABCD是平行四邊形,P點(diǎn)是ABCD所在平面外的一點(diǎn),連接PA、PB、PC、PD.設(shè)點(diǎn)E、F、G、H分別為△PAB、△PBC、△PCD、△PDA的重心.
(1)試用向量方法證明E、F、G、H四點(diǎn)共面;
(2)試判斷平面EFGH與平面ABCD的位置關(guān)系,并用向量方法證明你的判斷.答案:(1)證明略(2)平面EFGH∥平面ABCD解析:(1)
分別延長PE、PF、PG、PH交對邊于M、N、Q、R點(diǎn),因?yàn)镋、F、G、H分別是所在三角形的重心,所以M、N、Q、R為所在邊的中點(diǎn),順次連接M、N、Q、R得到的四邊形為平行四邊形,且有=,=,=,
=∴=+=(-)+(-)=(-)+(-)=(+)又∵=-=-=∴=(+),∴=+由共面向量定理知:E、F、G、H四點(diǎn)共面.(2)
由(1)得=,故∥.又∵平面ABC,EG平面ABC.∴EG∥平面ABC.又∵=-=-=∴MN∥EF,又∵M(jìn)N平面ABC,EF平面ABC,EF∥平面ABC.∵EG與EF交于E點(diǎn),∴平面EFGH∥平面ABCD.45.已知圓M的方程為:(x+3)2+y2=100及定點(diǎn)N(3,0),動點(diǎn)P在圓M上運(yùn)動,線段PN的垂直平分線交圓M的半徑MP于Q點(diǎn),設(shè)點(diǎn)Q的軌跡為曲線C,則曲線C的方程是______.答案:連接QN,如圖由已知,得|QN|=|QP|,所以|QM|+|QN|=|QM|+|QN|=|MP|=10又|MN|=6,10>6,根據(jù)橢圓的定義,點(diǎn)Q的軌跡是M,N為焦點(diǎn),以10為長軸長的橢圓,所以2a=10,2c=6,所以b=4,所以,點(diǎn)Q的軌跡方程為:x225+y216=1故為:x225+y216=146.有以下四個結(jié)論:
①lg(lg10)=0;
②lg(lne)=0;
③若e=lnx,則x=e2;
④ln(lg1)=0.
其中正確的是()
A.①②
B.①②③
C.①②④
D.②③④答案:A47.兩平行直線x+3y-4=0與2x+6y-9=0的距離是
______.答案:由直線x+3y-4=0取一點(diǎn)A,令y=0得到x=4,即A(4,0),則兩平行直線的距離等于A到直線2x+6y-9=0的距離d=|8-9|22+62=1210=1020.故為:102048.不等式≥0的解集為[-2,3∪[7,+∞,則a-b+c的值是(
)A.2B.-2C.8D.6答案:B解析:∵-a、b的值為-2,7中的一個,x≠c
c=3∴a-b=-(b-a)=-(-2+7)=-5a-b+c=-5+3=-2
選B評析:考察考生對不等式解集的結(jié)構(gòu)特征的理解,關(guān)注不等式中等號與不等號的關(guān)系。49.已知:關(guān)于x的方程2x2+kx-1=0
(1)求證:方程有兩個不相等的實(shí)數(shù)根;
(2)若方程的一個根是-1,求另一個根及k值.答案:(1)證明:2x2+kx-1=0,△=k2-4×2×(-1)=k2+8,無論k取何值,k2≥0,所以k2+8>0,即△>0,∴方程2x2+kx-1=0有兩個不相等的實(shí)數(shù)根.(2)設(shè)2x2+kx-1=0的另一個根為x,則x-1=-k2,(-1)?x=-12,解得:x=12,k=1,∴2x2+kx-1=0的另一個根為12,k的值為1.50.已知直線方程l1:2x-4y+7=0,l2:x-2y+5=0,則l1與l2的關(guān)系()
A.平行
B.重合
C.相交
D.以上答案都不對答案:A第2卷一.綜合題(共50題)1.如圖為△ABC和一圓的重迭情形,此圓與直線BC相切于C點(diǎn),且與AC交于另一點(diǎn)D.若∠A=70°,∠B=60°,則的度數(shù)為何()
A.50°
B.60°
C.100°
D.120°
答案:C2.在邊長為1的正方形ABCD中,若AB=a,BC=b,AC=c.則|a+b+2c|的值是______.答案:由題意可得|a|=|b|=1,|c|=2,a+
b=c,∴|a+b+2c|=|3c|=32,故為32.3.(選修4-4:坐標(biāo)系與參數(shù)方程)
在直角坐標(biāo)系xoy中,直線l的參數(shù)方程為x=3-22ty=5+22t(t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xoy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為ρ=25sinθ.
(Ⅰ)求圓C的直角坐標(biāo)方程;
(Ⅱ)設(shè)圓C與直線l交于點(diǎn)A、B,若點(diǎn)P的坐標(biāo)為(3,5),求|PA|+|PB|.答案:(Ⅰ)∵圓C的方程為ρ=25sinθ.∴x2+y2-25y=0,即圓C的直角坐標(biāo)方程:x2+(y-5)2=5.(Ⅱ)(3-22t)2+(22t)2=5,即t2-32t+4=0,由于△=(32)2-4×4=2>0,故可設(shè)t1,t2是上述方程的兩實(shí)根,所以t1+t2=32t1t2=4,又直線l過點(diǎn)P(3,5),故|PA|+|PB|=|t1|+|t2|=t1+t2=324.設(shè)全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},則(CuA)∩B=()A.{2}B.{4,6}C.{l,3,5}D.{4,6,7,8}答案:∵全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},∴CUA={4,6,7,8},∴(CuA)∩B={4,6}.故選B.5.袋中有5個小球(3白2黑),現(xiàn)從袋中每次取一個球,不放回地抽取兩次,則在第一次取到白球的條件下,第二次取到白球的概率是()
A.
B.
C.
D.答案:C6.有外形相同的球分裝三個盒子,每盒10個.其中,第一個盒子中7個球標(biāo)有字母A、3個球標(biāo)有字母B;第二個盒子中有紅球和白球各5個;第三個盒子中則有紅球8個,白球2個.試驗(yàn)按如下規(guī)則進(jìn)行:先在第一號盒子中任取一球,若取得標(biāo)有字母A的球,則在第二號盒子中任取一個球;若第一次取得標(biāo)有字母B的球,則在第三號盒子中任取一個球.如果第二次取出的是紅球,則稱試驗(yàn)成功,那么試驗(yàn)成功的概率為()
A.0.59
B.0.54
C.0.8
D.0.15答案:A7.設(shè)O、A、B、C為平面上四個點(diǎn),(
)
A.2
B.2
C.3
D.3答案:C8.若m∈{-2,-1,1,2},n∈{-2,-1,1,2,3},則方程x2m+y2n=1表示的是雙曲線的概率為______.答案:由題意,方程x2m+y2n=1表示雙曲線時,mn<0,m>0,n<0時,有2×2=4種,m<0,n>0時,有2×3=6種∵m,n的取值共有4×5=20種∴方程x2m+y2n=1表示的是雙曲線的概率為4+620=12故為:129.選修4-4參數(shù)方程與極坐標(biāo)
在平面直角坐標(biāo)系xOy中,動圓x2+y2-8xcosθ-6ysinθ+7cos2θ+8=0(θ∈R)的圓心為P(x0,y0),求2x0-y0的取值范圍.答案:將圓的方程整理得:(x-4cosθ)2+(y-3sinθ)2=1由題設(shè)得x0=4cosθy0=3sinθ(θ為參數(shù),θ∈R).所以2x0-y0=8cosθ-3sinθ=73cos(θ+φ),所以
-73≤2x0-y0≤73.10.已知橢圓的中心在原點(diǎn),對稱軸為坐標(biāo)軸,焦點(diǎn)在x軸上,短軸的一個頂點(diǎn)B與兩個焦點(diǎn)F1,F(xiàn)2組成的三角形的周長為4+23,且∠F1BF2=2π3,求橢圓的標(biāo)準(zhǔn)方程.答案::設(shè)長軸長為2a,焦距為2c,則在△F2OB中,由∠F2BO=π3得:c=32a,所以△F2BF1的周長為2a+2c=2a+3a=4+23,∴a=2,c=3,∴b2=1;故所求橢圓的標(biāo)準(zhǔn)方程為x24+y2=1.11.兩個樣本甲和乙,其中=10,=10,=0.055,=0.015,那么樣本甲比樣本乙波動()
A.大
B.相等
C.小
D.無法確定答案:A12.已知平行四邊形的三個頂點(diǎn)A(-2,1),B(-1,3),C(3,4),求第四個頂點(diǎn)D的坐標(biāo).答案:若構(gòu)成的平行四邊形為ABCD1,即AC為一條對角線,設(shè)D1(x,y),則由AC中點(diǎn)也是BD1中點(diǎn),可得
-2+32=x-121+42=y+32,解得
x=2y=2,∴D1(2,2).同理可得,若構(gòu)成以AB為對角線的平行四邊形ACBD2,則D2(-6,0);以BC為對角線的平行四邊形ACD3B,則D3(4,6),∴第四個頂點(diǎn)D的坐標(biāo)為:(2,2),或(-6,0),或(4,6).13.如果關(guān)于x的不等式|x-4|-|x+5|≥b的解集為空集,則實(shí)數(shù)b的取值范圍為______.答案:|x-4|-|x+5|的幾何意義就是數(shù)軸上的點(diǎn)到4的距離與到-5的距離的差,差的最大值為9,如果關(guān)于x的不等式|x-4|-|x+5|≥b的解集為空集,則實(shí)數(shù)b的取值范圍為b>9;故為:b>9.14.已知拋物線x2=4y上的點(diǎn)p到焦點(diǎn)的距離是10,則p點(diǎn)坐標(biāo)是
______.答案:根據(jù)拋物線方程可求得焦點(diǎn)坐標(biāo)為(0,1)根據(jù)拋物線定義可知點(diǎn)p到焦點(diǎn)的距離與到準(zhǔn)線的距離相等,∴yp+1=10,求得yp=9,代入拋物線方程求得x=±6∴p點(diǎn)坐標(biāo)是(±6,9)故為:(±6,9)15.若以連續(xù)擲兩次骰子分別得到的點(diǎn)數(shù)m、n作為點(diǎn)P的坐標(biāo),則點(diǎn)P落在圓x2+y2=16內(nèi)的概率是______.答案:由題意知,本題是一個古典概型,試驗(yàn)發(fā)生包含的事件是連續(xù)擲兩次骰子分別得到的點(diǎn)數(shù)m、n作為點(diǎn)P的坐標(biāo),共有6×6=36種結(jié)果,而滿足條件的事件是點(diǎn)P落在圓x2+y2=16內(nèi),列舉出落在圓內(nèi)的情況:(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)(3,1)(3,2),共有8種結(jié)果,根據(jù)古典概型概率公式得到P=836=29,故為:2916.若平面向量a與b的夾角為120°,a=(2,0),|b|=1,則|a+2b|=______.答案:∵|a+2b|=(a+2b)2=a
2+4a?b+4
b2=|a|2+4|a||b|cos<a,b>+4|b|2=22+4×2×1cos120°+4×1=2.故為:217.某種燈泡的耐用時間超過1000小時的概率為0.2,有3個相互獨(dú)立的燈泡在使用1000小時以后,最多只有1個損壞的概率是()
A.0.008
B.0.488
C.0.096
D.0.104答案:D18.如果橢圓x225+y216=1上一點(diǎn)P到焦點(diǎn)F1的距離為6,則點(diǎn)P到另一個焦點(diǎn)F2的距離為()A.5B.4C.8D.6答案:由橢圓的定義知|PF1|+|PF2|=2a=10,|PF1|=6,故|PF2|=4.故選B.19.意大利數(shù)學(xué)家菲波拉契,在1202年出版的一書里提出了這樣的一個問題:一對兔子飼養(yǎng)到第二個月進(jìn)入成年,第三個月生一對小兔,以后每個月生一對小兔,所生小兔能全部存活并且也是第二個月成年,第三個月生一對小兔,以后每月生一對小兔.問這樣下去到年底應(yīng)有多少對兔子?試畫出解決此問題的程序框圖,并編寫相應(yīng)的程序.答案:見解析解析:解:根據(jù)題意可知,第一個月有對小兔,第二個月有對成年兔子,第三個月有兩對兔子,從第三個月開始,每個月的兔子對數(shù)是前面兩個月兔子對數(shù)的和,設(shè)第個月有對兔子,第個月有對兔子,第個月有對兔子,則有,一個月后,即第個月時,式中變量的新值應(yīng)變第個月兔子的對數(shù)(的舊值),變量的新值應(yīng)變?yōu)榈趥€月兔子的對數(shù)(的舊值),這樣,用求出變量的新值就是個月兔子的數(shù),依此類推,可以得到一個數(shù)序列,數(shù)序列的第項(xiàng)就是年底應(yīng)有兔子對數(shù),我們可以先確定前兩個月的兔子對數(shù)均為,以此為基準(zhǔn),構(gòu)造一個循環(huán)程序,讓表示“第×個月的從逐次增加,一直變化到,最后一次循環(huán)得到的就是所求結(jié)果.流程圖和程序如下:S=1Q=1I=3WHILE
I<=12F=S+QQ=SS=FI=I+1WENDPRINT
FEND20.已知0<a<2,復(fù)數(shù)z的實(shí)部為a,虛部為1,則|z|的取值范圍是()A.(1,5)B.(1,3)C.(1,5)D.(1,3)答案:|z|=a2+1,而0<a<2,∴1<|z|<5,故選C.21.若函數(shù)y=f(x)是函數(shù)y=ax(a>0且a≠1)的反函數(shù),且y=f(x)的圖象過點(diǎn)(2,1),則f(x)=______.答案:因?yàn)楹瘮?shù)y=f(x)是函數(shù)y=ax(a>0且a≠1)的反函數(shù),且y=f(x)的圖象過點(diǎn)(2,1),所以函數(shù)y=ax經(jīng)過(1,2),所以a=2,所以函數(shù)y=f(x)=log2x.故為:log2x.22.若矩陣A=是表示我校2011屆學(xué)生高二上學(xué)期的期中成績矩陣,A中元素aij(i=1,2,3,4;j=1,2,3,4,5,6)的含義如下:i=1表示語文成績,i=2表示數(shù)學(xué)成績,i=3表示英語成績,i=4表示語數(shù)外三門總分成績j=k,k∈N*表示第50k名分?jǐn)?shù).若經(jīng)過一定量的努力,各科能前進(jìn)的名次是一樣的.現(xiàn)小明的各科排名均在250左右,他想盡量提高三門總分分?jǐn)?shù),那么他應(yīng)把努力方向主要放在哪一門學(xué)科上()
A.語文
B.?dāng)?shù)學(xué)
C.外語
D.都一樣答案:B23.下列選項(xiàng)中元素的全體可以組成集合的是()A.2013年1月風(fēng)度中學(xué)高一級高個子學(xué)生B.校園中長的高大的樹木C.2013年1月風(fēng)度中學(xué)高一級在校學(xué)生D.學(xué)?;@球水平較高的學(xué)生答案:因?yàn)榧现性鼐哂校捍_定性、互異性、無序性.所以A、B、D都不是集合,元素不確定;故選C.24.若根據(jù)10名兒童的年齡
x(歲)和體重
y(㎏)數(shù)據(jù)用最小二乘法得到用年齡預(yù)報(bào)體重的回歸方程是
y=2x+7,已知這10名兒童的年齡分別是
2、3、3、5、2、6、7、3、4、5,則這10名兒童的平均體重是()
A.17㎏
B.16㎏
C.15㎏
D.14㎏答案:C25.袋中有4個形狀大小一樣的球,編號分別為1,2,3,4,從中任取2個球,則這2個球的編號之和為偶數(shù)的概率為()A.16B.23C.12D.13答案:根據(jù)題意,從4個球中取出2個,其編號的情況有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6種;其中編號之和為偶數(shù)的有(1,3),(2,4),共2種;則2個球的編號之和為偶數(shù)的概率P=26=13;故選D.26.用一枚質(zhì)地均勻的硬幣,甲、乙兩人做拋擲硬幣游戲,甲拋擲4次,記正面向上的次數(shù)為ξ;乙拋擲3次,記正面向上的次數(shù)為η.
(Ⅰ)分別求ξ和η的期望;
(Ⅱ)規(guī)定:若ξ>η,則甲獲勝;否則,乙獲勝.求甲獲勝的概率.答案:(Ⅰ)由題意,ξ~B(4,0.5),η~B(3,0.5),所以Eξ=4×0.5=2,Eη=3×0.5=1.5…(4分)(Ⅱ)P(ξ=1)=C14(12)4=14,P(ξ=2)=C24(12)4=38,P(ξ=3)=C34(12)4=14,P(ξ=4)=C44(12)4=116P(η=0)=C03(12)3=18,P(η=1)=C13(12)3=38,P(η=2)=C23(12)3=38,P(η=3)=C33(12)3=18…(8分)甲獲勝有以下情形:ξ=1,η=0;ξ=2,η=0,1;ξ=3,η=0,1,2;ξ=4,η=0,1,2,3則甲獲勝的概率為P=14×18+38(18+38)+14(18+38+38)+116×1=12.…(13分)27.若向量e1,e2不共線,且ke1+e2與e1+ke2可以作為平面內(nèi)的一組基底,則實(shí)數(shù)k的取值范圍為______.答案:∵當(dāng)(ke1+e2)∥(e1+ke2),∴ke1+e2=λ(e1+ke2),∴ke1+e2=λe1+λke2,∴k=λ,1=λk,∴k2=1,k=±1,故ke1+e2與e1+ke2可以作為平面內(nèi)的一組基底,則實(shí)數(shù)k的取值范圍為k≠±1.故為:k≠±1.28.直線上與點(diǎn)的距離等于的點(diǎn)的坐標(biāo)是_______。答案:,或29.曲線x2+ay+2y+2=0經(jīng)過點(diǎn)(2,-1),則a=______.答案:由題意,∵曲線x2+ay+2y+2=0經(jīng)過點(diǎn)(2,-1),∴22-a-2+2=0∴a=4故為430.已知空間四邊形OABC,M,N分別是OA,BC的中點(diǎn),且OA=a,OB=b,OC=c,用a,b,c表示向量MN為()A.12a+12b+12cB.12a-12b+12cC.-12a+12b+12cD.-12a+12b-12c答案:如圖所示,連接ON,AN,則ON=12(OB+OC)=12(b+c),AN=12(AC+AB)=12(OC-2OA+OB)=12(-2a+b+c)=-a+12b+12c,所以MN=12(ON+AN)=-12a+12b+12c.故選C.31.已知|a|=8,e是單位向量,當(dāng)它們之間的夾角為π3時,a在e方向上的投影為
______.答案:a在e方向上的投影為a?e=|a||e|cosπ3=4故為:432.將兩個數(shù)a=8,b=17交換,使a=17,b=8,下面語句正確一組是()
A.a(chǎn)=bb=a
B.c=b
b=a
a=c
C.b=aa=b
D.a(chǎn)=cc=bb=a答案:B33.已知函數(shù)f(x)=
-x+1,x<0x-1,x≥0,則不等式x+(x+1)f(x+1)≤1的解集是()
A.[-1,
2-1]B.(-∞,1]C.(-∞,
2-1]D.[-
2-1,
2-1]答案:C解析:由題意x+(x+1)f(x+1)=34.已知點(diǎn)A(1,2),直線l1:x=1+3ty=2-4t(t為參數(shù))與直線l2:2x-4y=5相交于點(diǎn)B,則A、B兩點(diǎn)之間的距離|AB|=______.答案:將x=1+3t,y=2-4t代入2x-4y=5,得t=12,所以兩直線的交點(diǎn)坐標(biāo)為(52,0)所以|AB|=(1-52)2+(2-0)2
=52.故為:5235.在△ABC中,已知A(2,3),B(8,-4),點(diǎn)G(2,-1)在中線AD上,且|AG|=2|GD|,則C的坐標(biāo)為______.答案:設(shè)C(x,y),則D(8+x2,-4+y2),再由AG=2GD,得(0,-4)=2(4+x2,-2+y2),∴4+x=0,-2+y=-4,即C(-4,-2)故為:(-4,-2).36.命題“若a>3,則a>5”的逆命題是______.答案:∵原命題“若a>3,則a>5”的條件是a>3,結(jié)論是a>5∴逆命題是“若a>5,則a>3”故為:若a>5,則a>337.已知正四棱柱的對角線的長為6,且對角線與底面所成角的余弦值為33,則該正四棱柱的體積等于______.答案::如圖可知:∵AC1=6,cos∠AC1A1=33∴A1C1=2,AA1=2∴正四棱柱的體積等于A1B12?AA1=2故為:238.經(jīng)過兩點(diǎn)A(-3,5),B(1,1
)的直線傾斜角為______.答案:因?yàn)閮牲c(diǎn)A(-3,5),B(1,1
)的直線的斜率為k=1-51-(-3)=-1所以直線的傾斜角為:135°.故為:135°.39.一個路口的紅綠燈,紅燈的時間為30秒,黃燈的時間為5秒,綠燈的時間為40秒,一學(xué)生到達(dá)該路口時,見到紅燈的概率是()A.25B.58C.115D.35答案:由題意知本題是一個那可能事件的概率,試驗(yàn)發(fā)生包含的事件是總的時間長度為30+5+40=75秒,設(shè)紅燈為事件A,滿足條件的事件是紅燈的時間為30秒,根據(jù)等可能事件的概率得到出現(xiàn)紅燈的概率P(A)=構(gòu)成事件A的時間長度總的時間長度=3075=25.故選A.40.已知f(x)=x2+4x+8,則f(3)=______.答案:f(3)=32+4×3+8=29,故為:29.41.設(shè)某批產(chǎn)品合格率為,不合格率為,現(xiàn)對該產(chǎn)品進(jìn)行測試,設(shè)第ε次首次取到正品,則P(ε=3)等于()
A.
B.
C.
D.答案:C42.如圖所示,有兩個獨(dú)立的轉(zhuǎn)盤(A)、(B),其中三個扇形區(qū)域的圓心角分別為60°、120°、180°.用這兩個轉(zhuǎn)盤玩游戲,規(guī)則是:依次隨機(jī)轉(zhuǎn)動兩個轉(zhuǎn)盤再隨機(jī)停下(指針固定不動,當(dāng)指針恰好落在分界線時,則這次轉(zhuǎn)動無效,重新開始)為一次游戲,記轉(zhuǎn)盤(A)指針?biāo)鶎Φ臄?shù)為X轉(zhuǎn)盤(B)指針對的數(shù)為Y設(shè)X+Yξ,每次游戲得到的獎勵分為ξ分.
(1)求X<2且Y>1時的概率
(2)某人玩12次游戲,求他平均可以得到多少獎勵分?答案:(1)由幾何概型知P(x=1)=16,P(x=2)=13,P(x=3)=12;
P(y=1)=13,P(y=2)=12,P(y=3)=16.則P(x<2)=P(x=1)=16,P(y>1)=p(y=2)+P(y=3)=23,P(x<2且y>1)=P(x<2)?P(y>1)=19.(2)ξ的取值范圍為2,3,4,6.P(ξ=2)=P(x=1)?P(y=1)=16×13=118;P(ξ=3)=P(x=1)?P(y=2)+P(x=2)?P(y=1)=16×12+13×13=736;P(ξ=4)=P(x=1)?P(y=3)+P(x=2)?P(y=2)+P(x=3)?P(y=1)=16×16+13×12+12×13=1336;P(ξ=5)=P(x=2)P(y=3)+P(x=3)P(y=2)=13×16+12×12=1136;P(ξ=6)=P(x=3)?P(y=3)=12×16=112.其分布為:ξ23456P11873613361136112他平均每次可得到的獎勵分為Eξ=2×118+3×736+4×1336+5×1136+6×112=256,所以,他玩12次平均可以得到的獎勵分為12×Eξ=50.43.從裝有2個紅球和2個黒球的口袋內(nèi)任取2個球,那么互斥而不對立的兩個事件是()
A.至少有一個黒球與都是紅球
B.至少有一個黒球與都是黒球
C.至少有一個黒球與至少有1個紅球
D.恰有1個黒球與恰有2個黒球答案:D44.圓x=1+cosθy=1+sinθ(θ為參數(shù))的標(biāo)準(zhǔn)方程是
______,過這個圓外一點(diǎn)P(2,3)的該圓的切線方程是
______;答案:∵圓x=1+cosθy=1+sinθ(θ為參數(shù))消去參數(shù)θ,得:(x-1)2+(y-1)2=1,即圓x=1+cosθy=1+sinθ(θ為參數(shù))的標(biāo)準(zhǔn)方程是(x-1)2+(y-1)2=1;∵這個圓外一點(diǎn)P(2,3)的該圓的切線,當(dāng)切線斜率不存在時,顯然x=2符合題意;當(dāng)切線斜率存在時,設(shè)切線方程為:y-3=k(x-2),由圓心到切線的距離等于半徑,得|k-1+3-2k|k2+1=
1,解得:k=34,故切線方程為:3x-4y+6=0.故為:(x-1)2+(y-1)2=1;x=2或3x-4y+6=0.45.點(diǎn)M的直角坐標(biāo)是,則點(diǎn)M的極坐標(biāo)為()
A.(2,)
B.(2,-)
C.(2,)
D.(2,2kπ+)(k∈Z)答案:C46.命題“存在x0∈R,使x02+1<0”的否定是______.答案:∵命題“存在x0∈R,使x02+1<0”是一個特稱命題∴命題“存在x0∈R,使x02+1<0”的否定是“對任意x0∈R,使x02+1≥0”故為:對任意x0∈R,使x02+1≥047.設(shè)A(1,-1,1),B(3,1,5),則線段AB的中點(diǎn)在空間直角坐標(biāo)系中的位置是()
A.在y軸上
B.在xOy面內(nèi)
C.在xOz面內(nèi)
D.在yOz面內(nèi)答案:C48.已知函數(shù)f(x)=2x+a的圖象不過第三象限,則常數(shù)a的取值范圍是
______.答案:函數(shù)f(x)=2x+a的圖象可根據(jù)指數(shù)函數(shù)f(x)=2x的圖象向上(a>0)或者向下(a<0)平移|a|個單位得到,若函數(shù)f(x)=2x+a的圖象不過第三象限,則只能向上平移或者不平移,因此,a的取值范圍是a≥0.故為:a≥0.49.(1)在數(shù)軸上求一點(diǎn)的坐標(biāo),使它到點(diǎn)A(9)與到點(diǎn)B(-15)的距離相等;
(2)在數(shù)軸上求一點(diǎn)的坐標(biāo),使它到點(diǎn)A(3)的距離是它到點(diǎn)B(-9)的距離的2倍.答案:(1)設(shè)該點(diǎn)為M(x),根據(jù)題意,得A、M兩點(diǎn)間的距離為d(A,M)=|x-9|,B、M兩點(diǎn)間的距離為d(M,B)=|-15-x|,結(jié)合題意,可得|x-9|=|-15-x|,∴x-9=15+x或x-9=-15-x,解之得x=-3,得M的坐標(biāo)為-3故所求點(diǎn)的坐標(biāo)為-3.(2)設(shè)該點(diǎn)為N(x'),則A、N兩點(diǎn)間的距離為d(A,N)=|x'-3|,B、N兩點(diǎn)間的距離為d(N,B)=|-9-x'|,根據(jù)題意有|x'-3|=2|9+x'|,∴x'-3=18+2x'或x'-3=-18-2x',解之得x'=-21,或x'=-5.故所求點(diǎn)的坐標(biāo)是-21或-5.50.已知函數(shù)f(x)=|log2x-1|+|log2x-2|,解不等式f(x)>4.答案:f(x)=|log2x-1|+|log2x-2|,取絕對值得:f(x)=3-2log2x,0<x<21,2≤x≤42log2x-3,x>4所以f(x)>4等價于:0<x≤23-2log2x>4或x≥42log2x-3>4,解得:0<x<22或x>82.第3卷一.綜合題(共50題)1.對于一組數(shù)據(jù)的兩個函數(shù)模型,其殘差平方和分別為153.4
和200,若從中選取一個擬合程度較好的函數(shù)模型,應(yīng)選殘差平方和為______的那個.答案:殘差的平方和是用來描述n個點(diǎn)與相應(yīng)回歸直線在整體上的接近程度殘差的平方和越小,擬合效果越好,由于153.4<200,故擬合效果較好的是殘差平方和是153.4的那個模型.故為:153.4.2.平面向量的夾角為,則等于(
)
A.
B.3
C.7
D.79答案:A3.某產(chǎn)品的廣告費(fèi)用x與銷售額y的統(tǒng)計(jì)數(shù)據(jù)如下表:
廣告費(fèi)用x(萬元)
2
3
4
5
銷售額y(萬元)
27
39
48
54
根據(jù)上表可得回歸方程y=bx+a中的b為9.4,據(jù)此模型預(yù)報(bào)廣告費(fèi)用為6萬元時銷售額為()
A.65.5萬元
B.66.2萬元
C.67.7萬元
D.72.0萬元答案:A4.函數(shù)f(x)=2,0<x<104,10≤x<155,15≤x<20,則函數(shù)的值域是()A.[2,5]B.{2,4,5}C.(0,20)D.N答案:∵f(x)=20<x<10410≤x<15515≤x<20∴函數(shù)的值域是{2,4,5}故選B5.已知參數(shù)方程x=1+cosθy=sinθ,(參數(shù)θ∈[0,2π]),則該曲線上的點(diǎn)與定點(diǎn)A(-1,-1)的距離的最小值是
______.答案:∵參數(shù)方程x=1+cosθy=sinθ∴圓的方程為(x-1)2+y2=1∴定點(diǎn)A(-1,-1)到圓心的距離為5∴與定點(diǎn)A(-1,-1)的距離的最小值是d-r=5-1故為5-16.已知O是空間任意一點(diǎn),A、B、C、D四點(diǎn)滿足任三點(diǎn)均不共線,但四點(diǎn)共面,且=2x+3y+4z,則2x+3y+4z=(
)答案:﹣17.已知雙曲線的兩漸近線方程為y=±32x,一個焦點(diǎn)坐標(biāo)為(0,-26),
(1)求此雙曲線方程;
(2)寫出雙曲線的準(zhǔn)線方程和準(zhǔn)線間的距離.答案:(1)由題意得,c=26,ba=32,26=a2+b2,∴a2=18,b2=8,故該雙曲線的標(biāo)準(zhǔn)方程為y218-x28=1.(2)由(1)得,雙曲線的準(zhǔn)線方程為y=±1826x;準(zhǔn)線間的距離為2a2c=2×1826=182613.8.已知向量a=(-2,1),b=(-3,-1),若單位向量c滿足c⊥(a+b),則c=______.答案:設(shè)c=(x,y),∵向量a=(-2,1),b=(-3,-1),單位向量c滿足c⊥(a+b),∴c?a+c?b=0,∴-2x+y-3x-y=0,解得x=0,∴c=(0,y),∵c是單位向量,∴0+y2=1,∴y=±1.故c=(0,1),或c=(0,-1).故為:(0,1)或(0,-1).9.在極坐標(biāo)系(ρ,θ)(0≤θ<2π)中,曲線ρ=2sinθ與ρcosθ=-1的交點(diǎn)的極坐標(biāo)為
______.答案:兩條曲線的普通方程分別為x2+y2=2y,x=-1.解得x=-1y=1.由x=ρcosθy=ρsinθ得點(diǎn)(-1,1),極坐標(biāo)為(2,3π4).故填:(2,3π4).10.有一批機(jī)器,編號為1,2,3,…,112,為調(diào)查機(jī)器的質(zhì)量問題,打算抽取10臺,問此樣本若采用簡單的隨機(jī)抽樣方法將如何獲得?答案:本題可以采用抽簽法來抽取樣本,首先把該校學(xué)生都編上號001,002,112…用抽簽法做112個形狀、大小相同的號簽,然后將這些號簽放到同一個箱子里,進(jìn)行均勻攪拌,抽簽時,每次從中抽一個號簽,連續(xù)抽取10次,就得到一個容量為10的樣本.11.過點(diǎn)P(3,0)作一直線,它夾在兩條直線l1:2x-y-3=0,l2:x+y+3=0之間的線段恰被點(diǎn)P平分,該直線的方程是()
A.4x-y-6=0
B.3x+2y-7=0
C.5x-y-15=0
D.5x+y-15=0答案:C12.已知點(diǎn)G是△ABC的重心,O是空間任一點(diǎn),若OA+OB+OC=λOG,則實(shí)數(shù)λ=______.答案:由于G是三角形ABC的重心,則有GA+GB+GC=0,OA-OG+OB-OG+OC-OG=0故OA+OB+OC=3OG又由已知OA+OB+OC=λOG故可得λ=3故為:313.若復(fù)數(shù)z=(m2-1)+(m+1)i為純虛數(shù),則實(shí)數(shù)m的值等于______.答案:復(fù)數(shù)z=(m2-1)+(m+1)i當(dāng)z是純虛數(shù)時,必有:m2-1=0且m+1≠0解得,m=1.故為1.14.求證1×2+2×3+3×4+…+n(n+1)=13n(n+1)(n+2).答案:證明:①當(dāng)n=1時,左邊=2,右邊=13×1×2×3=2,等式成立;②假設(shè)當(dāng)n=k時,等式成立,即1×2+2×3+3×4+…+k(k+1)=13k(k+1)(k+2)則當(dāng)n=k+1時,左邊=13k(k+1)(k+2)+(k+1)(k+2)=(k+1)(k+2)(13k+1)=13(k+1)(k+2)(k+3)即n=k+1時,等式也成立.所以1×2+2×3+3×4+…+n(n+1)=13n(n+1)(n+2)對任意正整數(shù)都成立.15.袋中裝著標(biāo)有數(shù)字1,2,3,4,5的小球各2個,現(xiàn)從袋中任意取出3個小球,假設(shè)每個小球被取出的可能性都相等.
(Ⅰ)求取出的3個小球上的數(shù)字分別為1,2,3的概率;
(Ⅱ)求取出的3個小球上的數(shù)字恰有2個相同的概率;
(Ⅲ)用X表示取出的3個小球上的最大數(shù)字,求P(X≥4)的值.答案:(I)記“取出的3個小球上的數(shù)字分別為1,2,3”的事件記為A,則P(A)=C12C12C12C310=8120=115;(Ⅱ)記“取出的3個小球上的數(shù)字恰有2個相同”的事件記為A,則P(B)=C15C18C310=40120=13;(Ⅲ)用X表示取出的3個小球上的最大數(shù)字,則X≥4包含取出的3個小球上的最大數(shù)字為4或5兩種情況,當(dāng)取出的3個小球上的最大數(shù)字為4時,P(X=4)=C12C26+C22C16C310=36120=310;當(dāng)取出的3個小球上的最大數(shù)字為5時,P(X=5)=C12C28+C22C18C310=64120=815故P(X≥4)=56.16.若直線l經(jīng)過點(diǎn)A(-1,1),且一個法向量為n=(3,3),則直線方程是______.答案:設(shè)直線的方向向量m=(1,k)∵直線l一個法向量為n=(3,3)∴m?n=0∴k=-1∵直線l經(jīng)過點(diǎn)A(-1,1)∴直線l的方程為y-1=(-1)×(x+1)即x+y=0故為x+y=017.下面的結(jié)論正確的是()A.一個程序的算法步驟是可逆的B.一個算法可以無止境地運(yùn)算下去的C.完成一件事情的算法有且只有一種D.設(shè)計(jì)算法要本著簡單方便的原則答案:算法需每一步都按順序進(jìn)行,并且結(jié)果唯一,不能保證可逆,故A不正確;一個算法必須在有限步內(nèi)完成,不然就不是問題的解了,故B不正確;一般情況下,完成一件事情的算法不止一個,但是存在一個比較好的,故C不正確;設(shè)計(jì)算法要盡量運(yùn)算簡單,節(jié)約時間,故D正確,故選D.18.確定方程3x2-9+4x2-16+5x2-25=120x的解集______.答案:由題意,x2-9≥0x2-16≥0x2-25≥0x>0,∴x≥5∴x2-9≥4,x2-16≥3,x2-25≥0,∴3x2-9+4x2-16+5x2-25≥24∵3x2-9+4x2-16+5x2-25=120x∴120x≥24∵x≥5,∴120x≤24∴120x=24∴x=5故為:{5}19.與雙曲線x2-y24=1有共同的漸近線,且過點(diǎn)(2,2)的雙曲線的標(biāo)準(zhǔn)方程為______.答案:設(shè)雙曲線方程為x2-y24=λ∵過點(diǎn)(2,2),∴λ=3∴所求雙曲線方程為x23-y212=1故為x23-y212=120.已知橢圓C:x2a2+y2b2=1(a>b>0)的兩個焦點(diǎn)分別為F1(-1,0),F(xiàn)2(1,0),且橢圓C經(jīng)過點(diǎn)P(43,13).
(I)求橢圓C的離心率:
(II)設(shè)過點(diǎn)A(0,2)的直線l與橢圓C交于M,N兩點(diǎn),點(diǎn)Q是線段MN上的點(diǎn),且2|AQ|2=1|AM|2+1|AN|2,求點(diǎn)Q的軌跡方程.答案:(I)∵橢圓C:x2a2+y2b2=1(a>b>0)的兩個焦點(diǎn)分別為F1(-1,0),F(xiàn)2(1,0),且橢圓C經(jīng)過點(diǎn)P(43,13).∴c=1,2a=PF1+PF2=(43+1)2+19+(43-1)2+19=22,即a=2∴橢圓的離心率e=ca=12=22…4分(II)由(I)知,橢圓C的方程為x22+y2=1,設(shè)點(diǎn)Q的坐標(biāo)為(x,y)(1)當(dāng)直線l與x軸垂直時,直線l與橢圓C交于(0,1)、(0,-1)兩點(diǎn),此時點(diǎn)Q的坐標(biāo)為(0,2-355)(2)當(dāng)直線l與x軸不垂直時,可設(shè)其方程為y=kx+2,因?yàn)镸,N在直線l上,可設(shè)點(diǎn)M,N的坐標(biāo)分別為(x1,kx1+2),(x2,kx2+2),則|AM|2=(1+k2)x1
2,|AN|2=(1+k2)x2
2,又|AQ|2=(1+k2)x2,2|AQ|2=1|AM|2+1|AN|2∴2(1+k2)x2=1(1+k2)x1
2+1(1+k2)x2
2,即2x2=1x1
2+1x2
2=(x1+x2)2-2x1x2x1
2x2
2…①將y=kx+2代入x22+y2=1中,得(2k2+1)x2+8kx+6=0…②由△=(8k)2-24(2k2+1)>0,得k2>32由②知x1+x2=-8k2k2+1,x1x2=62k2+1,代入①中化簡得x2=1810k2-3…③因?yàn)辄c(diǎn)Q在直線y=kx+2上,所以k=y-2x,代入③中并化簡得10(y-2)2-3x2=18由③及k2>32可知0<x2<32,即x∈(-62,0)∪(0,62)由題意,Q(x,y)在橢圓C內(nèi),所以-1≤y≤1,又由10(y-2)2-3x2=18得(y-2)2∈[95,94)且-1≤y≤1,則y∈(12,2-355)所以,點(diǎn)Q的軌跡方程為10(y-2)2-3x2=18,其中x∈(-62,62),y∈(12,2-355)…13分21.若E,F(xiàn),G,H分別為空間四邊形ABCD四邊AB,BC,CD,DA的中點(diǎn),證明:四邊形EFGH是平行四邊形.答案:證明:∵E,F(xiàn),G,H分別為空間四邊形ABCD四邊AB,BC,CD,DA的中點(diǎn),∴EF是△ABC的中位線,∴EF∥AC,且EF=12AC.同理可證,GH∥AC,且GH=12AC,故有
EF∥GH,且EF=GH,∴四邊形EFGH是平行四邊形.22.設(shè)隨機(jī)變量ξ服從正態(tài)分布N(μ,σ2),且函數(shù)f(x)=x2+4x+ξ沒有零點(diǎn)的概率為,則μ為()
A.1
B.4
C.2
D.不能確定答案:B23.(幾何證明選講選做題)如圖4,A,B是圓O上的兩點(diǎn),且OA⊥OB,OA=2,C為OA的中點(diǎn),連接BC并延長交圓O于點(diǎn)D,則CD=______.答案:如圖所示:作出直徑AE,∵OA=2,C為OA的中點(diǎn),∴OC=CA=1,CE=3.∵OB⊥OA,∴BC=22+12=5.由相交弦定理得BC?CD=EC?CA,∴CD=EC?CABC=3×15=355.故為355.24.已知F1(-8,3),F(xiàn)2(2,3),動點(diǎn)P滿足PF1-PF2=10,則點(diǎn)P的軌跡是______.答案:由于兩點(diǎn)間的距離|F1F2|=10,所以滿足條件|PF1|-|PF2|=10的點(diǎn)P的軌跡應(yīng)是一條射線.故為一條射線.25.已知M(-2,7)、N(10,-2),點(diǎn)P是線段MN上的點(diǎn),且PN=-2PM,則P點(diǎn)的坐標(biāo)為______.答案:設(shè)P(x,y),則PN=(10-x,-2-y),PM=(-2-x,7-y),∵PN=-2PM,∴10-x=-2(-2-x)-2-y=-2(7-y),∴x=2y=4∴P點(diǎn)的坐標(biāo)為(2,4).故為:(2,4)26.設(shè)O是坐標(biāo)原點(diǎn),F(xiàn)是拋物線y2=2px(p>0)的焦點(diǎn),A是拋物線上的一點(diǎn),F(xiàn)A與x軸正向的夾角為60°,則|OA|為______.答案:過A作AD⊥x軸于D,令FD=m,則FA=2m,p+m=2m,m=p.∴OA=(p2+p)2+(3p)2=212p.故為:212p27.“所有9的倍數(shù)(M)都是3的倍數(shù)(P),某奇數(shù)(S)是9的倍數(shù)(M),故此奇數(shù)(S)是3的倍數(shù)(P)”,上述推理是()
A.小前提錯
B.結(jié)論錯
C.正確的
D.大前提錯答案:C28.籃球運(yùn)動員在比賽中每次罰球命中得1分,罰不中得0分.已知某運(yùn)動員罰球命中的概率為0.7,求
(1)他罰球1次的得分X的數(shù)學(xué)期望;
(2)他罰球2次的得分Y的數(shù)學(xué)期望;
(3)他罰球3次的得分η的數(shù)學(xué)期望.答案:(1)X的取值為1,2,則因?yàn)镻(X=1)=0.7,P(X=0)=0.3,所以EX=1×P(X=1)+0×P(X=0)=0.7.(2)Y的取值為0,1,2,則P(Y=0)=0.32=0.09,P(Y=1)=C12×0.7×0.3=0.42,P(Y=2)=0.72=0.49Y的概率分布列為Y012P0.090.420.49所以EY=0×0.09+1×0.42+2×0.49=1.4.(3)η的取值為0,1,2,3,則P(η=0)=0.33=0.027,P(η=1)=C13×0.7×0.32=0.189,P(η=2)=C23×0.72×0.3=0.441,P(η=3)=0.73=0.343∴η的概率分布為η0123P0.0270.1890.4410.343所以Eη=0×0.027+1×0.189+2×0.441+3×0.343=2.1.29.如圖,在△ABC中,BC邊上的高所在的直線方程為x-2y+1=0,∠A的平分線所在的直線方程為y=0,若點(diǎn)B的坐標(biāo)為(1,2),求點(diǎn)A和點(diǎn)C的坐標(biāo).答案:點(diǎn)A為y=0與x-2y+1=0兩直線的交點(diǎn),∴點(diǎn)A的坐標(biāo)為(-1,0).∴kAB=2-01-(-1)=1.又∵∠A的平分線所在直線的方程是y=0,∴kAC=-1.∴直線AC的方程是y=-x-1.而BC與x-2y+1=0垂直,∴kBC=-2.∴直線BC的方程是y-2=-2(x-1).由y=-x-1,y=-2x+4,解得C(5,-6).∴點(diǎn)A和點(diǎn)C的坐標(biāo)分別為(-1,0)和(5,-6)30.某產(chǎn)品的廣告費(fèi)用x與銷售額y的統(tǒng)計(jì)數(shù)據(jù)如下表
廣告費(fèi)用x(萬元)4235銷售額y(萬元)49263954根據(jù)上表可得回歸方程
y=
bx+
a中的
b為9.4,則
a=______.答案:由圖表中的數(shù)據(jù)可知.x=14(4+2+3+5)=144=3.5,.y=14(49+26+39+54)=42,即樣本中心為(3.5,42),將點(diǎn)代入回歸方程y=bx+a,得42=9.4×3.5+a,解得a=9.1.故為:9.1.31.已知sint+cost=1,設(shè)s=cost+isint,求f(s)=1+s+s2+…sn.答案:sint+cost=1∴(sint+cost)2=1+2sint?cost=1∴2sint?cost=sin2t=0則cost=0,sint=1或cost=1,sint=0,當(dāng)cost=0,sint=1時,s=cost+isint=i則f(s)=1+s+s2+…sn=1+i,n=4k+1i,n=4k+20,n=4k+31,n=4(k+1)(k∈N+)當(dāng)cost=1,sint=0時,s=cost+isint=1則f(s)=1+s+s2+…sn=n+132.已知△ABC三個頂點(diǎn)的坐標(biāo)為A(1,3)、B(-1,-1)、C(-3,5),求這個三角形外接圓的方程.答案:設(shè)圓的方程為(x-a)2+(y-b)2=r2,則(1-a)2+(3-b)2=r2(-1-a)2+(-1-b)2=r2(-3-a)2+(5-b)2=r2,整理得a+2b-2=02a-b+6=0,解之得a=-2,b=2,可得r2=10,因此,這個三角形外接圓的方程為(x+2)2+(y-2)2=10.33.過點(diǎn)(-1,3)且垂直于直線x-2y+3=0的直線方程為(
)
A.2x+y-1=0
B.2x+y-5=0
C.x+2y-5=0
D.x-2y+7=0答案:A34.己知集合A={sinα,cosα},則α的取值范圍是______.答案:由元素的互異性可得sinα≠cosα,∴α≠kπ+π4,k∈z.故α的取值范圍是{α|α≠kπ+π4,k∈z},故為{α|α≠kπ+π4,k∈z}.35.直線y=3x+3的傾斜角的大小為______.答案:∵直線y=3x+3的斜率等于3,設(shè)傾斜角等于α,則0°≤α<180°,且tanα=3,∴α=60°,故為60°.36.若圓O1方程為(x+1)2+(y+1)2=4,圓O2方程為(x-3)2+(y-2)2=1,則方程(x+1)2+(y+1)2-4=(x-3)2+(y-2)2-1表示的軌跡是()
A.經(jīng)過兩點(diǎn)O1,O2的直線
B.線段O1O2的中垂線
C.兩圓公共弦所在的直線
D.一條直線且該直線上的點(diǎn)到兩圓的切線長相等答案:D37.已知橢圓的短軸長等于2,長軸端點(diǎn)與短軸端點(diǎn)間的距離等于5,則此橢圓的標(biāo)準(zhǔn)方程是______.答案:由題意可得2b=2a2+b2=(5)2,解得b=1a=2.故橢圓的標(biāo)準(zhǔn)方程是x24+y2=1或y24+x2=1.故為x24+y2=1或y24+x2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 鄉(xiāng)鎮(zhèn)宿舍改造合同范例
- 代辦陪護(hù)服務(wù)合同范例
- 兼職總工合同范例
- l安裝合同范例
- 全款抵押車買賣合同范例
- 潤滑購銷合同范例
- 關(guān)于項(xiàng)目轉(zhuǎn)讓合同范例
- 中藥制劑技術(shù)練習(xí)題庫及答案
- 靜療練習(xí)題含答案
- 2025年慶陽貨運(yùn)運(yùn)輸駕駛員從業(yè)資格證考試試題
- 山東省青島市2024-2025學(xué)年七年級上學(xué)期11月期中英語試題
- 2024年貴陽新春燈會元宵彩燈策劃方案
- 劉潤年度演講2024:進(jìn)化的力量
- 2024-2030年全球及中國環(huán)境健康與安全(EHS)行業(yè)市場現(xiàn)狀供需分析及市場深度研究發(fā)展前景及規(guī)劃可行性分析研究報(bào)告
- 2024年印刷廠管理規(guī)章制度范例(三篇)
- 材料工程管理人員個人年終工作總結(jié)范文
- ☆問題解決策略:直觀分析 教案 2024-2025學(xué)年北師大版七年級數(shù)學(xué)上冊
- 養(yǎng)老服務(wù)與安全管理作業(yè)指導(dǎo)書
- 2024年新人教版七年級上冊數(shù)學(xué)教學(xué)課件 第六章 幾何圖形初步 綜合與實(shí)踐 設(shè)計(jì)學(xué)校田徑運(yùn)動會比賽場地
- GB/T 18385-2024純電動汽車動力性能試驗(yàn)方法
- 期末+(試題)+-2024-2025學(xué)年人教PEP版英語六年級上冊
評論
0/150
提交評論