版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
長風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年海南工商職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.把10個(gè)相同的小正方體,按如圖所示的位置堆放,它的外表含有若干小正方形。如果將圖中標(biāo)有A的一個(gè)小正方體搬去,這時(shí)外表含有的小正方形個(gè)數(shù)與搬去前相比(
)答案:A2.曲線xy=1的參數(shù)方程不可能是()
A.
B.
C.
D.答案:B3.已知平行四邊形ABCD,下列正確的是()
A.
B.
C.
D.答案:B4.如果方程(1+i)x2-2(a+i)x+5-3i=0(a∈R)有實(shí)數(shù)解,求a的值.答案:設(shè)方程的實(shí)根為x0,則方程(1+i)x2-2(a+i)x+5-3i=0可化為(x20-2ax0+5)+(x20-2x0-3)i=0由復(fù)數(shù)相等的充要條件可得x20-2ax0+5=0①x20-2x0-3=0
②由②得x0=3或-1,代入①得a=73或-3∴a=73或-35.設(shè)復(fù)數(shù)z=lg(m2-2m-2)+(m2+3m+2)i,試求實(shí)數(shù)m的取值范圍,使得:
(1)z是純虛數(shù);
(2)z是實(shí)數(shù);
(3)z對應(yīng)的點(diǎn)位于復(fù)平面的第二象限.答案:(1)若z=lg(m2-2m-2)+(m2+3m+2)i是純虛數(shù),則可得lg(m2-2m-2)=0m2+3m+2≠0,即m2-2m-2=1m2+3m+2≠0,解之得m=3(舍去-1);…(3分)(2)若z=lg(m2-2m-2)+(m2+3m+2)i是實(shí)數(shù),則可得m2+3m+2=0,解之得m=-1或m=-2…(6分)(3)∵z=lg(m2-2m-2)+(m2+3m+2)i對應(yīng)的點(diǎn)坐標(biāo)為(lg(m2-2m-2),m2+3m+2)∴若該對應(yīng)點(diǎn)位于復(fù)平面的第二象限,則可得lg(m2-2m-2)<0m2+3m+2>0,即0<m2-2m-2<1m2+3m+2>0,解之得-1<m<1-3或1+3<m<3.…(10分)6.直線L1:x-y=0與直線L2:x+y-10=0的交點(diǎn)坐標(biāo)是()
A.(5,5)
B.(5,-5)
C.(-1,1)
D.(1,1)答案:A7.要考察某種品牌的850顆種子的發(fā)芽率,抽取60粒進(jìn)行實(shí)驗(yàn).利用隨機(jī)數(shù)表抽取種子時(shí),先將850顆種子按001,002,…,850進(jìn)行編號,如果從隨機(jī)數(shù)表第8行第11列的數(shù)1開始向右讀,請你依次寫出最先檢測的4顆種子的編號______,______,______,______.
(下面摘取了隨機(jī)數(shù)表第7行至第9行的一部分)
84
42
17
53
31
57
24
55
06
88
77
04
74
47
67
21
76
33
50
25
63
01
63
78
59
16
95
55
67
19
98
10
50
71
75
12
86
73
58
07
44
39
52
38
79
33
21
12
34
29
78
64
56
07
82
52
42
07
44
38.答案:由于隨機(jī)數(shù)表中第8行的數(shù)字為:63
01
63
78
59
16
95
5567
19
98
10
50
71
75
12
86
73
58
07其第11列數(shù)字為1,故產(chǎn)生的第一個(gè)數(shù)字為:169,第二個(gè)數(shù)字為:555,第三個(gè)數(shù)字為:671,第四個(gè)數(shù)字為:998(超出編號范圍舍)第五個(gè)數(shù)字為:105故為:169,555,671,1058.平面向量a與b的夾角為,若a=(2,0),|b|=1,則|a+2b|=()
A.
B.2
C.4
D.12答案:B9.已知圓C的極坐標(biāo)方程是ρ=2sinθ,那么該圓的直角坐標(biāo)方程為
______,半徑長是
______.答案:把極坐標(biāo)方程是ρ=2sinθ的兩邊同時(shí)乘以ρ得:ρ2=2ρsinθ,∴x2+y2=2y,即x2+(y-1)2=1,表示以(0,1)為圓心,半徑等于1的圓,故為:x2+(y-1)2=1;1.10.一圓形紙片的圓心為O,點(diǎn)Q是圓內(nèi)異于O點(diǎn)的一個(gè)定點(diǎn),點(diǎn)A是圓周上一動(dòng)點(diǎn),把紙片折疊使得點(diǎn)A與點(diǎn)Q重合,然后抹平紙片,折痕CD與OA交于點(diǎn)P,當(dāng)點(diǎn)A運(yùn)動(dòng)時(shí),點(diǎn)P的軌跡為()
A.橢圓
B.雙曲線
C.拋物線
D.圓答案:A11.在四棱錐P-ABCD中,底面ABCD是正方形,E為PD中點(diǎn),若PA=a,PB=b,PC=c,則BE=______.答案:BE=12(BP+BD)=-12PB
+12(BA+BC)=-12PB+12BA+12BC=-12PB+12(PA-PB)+12(PC-PB)=-32PB+12PA+
12PC=12a-32b+12c.故為:12a-32b+12c.12.已知向量,滿足:||=3,||=5,且=λ,則實(shí)數(shù)λ=()
A.
B.
C.±
D.±答案:C13.一條直線上順次有A、B、C三點(diǎn),且|AB|=2,|BC|=3,則C分有向線段AB的比為()
A.-
B.-
C.-
D.-答案:A14.下列函數(shù)中,與函數(shù)y=1x有相同定義域的是()A.f(x)=log2xB.f(x)=1xC.f(x)=|x|D.f(x)=2x答案:∵函數(shù)y=1x定義域?yàn)閤>0,又函數(shù)f(x)=log2x定義域x>0,故選A.15.已知函數(shù)y=ax2+bx+c,如果a>b>c,且a+b+c=0,則它的圖象是(
)
A.
B.
C.
D.
答案:D16.下列圖形中不一定是平面圖形的是()
A.三角形
B.四邊相等的四邊形
C.梯形
D.平行四邊形答案:B17.向量a、b滿足|a|=1,|b|=2,且a與b的夾角為π3,則|a+2b|=______.答案:∵|a|=1,|b|=2,且a與b的夾角為π3,∴a?b=|a|?|b|?cosπ3=1因此,(a+2b)2=|a|2+4a?b+4|b|2=12+4×1+4|b|2=21∴|a+2b|=21故為:2118.5顆骰子同時(shí)擲出,共擲100次則至少一次出現(xiàn)全為6點(diǎn)的概率為(
)A.B.C.D.答案:C解析:5顆骰子同時(shí)擲出,沒有全部出現(xiàn)6點(diǎn)的概率是,共擲100次至少一次出現(xiàn)全為6點(diǎn)的概率是.19.如圖,在⊙O中,AB是弦,AC是⊙O的切線,A是切點(diǎn),過
B作BD⊥AC于D,BD交⊙O于E點(diǎn),若AE平分∠BAD,則∠BAD=()
A.30°
B.45°
C.50°
D.60°
答案:D20.一直線傾斜角的正切值為34,且過點(diǎn)P(1,2),則直線方程為______.答案:因?yàn)橹本€傾斜角的正切值為34,即k=3,又直線過點(diǎn)P(1,2),所以直線的點(diǎn)斜式方程為y-2=34(x-1),整理得,3x-4y+5=0.故為3x-4y+5=0.21.某班從6名班干部(其中男生4人,女生2人)中選3人參加學(xué)校學(xué)生會(huì)的干部競選.
(1)設(shè)所選3人中女生人數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望;
(2)在男生甲被選中的情況下,求女生乙也被選中的概率.答案:(1)ξ的所有可能取值為0,1,2.依題意,得P(ξ=0)=C34C36=15,P(ξ=1)=C24C12C36=35,P(ξ=2)=C14C22C36=15.∴ξ的分布列為ξ012P153515∴Eξ=0×15+1×35+2×15=1.(2)設(shè)“男生甲被選中的情況下,女生乙也被選中”為事件C,“男生甲被選中”為事件A,“女生乙被選中”為事件B從4個(gè)男生、2個(gè)女生中選3人,男生甲被選中的種數(shù)為n(A)=C52=10,男生甲被選中,女生乙也被選中的種數(shù)為n(AB)=C41=4,∴P(C)=n(AB)n(A)=C14C25=410=25故在男生甲被選中的情況下,女生乙也被選中的概率為25.22.如圖,圓O上一點(diǎn)C在直徑AB上的射影為D.AD=2,AC=25,則AB=______.答案:∵AB是直徑,∴△ABC是直角三角形,∵C在直徑AB上的射影為D,∴CD⊥AB,∴AC2=AD?AB,∴AB=AC2AD=202=10,故為:1023.若函數(shù)f(2x+1)=x2-2x,則f(3)=______.答案:解法一:(換元法求解析式)令t=2x+1,則x=t-12則f(t)=(t-12)2-2t-12=14t2-32t+54∴f(x)=14x2-32x+54∴f(3)=-1解法二:(湊配法求解析式)∵f(2x+1)=x2-2x=14(2x+1)2-32(2x+1)+54∴f(x)=14x2-32x+54∴f(3)=-1解法三:(湊配法求解析式)∵f(2x+1)=x2-2x令2x+1=3則x=1此時(shí)x2-2x=-1∴f(3)=-1故為:-124.已知點(diǎn)G是△ABC的重心,O是空間任一點(diǎn),若OA+OB+OC=λOG,則實(shí)數(shù)λ=______.答案:由于G是三角形ABC的重心,則有GA+GB+GC=0,OA-OG+OB-OG+OC-OG=0故OA+OB+OC=3OG又由已知OA+OB+OC=λOG故可得λ=3故為:325.一個(gè)簡單多面體的面都是三角形,頂點(diǎn)數(shù)V=6,則它的面數(shù)為______個(gè).答案:∵已知多面體的每個(gè)面有三條邊,每相鄰兩條邊重合為一條棱,∴棱數(shù)E=32F,代入公式V+F-E=2,得F=2V-4.∵V=6,∴F=8,E=12,即多面體的面數(shù)F為8,棱數(shù)E為12.故為8.26.不等式﹣2x+1>0的解集是(
).答案:{x|x<}27.先后拋擲兩枚均勻的正方體骰子(它們的六個(gè)面分別標(biāo)有點(diǎn)數(shù)1、2、3、4、5、6),骰子朝上的面的點(diǎn)數(shù)分別為X、Y,則log2XY=1的概率為()A.16B.536C.112D.12答案:∵log2XY=1∴Y=2X,滿足條件的X、Y有3對而骰子朝上的點(diǎn)數(shù)X、Y共有36對∴概率為336=112故選C.28.一個(gè)長方體的長、寬、高之比為2:1:3,全面積為88cm2,則它的體積為
______cm3.答案:由長方體的長、寬、高之比為2:1:3,不妨設(shè)長、寬、高分別為2x,x,3x;則長方體的全面積為:2(2x?x+2x?3x+x?3x)=2×11x2=88,∴x=±2,這里取x=2;所以,長方體的體積為:V=2x?x?3x=4×2×6=48.故為:4829.已知函數(shù)y=與y=ax2+bx,則下列圖象正確的是(
)
A.
B.
C.
D.
答案:C30.直線m的傾斜角為30°,則此直線的斜率等于()A.12B.1C.33D.3答案:因?yàn)橹本€的斜率k和傾斜角θ的關(guān)系是:k=tanθ∴傾斜角為30°時(shí),對應(yīng)的斜率k=tan30°=33故選:C.31.點(diǎn)P(x,y)是橢圓2x2+3y2=12上的一個(gè)動(dòng)點(diǎn),則x+2y的最大值為______.答案:把橢圓2x2+3y2=12化為標(biāo)準(zhǔn)方程,得x26+y24=1,∴這個(gè)橢圓的參數(shù)方程為:x=6cosθy=2sinθ,(θ為參數(shù))∴x+2y=6cosθ+4sinθ,∴(x+2y)max=6+16=22.故為:22.32.已知a>0,且a≠1,解關(guān)于x的不等式:
答案:①當(dāng)a>1時(shí),原不等式解為{x|0<x≤loga2②當(dāng)0<a<1時(shí),原不等式解為{x|loga2≤x<0解析:原不等式等價(jià)于原不等式同解于7分由①②得1<ax<4,由③得從而1<ax≤210分①當(dāng)a>1時(shí),原不等式解為{x|0<x≤loga2②當(dāng)0<a<1時(shí),原不等式解為{x|loga2≤x<033.如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,若輸出S的值為254,則判斷框①中應(yīng)填入的條件是()A.n≤5B.n≤6C.n≤7D.n≤8答案:分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是輸出滿足條件S=2+22+23+…+2n=126時(shí)S的值∵2+22+23+…+27=254,故最后一次進(jìn)行循環(huán)時(shí)n的值為7,故判斷框中的條件應(yīng)為n≤7.故選C.34.已知
|x|<a,|y|<a.求證:|xy|<a.答案:證明:∵0<|x|<a,0<|y|<a∴由不等式的性質(zhì),可得|xy|<a35.已知△ABC三個(gè)頂點(diǎn)的坐標(biāo)為A(1,3)、B(-1,-1)、C(-3,5),求這個(gè)三角形外接圓的方程.答案:設(shè)圓的方程為(x-a)2+(y-b)2=r2,則(1-a)2+(3-b)2=r2(-1-a)2+(-1-b)2=r2(-3-a)2+(5-b)2=r2,整理得a+2b-2=02a-b+6=0,解之得a=-2,b=2,可得r2=10,因此,這個(gè)三角形外接圓的方程為(x+2)2+(y-2)2=10.36.過點(diǎn)P(3,0)作一直線,它夾在兩條直線l1:2x-y-3=0,l2:x+y+3=0之間的線段恰被點(diǎn)P平分,該直線的方程是()
A.4x-y-6=0
B.3x+2y-7=0
C.5x-y-15=0
D.5x+y-15=0答案:C37.如圖,l1、l2、l3是同一平面內(nèi)的三條平行直線,l1與l2間的距離是1,l2與l3間的距離是2,正三角形ABC的三頂點(diǎn)分別在l1、l2、l3上,則△ABC的邊長是()
A.2
B.
C.
D.
答案:D38.在吸煙與患肺病這兩個(gè)分類變量的計(jì)算中,下列說法正確的是()
A.若k2的觀測值為k=6.635,我們有99%的把握認(rèn)為吸煙與患肺病有關(guān)系,那么在100個(gè)吸煙的人中必有99人患有肺病
B.從獨(dú)立性檢驗(yàn)可知,有99%的把握認(rèn)為吸煙與患肺病有關(guān)時(shí),我們說某人吸煙,那么他有99%的可能患有肺病
C.若從統(tǒng)計(jì)量中求出有95%的把握認(rèn)為吸煙與患肺病有關(guān)系,是指有5%的可能性使得推斷出現(xiàn)錯(cuò)誤
D.以上三種說法都不正確答案:D39.某品牌平板電腦的采購商指導(dǎo)價(jià)為每臺2000元,若一次采購數(shù)量達(dá)到一定量,還可享受折扣.如圖為某位采購商根據(jù)折扣情況設(shè)計(jì)的算法程序框圖,若一次采購85臺該平板電腦,則S=______元.答案:分析程序中各變量、各語句,其作用是:表示一次采購共需花費(fèi)的金額,再根據(jù)流程圖所示的順序,可知:該程序的作用是計(jì)算分段函數(shù)S=200×0.8?x,x>100200×0.9?x,50<x≤100200?x,0<x≤50的值,∵x=85,∴S=200×0.9×85=15300(元),故為:15300.40.若直線ax+by+1=0與圓x2+y2=1相離,則點(diǎn)P(a,b)的位置是()
A.在圓上
B.在圓外
C.在圓內(nèi)
D.以上都有可能答案:C41.如圖,△ABC中,D,E,F(xiàn)分別是邊BC,AB,CA的中點(diǎn),在以A、B、C、D、E、F為端點(diǎn)的有向線段中所表示的向量中,
(1)與向量FE共線的有
______.
(2)與向量DF的模相等的有
______.
(3)與向量ED相等的有
______.答案:(1)∵EF是△ABC的中位線,∴EF∥BC且EF=12BC,則與向量FE共線的向量是BC、BD、DC、CB、DB、CD;(2))∵DF是△ABC的中位線,∴DF∥AC且DF=12AC,則與向量DF的模相等的有CE,EA,EC,AF;(3)∵DE是△ABC的中位線,∴DE∥AB且DE=12AB,則與向量ED相等的有AF,F(xiàn)B.42.(選做題)已知矩陣.122x.的一個(gè)特征值為3,求另一個(gè)特征值及其對應(yīng)的一個(gè)特征向量.答案:矩陣M的特征多項(xiàng)式為.λ-1-2-2λ-x.=(λ-1)(λ-x)-4…(1分)因?yàn)棣?=3方程f(λ)=0的一根,所以x=1…(3分)由(λ-1)(λ-1)-4=0得λ2=-1,…(5分)設(shè)λ2=-1對應(yīng)的一個(gè)特征向量為α=xy,則-2x-2y=0-2x-2y=0得x=-y…(8分)令x=1則y=-1,所以矩陣M的另一個(gè)特征值為-1,對應(yīng)的一個(gè)特征向量為α=1-1…(10分)43.如圖,半徑為R的球O中有一內(nèi)接圓柱.當(dāng)圓柱的側(cè)面積最大時(shí),球的表面積與該圓柱的側(cè)面積之差是______.
答案:設(shè)圓柱的上底面半徑為r,球的半徑與上底面夾角為α,則r=Rcosα,圓柱的高為2Rsinα,圓柱的側(cè)面積為:2πR2sin2α,當(dāng)且僅當(dāng)α=π4時(shí),sin2α=1,圓柱的側(cè)面積最大,圓柱的側(cè)面積為:2πR2,球的表面積為:4πR2,球的表面積與該圓柱的側(cè)面積之差是:2πR2.故為:2πR244.已知x,y,z滿足(x-3)2+(y-4)2+z2=2,那么x2+y2+z2的最小值是______.答案:由題意可得P(x,y,z),在以M(3,4,0)為球心,2為半徑的球面上,x2+y2+z2表示原點(diǎn)與點(diǎn)P的距離的平方,顯然當(dāng)O,P,M共線且P在O,M之間時(shí),|OP|最小,此時(shí)|OP|=|OM|-2=32+42-2=52,所以|OP|2=27-102.故為:27-102.45.拋物線C:y=x2上兩點(diǎn)M、N滿足MN=12MP,若OP=(0,-2),則|MN|=______.答案:設(shè)M(x1,x12),N(x2,x22),則MN=(x2-x1,x22-x12)MP=(-x1,-2-x12).因?yàn)镸N=12MP,所以(x2-x1,x22-x12)=12(-x1,-2-x12),即x2-x1=-12x1,x22-x12=12(-2-x12),所以x1=2x2,2x22=-2+x12,聯(lián)立解得:x2=1,x1=2或x2=-1,x1=-2即M(1,1),N(2,4)或M(-1,1),N(-2,4)所以|MN|=10故為10.46.若直線l經(jīng)過原點(diǎn)和點(diǎn)A(-2,-2),則它的斜率為()
A.-1
B.1
C.1或-1
D.0答案:B47.(不等式選講選做題)
已知實(shí)數(shù)a、b、x、y滿足a2+b2=1,x2+y2=3,則ax+by的最大值為______.答案:因?yàn)閍2+b2=1,x2+y2=3,由柯西不等式(a2+b2)(x2+y2)≥(ax+by)2,得3≥(ax+by)2,不且僅當(dāng)ay=bx時(shí)取等號,所以ax+by的最大值為3.故為:3.48.已知中心在原點(diǎn),對稱軸為坐標(biāo)軸,長半軸長與短半軸長的和為92,離心率為35的橢圓的標(biāo)準(zhǔn)方程為______.答案:由題意可得a+b=92e=ca=35a2=b2+c2,解得a2=50b2=32.∴橢圓的標(biāo)準(zhǔn)方程為x250+y232=1或y250+x232=1.故為x250+y232=1或y250+x232=1.49.給出以下變量①吸煙,②性別,③宗教信仰,④國籍,其中屬于分類變量的有______.答案:①因?yàn)槲鼰煵皇欠诸愖兞浚欠裎鼰煵攀欠诸愖兞?,其他②③④屬于分類變量.故為:②③④?0.設(shè)0<a<1,m=loga(a2+1),n=loga(a+1),p=loga(2a),則m,n,p的大小關(guān)系是()A.n>m>pB.m>p>nC.m>n>pD.p>m>n答案:取a=0.5,則a2+1、a+1、2a的大小分別為:1.25,1.5,1,又因?yàn)?<a<1時(shí),y=logax為減函數(shù),所以p>m>n故選D第2卷一.綜合題(共50題)1.已知隨機(jī)變量X滿足D(X)=2,則D(3X+2)=()
A.2
B.8
C.18
D.20答案:C2.在(1+x)3+(1+x)4…+(1+x)7的展開式中,含x項(xiàng)的系數(shù)是______.(用數(shù)字作答)答案:(1+x)3+(1+x)4…+(1+x)7的展開式中,含x項(xiàng)的系數(shù)是C31+C41+C51+…+C71=25故為:253.點(diǎn)O是△ABC內(nèi)一點(diǎn),若+=-,則是S△AOB:S△AOC=()
A.1
B.
C.
D.答案:A4.將5位志愿者分成4組,其中一組為2人,其余各組各1人,到4個(gè)路口協(xié)助交警執(zhí)勤,則不同的分配方案有______種(用數(shù)字作答).答案:由題意,先分組,再到4個(gè)路口協(xié)助交警執(zhí)勤,則不同的分配方案有C25A44=240種故為:240.5.從裝有2個(gè)紅球和2個(gè)白球的口袋內(nèi),任取2個(gè)球,那么下面互斥而不對立的兩個(gè)事件是()
A.恰有1個(gè)白球;恰有2個(gè)白球
B.至少有1個(gè)白球;都是白球
C.至少有1個(gè)白球;
至少有1個(gè)紅球
D.至少有1個(gè)白球;
都是紅球答案:A6.如圖,已知OA、OB是⊙O的半徑,且OA⊥OB,P是線段OA上一點(diǎn),直線BP交⊙O于點(diǎn)Q,過Q作⊙O的切線交直線OA于點(diǎn)E,求證:∠OBP+∠AQE=45°.答案:證明:連接AB,則∠AQE=∠ABP,而OA=OB,所以∠ABO=45°所以∠OBP+∠AQE=∠OBP+∠ABP=∠ABO=45°7.72的正約數(shù)(包括1和72)共有______個(gè).答案:72=23×32.∴2m?3n(0≤m≤3,0≤n≤2,m,n∈N)都是72的正約數(shù).m的取法有4種,n的取法有3種,由分步計(jì)數(shù)原理共3×4個(gè).故為:12.8.如果方程(1+i)x2-2(a+i)x+5-3i=0(a∈R)有實(shí)數(shù)解,求a的值.答案:設(shè)方程的實(shí)根為x0,則方程(1+i)x2-2(a+i)x+5-3i=0可化為(x20-2ax0+5)+(x20-2x0-3)i=0由復(fù)數(shù)相等的充要條件可得x20-2ax0+5=0①x20-2x0-3=0
②由②得x0=3或-1,代入①得a=73或-3∴a=73或-39.已知M(-2,0),N(2,0),|PM|-|PN|=3,則動(dòng)點(diǎn)P的軌跡是()A.雙曲線B.雙曲線右支C.一條射線D.不存在答案:∵|PM|-|PN|=3,M(-2,0),N(2,0),且3<4=|MN|,根據(jù)雙曲線的定義,∴點(diǎn)P是以M(-2,0),N(2,0)為兩焦點(diǎn)的雙曲線的右支.故選B.10.拋物線y=-12x2上一點(diǎn)N到其焦點(diǎn)F的距離是3,則點(diǎn)N到直線y=1的距離等于______.答案:∵拋物線y=-12x2化成標(biāo)準(zhǔn)方程為x2=-2y∴拋物線的焦點(diǎn)為F(0,-12),準(zhǔn)線方程為y=12∵點(diǎn)N在拋物線上,到焦點(diǎn)F的距離是3,∴點(diǎn)N到準(zhǔn)線y=12的距離也是3因此,點(diǎn)N到直線y=1的距離等于3+(1-12)=72故為:7211.如圖,花園中間是噴水池,噴水池周圍的A、B、C、D區(qū)域種植草皮,要求相鄰的區(qū)域種不同顏色的草皮,現(xiàn)有4種不同顏色的草皮可供選用,則共有______種不同的種植方法(以數(shù)字作答).答案:若AD相同,有4×(3+3×2)種種植方法,若AD不同,有4×3×(2+2×1)種種植方法∴共有4×(3+3×2)+4×3×(2+2×1)=36+48=84種不同方法.故為84.12.定義xn+1yn+1=1011xnyn,n∈N*為向量OPn=(xn,yn)到向量OPn+1=(xn+1,yn+1)的一個(gè)矩陣變換,其中O是坐標(biāo)原點(diǎn).已知OP1=(1,0),則OP2010的坐標(biāo)為______.答案:由題意,xn+1=xnyn+1=xn+yn∴向量的橫坐標(biāo)不變,縱坐標(biāo)構(gòu)成以0為首項(xiàng),1為公差的等差數(shù)列∴OP2010的坐標(biāo)為(1,2009)故為(1,2009)13.下列語句不屬于基本算法語句的是()
A.賦值語句
B.運(yùn)算語句
C.條件語句
D.循環(huán)語句答案:B14.
已知向量
=(4,3),=(1,2),若向量
+k
與
-
垂直,則k的值為(
)A.
233B.7C.-
115D.-
233答案:考點(diǎn):數(shù)量積判斷兩個(gè)平面向量的垂直關(guān)系.15.已知向量a=(2,0),b=(1,x),且a、b的夾角為π3,則x=______.答案:由兩個(gè)向量的數(shù)量積的定義、數(shù)量積公式可得a?b=2+0=21+x2cosπ3=21+x2=12,x2=3,∴x=±3,故為±3.16.平面ABCD中,點(diǎn)A坐標(biāo)為(0,1,1),點(diǎn)B坐標(biāo)為(1,2,1),點(diǎn)C坐標(biāo)為(-1,0,-1).若向量a=(-2,y,z),且a為平面ABC的法向量,則yz=()A.2B.0C.1D.-1答案:AB=(1,1,0),AC=(-1,-1,-2),與平面ABC垂直的向量應(yīng)與上面的向量的數(shù)量積為零,向量a=(-2,y,z),且a為平面ABC的法向量,則a⊥AB且a⊥AC,即a?AB=0,且a?AC=0,即-2+y+0=0且2-y-2z=0,即y=2z=0,∴則yz=20=1,故選C.17.正方體ABCD-A1B1C1D1的棱長為2,MN是它的內(nèi)切球的一條弦(把球面上任意兩點(diǎn)之間的線段稱為球的弦),P為正方體表面上的動(dòng)點(diǎn),當(dāng)弦MN最長時(shí).PM?PN的最大值為______.答案:設(shè)點(diǎn)O是此正方體的內(nèi)切球的球心,半徑R=1.∵PM?PN≤|PM|
|PN|,∴當(dāng)點(diǎn)P,M,N三點(diǎn)共線時(shí),PM?PN取得最大值.此時(shí)PM?PN≤(PO-MO)?(PO+ON),而MO=ON,∴PM?PN≤PO2-R2=PO2-1,當(dāng)且僅當(dāng)點(diǎn)P為正方體的一個(gè)頂點(diǎn)時(shí)上式取得最大值,∴(PM?PN)max=(232)2-1=2.故為2.18.正多面體只有______種,分別為______.答案:正多面體只有5種,分別為正四面體、正六面體、正八面體、正十二面體、正二十面體.故為:5,正四面體、正六面體、正八面體、正十二面體、正二十面體.19.設(shè)非零向量、、滿足||=||=||,+=,則<,>=()
A.150°
B.120°
C.60°
D.30°答案:B20.給出下列四個(gè)命題,其中正確的一個(gè)是()
A.在線性回歸模型中,相關(guān)指數(shù)R2=0.80,說明預(yù)報(bào)變量對解釋變量的貢獻(xiàn)率是80%
B.在獨(dú)立性檢驗(yàn)時(shí),兩個(gè)變量的2×2列聯(lián)表中對角線上數(shù)據(jù)的乘積相差越大,說明這兩個(gè)變量沒有關(guān)系成立的可能性就越大
C.相關(guān)指數(shù)R2用來刻畫回歸效果,R2越小,則殘差平方和越大,模型的擬合效果越差
D.隨機(jī)誤差e是衡量預(yù)報(bào)精確度的一個(gè)量,它滿足E(e)=0答案:D21.已知不等式(a2+a+2)2x>(a2+a+2)x+8,其中x∈N+,使此不等式成立的x的最小整數(shù)值是______.答案:∵a2+a+2=(a+12)2+74>1,且x∈N+,∴由正整數(shù)指數(shù)函數(shù)在底數(shù)大于1時(shí)單調(diào)遞增的性質(zhì),得2x>x+8,即x>8,∴使此不等式成立的x的最小整數(shù)值為9.故為:9.22.運(yùn)行如圖的程序,將自然數(shù)列0,1,2,…依次輸入作為a的值,則輸出結(jié)果x為______.
答案:當(dāng)n=2時(shí),x=5×6+0=30,當(dāng)n=1時(shí),x=30×6+1=181,當(dāng)n=0時(shí),x=181×6+2=1088,故為:108823.一位母親記錄了她的兒子3~9歲的身高數(shù)據(jù),并由此建立身高與年齡的回歸模型為y=7.19x+73.93,用這個(gè)模型預(yù)測她的兒子10歲時(shí)的身高,則正確的敘述是()A.身高一定是145.83
cmB.身高在145.83
cm以上C.身高在145.83
cm左右D.身高在145.83
cm以下答案:∵身高與年齡的回歸模型為y=7.19x+73.93.∴可以預(yù)報(bào)孩子10歲時(shí)的身高是y=7.19x+73.93.=7.19×10+73.93=145.83則她兒子10歲時(shí)的身高在145.83cm左右.故選C.24.已知圓的方程是(x-2)2+(y-3)2=4,則點(diǎn)P(3,2)滿足()
A.是圓心
B.在圓上
C.在圓內(nèi)
D.在圓外答案:C25.曲線(θ為參數(shù))上的點(diǎn)到原點(diǎn)的最大距離為()
A.1
B.
C.2
D.答案:C26.已知全集U=R,A?U,B?U,如果命題P:2∈A∪B,則命題非P是()A.2?AB.2∈(CUA)C.2∈(CUA)∩(CUB)D.2∈(CUA)∪(CUB)答案:命題P:2∈A∪B,∴┐p為2∈(CUA)∩(CUB)故選C27.3科老師都布置了作業(yè),在同一時(shí)刻4名學(xué)生都做作業(yè)的可能情況有()
A.43種
B.4×3×2種
C.34種
D.1×2×3種答案:C28.盒中有10只螺絲釘,其中有3只是壞的,現(xiàn)從盒中隨機(jī)地抽取4只,那么310為()A.恰有1只壞的概率B.恰有2只好的概率C.4只全是好的概率D.至多2只壞的概率答案:∵盒中有10只螺絲釘∴盒中隨機(jī)地抽取4只的總數(shù)為:C104=210,∵其中有3只是壞的,∴所可能出現(xiàn)的事件有:恰有1只壞的,恰有2只壞的,恰有3只壞的,4只全是好的,至多2只壞的取法數(shù)分別為:C31×C73=105,C32C72=63,C74=35,C74+C31×C73+C32×C72=203∴恰有1只壞的概率分別為:105210=12,,恰有2只好的概率為63210=310,,4只全是好的概率為35210=16,至多2只壞的概率為203210=2930;故A,C,D不正確,B正確故選B29.某學(xué)校為了調(diào)查高三年級的200名文科學(xué)生完成課后作業(yè)所需時(shí)間,采取了兩種抽樣調(diào)查的方式:第一種由學(xué)生會(huì)的同學(xué)隨機(jī)抽取20名同學(xué)進(jìn)行調(diào)查;第二種由教務(wù)處對該年級的文科學(xué)生進(jìn)行編號,從001到200,抽取學(xué)號最后一位為2的同學(xué)進(jìn)行調(diào)查,則這兩種抽樣的方法依次為()A.分層抽樣,簡單隨機(jī)抽樣B.簡單隨機(jī)抽樣,分層抽樣C.分層抽樣,系統(tǒng)抽樣D.簡單隨機(jī)抽樣,系統(tǒng)抽樣答案:第一種由學(xué)生會(huì)的同學(xué)隨機(jī)抽取20名同學(xué)進(jìn)行調(diào)查;這是一種簡單隨機(jī)抽樣,第二種由教務(wù)處對該年級的文科學(xué)生進(jìn)行編號,從001到200,抽取學(xué)號最后一位為2的同學(xué)進(jìn)行調(diào)查,對于個(gè)體比較多的總體,采用系統(tǒng)抽樣,故選D.30.下列在曲線上的點(diǎn)是()
A.
B.
C.
D.答案:D31.(1+x2)5的展開式中x2的系數(shù)()A.10B.5C.52D.1答案:含x2項(xiàng)為C25(x2)2=10×x24=52x2,故選項(xiàng)為為C.32.設(shè)a,b是不共線的兩個(gè)向量,已知=2+m,=+,=-2.若A,B,D三點(diǎn)共線,則m的值為()
A.1
B.2
C.-2
D.-1答案:D33.已知指數(shù)函數(shù)f(x)的圖象過點(diǎn)(3,8),求f(6)的值.答案:設(shè)指數(shù)函數(shù)為:f(x)=ax,因?yàn)橹笖?shù)函數(shù)f(x)的圖象過點(diǎn)(3,8),所以8=a3,∴a=2,所求指數(shù)函數(shù)為f(x)=2x;所以f(6)=26=64所以f(6)的值為64.34.在某電視歌曲大獎(jiǎng)賽中,最有六位選手爭奪一個(gè)特別獎(jiǎng),觀眾A,B,C,D猜測如下:A說:獲獎(jiǎng)的不是1號就是2號;A說:獲獎(jiǎng)的不可能是3號;C說:4號、5號、6號都不可能獲獎(jiǎng);D說:獲獎(jiǎng)的是4號、5號、6號中的一個(gè).比賽結(jié)果表明,四個(gè)人中恰好有一個(gè)人猜對,則猜對者一定是觀眾
獲特別獎(jiǎng)的是
號選手.答案:C,3.解析:推理如下:因?yàn)橹挥幸蝗瞬聦?,而C與D互相否定,故C、D中一人猜對。假設(shè)D對,則推出B也對,與題設(shè)矛盾,故D猜錯(cuò),所以猜對者一定是C;于是B一定猜錯(cuò),故獲獎(jiǎng)?wù)呤?號選手(此時(shí)A錯(cuò)).35.已知兩個(gè)力F1,F(xiàn)2的夾角為90°,它們的合力大小為10N,合力與F1的夾角為60°,那么F2的大小為()A.53NB.5NC.10ND.52N答案:由題意可知:對應(yīng)向量如圖由于α=60°,∴F2的大小為|F合|?sin60°=10×32=53.故選A.36.求證:三個(gè)兩兩垂直的平面的交線兩兩垂直.答案:設(shè)三個(gè)互相垂直的平面分別為α、β、γ,且α∩β=a,β∩γ=b,γ∩α=c,三個(gè)平面的公共點(diǎn)為O,如圖所示:在平面γ內(nèi),除點(diǎn)O外,任意取一點(diǎn)M,且點(diǎn)M不在這三個(gè)平面中的任何一個(gè)平面內(nèi),過點(diǎn)M作MN⊥c,MP⊥b,M、P為垂足,則有平面和平面垂直的性質(zhì)可得MN⊥α,MP⊥β,∴a⊥MN,a⊥MP,∴a⊥平面γ.
再由b、c在平面γ內(nèi),可得a⊥b,a⊥c.同理可證,c⊥b,c⊥a,從而證得a、b、c互相垂直.37.用冒泡法對43,34,22,23,54從小到大排序,需要(
)趟排序。
A.2
B.3
C.4
D.5答案:A38.現(xiàn)有10個(gè)保送上大學(xué)的名額,分配給7所學(xué)校,每校至少有1個(gè)名額,名額分配的方法共有______種(用數(shù)字作答).答案:根據(jù)題意,將10個(gè)名額,分配給7所學(xué)校,每校至少有1個(gè)名額,可以轉(zhuǎn)化為10個(gè)元素之間有9個(gè)間隔,要求分成7份,每份不空;相當(dāng)于用6塊檔板插在9個(gè)間隔中,共有C96=84種不同方法.所以名額分配的方法共有84種.39.設(shè)函數(shù)f(x)的定義域?yàn)镽,如果對任意的實(shí)數(shù)x,y都有f(x+y)=f(x)+f(y)成立,且f(2)=1,那么f(3)=______.答案:對任意的實(shí)數(shù)x,y都有f(x+y)=f(x)+f(y)成立,且f(2)=1,∴f(2)=2f(1)=1∴f(1)=12那么f(3)=f(2)+f(1)=1=12=32故為:3240.若純虛數(shù)z滿足(2-i)z=4-bi,(i是虛數(shù)單位,b是實(shí)數(shù)),則b=()
A.-2
B.2
C.-8
D.8答案:C41.用反證法證明“a+b=1”時(shí)的反設(shè)為()
A.a(chǎn)+b>1且a+b<1
B.a(chǎn)+b>1
C.a(chǎn)+b>1或a+b<1
D.a(chǎn)+b<1答案:C42.直線ax+by=1與圓x2+y2=1有兩不同交點(diǎn),則點(diǎn)P(a,b)與圓的位置關(guān)系為______.答案:圓心到直線ax+by=1的距離,1a2+b2,∵直線ax+by=1與圓x2+y2=1有兩不同交點(diǎn),∴1a2+b2<1即a2+b2>1.故為:點(diǎn)在圓外.43.橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,兩頂點(diǎn)分別是(3,0),(0,2),則此橢圓的方程是______.答案:依題意,此橢圓方程為標(biāo)準(zhǔn)方程,且焦點(diǎn)在x軸上,設(shè)為x2a2+y2b2=1∵橢圓的兩頂點(diǎn)分別是(3,0),(0,2),∴a=3,b=2∵∴此橢圓的標(biāo)準(zhǔn)方程為:x29+y22=1.故為:x29+y22=1.44.已知集合M={1,2,3},N={1,2,3,4},定義函數(shù)f:M→N.若點(diǎn)A(1,f(1))、B(2,f(2))、C(3,f(3)),△ABC的外接圓圓心為D,且
則滿足條件的函數(shù)f(x)有()
A.6個(gè)
B.10個(gè)
C.12個(gè)
D.16個(gè)答案:C45.如圖所示,正四面體V—ABC的高VD的中點(diǎn)為O,VC的中點(diǎn)為M.
(1)求證:AO、BO、CO兩兩垂直;
(2)求〈,〉.答案:(1)證明略(2)45°解析:(1)
設(shè)=a,=b,=c,正四面體的棱長為1,則=(a+b+c),=(b+c-5a),=(a+c-5b),=(a+b-5c)∴·=(b+c-5a)·(a+c-5b)=(18a·b-9|a|2)=(18×1×1·cos60°-9)=0.∴⊥,∴AO⊥BO,同理⊥,BO⊥CO,∴AO、BO、CO兩兩垂直.(2)
=+=-(a+b+c)+=(-2a-2b+c).∴||==,||==,·=(-2a-2b+c)·(b+c-5a)=,∴cos〈,〉==,∵〈,〉∈(0,),∴〈,〉=45°.46.已知雙曲線x2-y22=1,經(jīng)過點(diǎn)M(1,1)能否作一條直線l,使直線l與雙曲線交于A、B,且M是線段AB的中點(diǎn),若存在這樣的直線l,求出它的方程;若不存在,說明理由.答案:設(shè)過點(diǎn)M(1,1)的直線方程為y=k(x-1)+1或x=1(1)當(dāng)k存在時(shí)有y=k(x-1)+1x2
-y22=1得(2-k2)x2+(2k2-2k)x-k2+2k-3=0
(1)當(dāng)直線與雙曲線相交于兩個(gè)不同點(diǎn),則必有△=(2k2-2k)2-4(2-k2)(-k2+2k-3)>0,k<32
又方程(1)的兩個(gè)不同的根是兩交點(diǎn)A、B的橫坐標(biāo)∴x1+x2=2(k-k2)2-k2
又M(1,1)為線段AB的中點(diǎn)∴x1+x22=1
即k-k22-k2=1
k=2
∴k=2,使2-k2≠0但使△<0因此當(dāng)k=2時(shí),方程(1)無實(shí)數(shù)解故過點(diǎn)m(1,1)與雙曲線交于兩點(diǎn)A、B且M為線段AB中點(diǎn)的直線不存在.(2)當(dāng)x=1時(shí),直線經(jīng)過點(diǎn)M但不滿足條件,綜上,符合條件的直線l不存在47.兩條直線l1:x-3y+2=0與l2:x-y+2=0的夾角的大小是______.答案:由于兩條直線l1:x-3y+2=0與l2:x-y+2=0的斜率分別為33、1,設(shè)兩條直線的夾角為θ,則tanθ=|k2-k11+k2?k1|=|1-331+1×33|=3-33+3=2-3,∴tan2θ=2tanθ1-tan2θ=33,∴2θ=π6,θ=π12,故為π12.48.若與垂直,則k的值是()
A.2
B.1
C.0
D.答案:D49.某公司的管理機(jī)構(gòu)設(shè)置是:設(shè)總經(jīng)理一個(gè),副總經(jīng)理兩個(gè),直接對總經(jīng)理負(fù)責(zé),下設(shè)有6個(gè)部門,其中副總經(jīng)理A管理生產(chǎn)部、安全部和質(zhì)量部,副總經(jīng)理B管理銷售部、財(cái)務(wù)部和保衛(wèi)部.請根據(jù)以上信息補(bǔ)充該公司的人事結(jié)構(gòu)圖,其中①、②處應(yīng)分別填()
A.保衛(wèi)部,安全部
B.安全部,保衛(wèi)部
C.質(zhì)檢中心,保衛(wèi)部
D.安全部,質(zhì)檢中心
答案:B50.刻畫數(shù)據(jù)的離散程度的度量,下列說法正確的是()
(1)應(yīng)充分利用所得的數(shù)據(jù),以便提供更確切的信息;
(2)可以用多個(gè)數(shù)值來刻畫數(shù)據(jù)的離散程度;
(3)對于不同的數(shù)據(jù)集,其離散程度大時(shí),該數(shù)值應(yīng)越?。?/p>
A.(1)和(3)
B.(2)和(3)
C.(1)和(2)
D.都正確答案:C第3卷一.綜合題(共50題)1.已知向量a,b滿足|a|=2,|b|=3,|2a+b|=則a與b的夾角為()
A.30°
B.45°
C.60°
D.90°答案:C2.有外形相同的球分裝三個(gè)盒子,每盒10個(gè).其中,第一個(gè)盒子中7個(gè)球標(biāo)有字母A、3個(gè)球標(biāo)有字母B;第二個(gè)盒子中有紅球和白球各5個(gè);第三個(gè)盒子中則有紅球8個(gè),白球2個(gè).試驗(yàn)按如下規(guī)則進(jìn)行:先在第一號盒子中任取一球,若取得標(biāo)有字母A的球,則在第二號盒子中任取一個(gè)球;若第一次取得標(biāo)有字母B的球,則在第三號盒子中任取一個(gè)球.如果第二次取出的是紅球,則稱試驗(yàn)成功,那么試驗(yàn)成功的概率為()
A.0.59
B.0.54
C.0.8
D.0.15答案:A3.不等式的解集是
(
)A.B.C.D.答案:B解析:當(dāng)時(shí),不等式成立;當(dāng)時(shí),不等式可化為,解得綜上,原不等式解集為故選B4.(幾何證明選講選做題)如圖,△ABC的外角平分線AD交外接圓于D,BD=4,則CD=______.答案:∵A、B、C、D共圓,∴∠DAE=∠BCD.又∵CD=CD,∴∠DAC=∠DBC.而∠DAE=∠DAC,∴∠DBC=∠DCB.∴CD=BD=4.故為4.5.如圖,圓與圓內(nèi)切于點(diǎn),其半徑分別為與,圓的弦交圓于點(diǎn)(不在上),求證:為定值。
答案:見解析解析:考察圓的切線的性質(zhì)、三角形相似的判定及其性質(zhì),容易題。證明:由弦切角定理可得6.若90°<θ<180°,曲線x2+y2sinθ=1表示()
A.焦點(diǎn)在x軸上的雙曲線
B.焦點(diǎn)在y軸上的雙曲線
C.焦點(diǎn)在x軸上的橢圓
D.焦點(diǎn)在y軸上的橢圓答案:D7.若直線x-y-1=0與直線x-ay=0的夾角為,則實(shí)數(shù)a等于()
A.
B.0
C.
D.0或答案:D8.已知O、A、M、B為平面上四點(diǎn),且,則()
A.點(diǎn)M在線段AB上
B.點(diǎn)B在線段AM上
C.點(diǎn)A在線段BM上
D.O、A、M、B四點(diǎn)一定共線答案:B9.點(diǎn)(2,-2)的極坐標(biāo)為______.答案:∵點(diǎn)(2,-2)中x=2,y=-2,∴ρ=x2+y2=4+4=22,tanθ=yx=-1,∴取θ=-π4.∴點(diǎn)(2,-2)的極坐標(biāo)為(22,-π4)故為(22,-π4).10.在極坐標(biāo)系下,圓C:ρ2+4ρsinθ+3=0的圓心坐標(biāo)為()
A.(2,0)
B.
C.(2,π)
D.答案:D11.若向量a=(2,-3,3)是直線l的方向向量,向量b=(1,0,0)是平面α的法向量,則直線l與平面α所成角的大小為______.答案:設(shè)直線l與平面α所成角為θ,則sinθ=|cos<a,b>|=|a?b||a|
|b|=222+(-3)2+(3)2×1=12,∵θ∈[0,π2],∴θ=π6,即直線l與平面α所成角的大小為π6.故為π6.12.a=0是復(fù)數(shù)a+bi(a,b∈R)為純虛數(shù)的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分又不必要條件答案:當(dāng)a=0時(shí),復(fù)數(shù)a+bi=bi,當(dāng)b=0是不是純虛數(shù)即“a=0”成立推不出“復(fù)數(shù)a+bi(a,b∈R)為純虛數(shù)”反之,當(dāng)復(fù)數(shù)a+bi(a,b∈R)為純虛數(shù),則有a=0且b≠0即“復(fù)數(shù)a+bi(a,b∈R)為純虛數(shù)”成立能推出“a=0“成立故a=0是復(fù)數(shù)a+bi(a,b∈R)為純虛數(shù)的必要不充分條件故選B13.已知焦點(diǎn)在x軸上的雙曲線漸近線方程是y=±4x,則該雙曲線的離心率是()
A.
B.
C.
D.答案:A14.下列選項(xiàng)中元素的全體可以組成集合的是()A.2013年1月風(fēng)度中學(xué)高一級高個(gè)子學(xué)生B.校園中長的高大的樹木C.2013年1月風(fēng)度中學(xué)高一級在校學(xué)生D.學(xué)校籃球水平較高的學(xué)生答案:因?yàn)榧现性鼐哂校捍_定性、互異性、無序性.所以A、B、D都不是集合,元素不確定;故選C.15.已知直線經(jīng)過點(diǎn)A(0,4)和點(diǎn)B(1,2),則直線AB的斜率為______.答案:因?yàn)锳(0,4)和點(diǎn)B(1,2),所以直線AB的斜率k=2-41-0=-2故為:-216.已知a,b,c是正實(shí)數(shù),且a+b+c=1,則的最小值為(
)A.3B.6C.9D.12答案:C解析:本題考查均值不等式等知識。將1代入中,得,當(dāng)且僅當(dāng),又,故時(shí)不等式取,選C。17.已知=(3,4),=(5,12),與則夾角的余弦為()
A.
B.
C.
D.答案:A18.從2008名學(xué)生中選取50名學(xué)生參加數(shù)學(xué)競賽,若采用下面的方法選?。合扔煤唵坞S機(jī)抽樣從2008人中剔除8人,剩下的2000人再按系統(tǒng)抽樣的方法抽取50人,則在2008人中,每人入選的概率()
A.不全相等
B.均不相等
C.都相等,且為
D.都相等,且為答案:C19.已知f(x)在(0,2)上是增函數(shù),f(x+2)是偶函數(shù),那么正確的是()A.f(1)<f(52)<f(72)B.f(72)<f(1)<f(52)C.f(72)<f(52)<f(1)D.f(52)<f(1)<f(72)答案:根據(jù)函數(shù)的圖象的平移可得把f(x+2)向右平移2個(gè)單位可得f(x)的圖象f(x+2)是偶函數(shù),其圖象關(guān)于y軸對稱可知f(x)的圖象關(guān)于x=2對稱∴f(72)=f(12),f(52)=f(32)∵f(x)在(0,2)單調(diào)遞增,且12<1<32∴f(12)<f(1)<f(32)即f(72)<f(1)<f(52)故選:B20.若關(guān)于的不等式的解集是,則的值為_______答案:-2解析:原不等式,結(jié)合題意畫出圖可知.21.(不等式選講)
已知a>0,b>0,c>0,abc=1,試證明:.答案:略解析::證明:由,所以同理:
,
相加得:左3……………(10分)22.設(shè)F1,F(xiàn)2是雙曲線x29-y216=1的兩個(gè)焦點(diǎn),點(diǎn)P在雙曲線上,且∠F1PF2=90°,求△F1PF2的面積.答案:雙曲線x29-y216=1的a=3,c=5,不妨設(shè)PF1>PF2,則PF1-PF2=2a=6F1F22=PF12+PF22,而F1F2=2c=10得PF12+PF22=(PF1-PF2)2+2PF1?PF2=100∴PF1?PF2=32∴S=12PF1?PF2=16△F1PF2的面積16.23.用反證法證明命題“三角形的內(nèi)角至多有一個(gè)鈍角”時(shí),假設(shè)正確的是()
A.假設(shè)至少有一個(gè)鈍角
B.假設(shè)沒有一個(gè)鈍角
C.假設(shè)至少有兩個(gè)鈍角
D.假設(shè)沒有一個(gè)鈍角或至少有兩個(gè)鈍角答案:C24.表示隨機(jī)事件發(fā)生的可能性大小的數(shù)叫做該事件的______.答案:根據(jù)概率的定義:表示隨機(jī)事件發(fā)生的可能性大小的數(shù)叫做該事件的概率;一個(gè)隨機(jī)事件發(fā)生的可能性很大,那么P的值接近1又不等于1,故為:概率.25.5位同學(xué)報(bào)名參加兩個(gè)課外活動(dòng)小組,每位同學(xué)限報(bào)其中的一個(gè)小組,則不同的報(bào)名方法共有()
A.10種
B.20種
C.25種
D.32種答案:D26.畫出《數(shù)學(xué)3》第一章“算法初步”的知識結(jié)構(gòu)圖.答案:《數(shù)學(xué)3》第一章“算法初步”的知識包括:算法、程序框圖、算法的三種基本邏輯結(jié)構(gòu)和框圖表示、基本算法語句.算法的三種基本邏輯結(jié)構(gòu)和框圖表示就是順序結(jié)構(gòu)、條件結(jié)構(gòu)、循環(huán)結(jié)構(gòu),基本算法語句是指輸入語句、輸出語句、賦值語句、條件語句和循環(huán)語句.故《數(shù)學(xué)3》第一章“算法初步”的知識結(jié)構(gòu)圖示意圖如下:27.把點(diǎn)按向量平移到點(diǎn),則的圖象按向量平移后的圖象的函數(shù)表達(dá)式為(
).A.B.C.D.答案:D解析:,由可得,所以平移后的函數(shù)解析式為28.設(shè)點(diǎn)P對應(yīng)的復(fù)數(shù)為-3+3i,以原點(diǎn)為極點(diǎn),實(shí)軸正半軸為極軸建立極坐標(biāo)系,則點(diǎn)P的極坐標(biāo)為()
A.(3,π)
B.(-3,π)
C.(3,π)
D.(-3,π)答案:A29.若函數(shù),則下列結(jié)論正確的是(
)A.,在上是增函數(shù)B.,在上是減函數(shù)C.,是偶函數(shù)D.,是奇函數(shù)答案:C解析:對于時(shí)有是一個(gè)偶函數(shù)30.已知一個(gè)幾何體是由上下兩部分構(gòu)成的一個(gè)組合體,其三視圖如圖所示,則這個(gè)組合體的上下兩部分分別是(
)答案:A31.已知單位正方體ABCD-A1B1C1D1,E分別是棱C1D1的中點(diǎn),試求:
(1)AE與平面BB1C1C所成的角的正弦值;
(2)二面角C1-DB-A的余弦值.答案:以D為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,如圖所示:(1)設(shè)正方體棱長為2.則E(0,1,2),A(2,0,0).AE=(-2,1,2),平面BCC1B1的法向量為n=(0,1,0).設(shè)AE與平面BCC1B1所成的角為θ.sinθ=|cos<AE,n>|=|AE?n||AE|
|n|=19=13.∴sinθ=13.(2)A(1,0,0),B(1,1,0),C1(0,1,1),∴DA=(1,0,0),DB=(1,1,0),DC1=(0,1,1).設(shè)平面DBC1的法向量為n1=(x,y,z),則n1?DB=x+y=0n1?DC1=y+z=0,令y=-1,則x=1,z=1.∴n1=(1,-1,1).取平面ADB的法向量為n2=(0,0,1).設(shè)二面角C1-DB-A的大小為α,從圖中可知:α為鈍角.∵cos<n1,n2>=n1?n2|n1|
|n2|=13=33,∴cosα=-33.32.已知點(diǎn)P是長方體ABCD-A1B1C1D1底面ABCD內(nèi)一動(dòng)點(diǎn),其中AA1=AB=1,AD=2,若A1P與A1C所成的角為30°,那么點(diǎn)P在底面的軌跡為()A.圓弧B.橢圓的一部分C.雙曲線的一部分D.拋物線的一部分答案:如圖,∵A1P與A1C所成的角為30°,∴P點(diǎn)在以A1C為軸,母線與軸的夾角為30度的圓錐面上,在直角三角形A1CC1中,A1C1=3,CC1=1,∴∠C1AC1=30°當(dāng)截面ABCD與圓錐的母線A1C1平行時(shí),截得的圖形是拋物線,故點(diǎn)P在底面的軌跡為拋物線的一部分.故選D.33.已知F1=i+2j+3k,F(xiàn)2=2i+3j-k,F(xiàn)3=3i-4j+5k,若F1,F(xiàn)2,F(xiàn)3共同作用于一物體上,使物體從點(diǎn)M(1,-2,1)移動(dòng)到N(3,1,2),則合力所作的功是______.答案:由題意可得F1=(1,2,3)F2=(2,3,-1),F(xiàn)3=(3,-4,5),故合力F=F1+F2+F3=(6,1,7),位移S=MN=(3,1,2)-(1,-2,1)=(2,3,1),故合力所作的功W=F?S=6×2+1×3+7×1=22故為:2234.已知空間四邊形ABCD的對角線為AC、BD,設(shè)G是CD的中點(diǎn),則+(+)等于()
A.
B.
C.
D.
答案:C35.已知兩點(diǎn)分別為A(4,3)和B(7,-1),則這兩點(diǎn)之間的距離為()A.1B.2C.3D.5答案:∵A(4,3)和B(7,-1),∴AB=(4-7)2+(3+1)2=5故選D.36.若隨機(jī)向一個(gè)半徑為1的圓內(nèi)丟一粒豆子(假設(shè)該豆子一定落在圓內(nèi)),則豆子落在此圓內(nèi)接正三角形內(nèi)的概率是______.答案:∵圓O是半徑為R=1,圓O的面積為πR2=π則圓內(nèi)接正三角形的邊長為3,而正三角形ABC的面積為343,∴豆子落在正三角形ABC內(nèi)的概率P=334π=334π故為:334π37.若a2+b2+c2=1,則a+2b+3c的最大值為______.答案:因?yàn)橐阎猘、b、c是實(shí)數(shù),且a2+b2+c2=1根據(jù)柯西不等式(a2+b2+c2)(x
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 投資合作經(jīng)營幼兒園合同書
- 提前預(yù)定租約協(xié)議
- 入伍誓言獻(xiàn)身國防為民族復(fù)興努力
- 燈飾安裝工程勞務(wù)分包
- 債務(wù)重組協(xié)議書格式要求
- 未寫英語作業(yè)的誠懇保證書
- 科技服務(wù)合同范本
- 供應(yīng)商入圍招標(biāo)文件的制作技巧
- 招標(biāo)文件制作軟件使用解析
- 批發(fā)市場肉品采購合約
- GB/T 10560-2017礦用焊接圓環(huán)鏈用鋼
- GB/T 10325-2012定形耐火制品驗(yàn)收抽樣檢驗(yàn)規(guī)則
- FZ/T 91019-1998染整機(jī)械導(dǎo)布輥制造工藝規(guī)范
- FZ/T 52025-2012再生有色滌綸短纖維
- SHSG0522003 石油化工裝置工藝設(shè)計(jì)包(成套技術(shù))內(nèi)容規(guī)定
- FMEA-培訓(xùn)教材-汽車fmea培訓(xùn)課件
- 制造部年終總結(jié)報(bào)告課件
- 粵科版高中通用技術(shù)選修1:電子控制技術(shù)全套課件
- 知識產(chǎn)權(quán)法(英文) Intellectual Property Right Law課件
- 熱力管道焊接技術(shù)交底記錄大全
- 接地裝置安裝試驗(yàn)記錄
評論
0/150
提交評論