2023年湖南電子科技職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第1頁
2023年湖南電子科技職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第2頁
2023年湖南電子科技職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第3頁
2023年湖南電子科技職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第4頁
2023年湖南電子科技職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第5頁
已閱讀5頁,還剩39頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

長風(fēng)破浪會有時,直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年湖南電子科技職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.附加題選做題B.(矩陣與變換)

設(shè)矩陣A=m00n,若矩陣A的屬于特征值1的一個特征向量為10,屬于特征值2的一個特征向量為01,求實數(shù)m,n的值.答案:由題意得m00n10=110,m00n01=201,…6分化簡得m=10?n=00?m=0n=2所以m=1n=2.…10分2.某班有40名學(xué)生,其中有15人是共青團(tuán)員.現(xiàn)將全班分成4個小組,第一組有學(xué)生10人,共青團(tuán)員4人,從該班任選一個學(xué)生代表.在選到的學(xué)生代表是共青團(tuán)員的條件下,他又是第一組學(xué)生的概率為()A.415B.514C.14D.34答案:由于所有的共青團(tuán)員共有15人,而第一小組有4人是共青團(tuán)員,故在選到的學(xué)生代表是共青團(tuán)員的條件下,他又是第一組學(xué)生的概率為415,故選A.3.一元二次不等式ax2+bx+c≤0的解集是全體實數(shù)所滿足的條件是(

)

A.

B.

C.

D.答案:D4.如圖程序輸出的結(jié)果是()

a=3,

b=4,

a=b,

b=a,

PRINTa,b

END

A.3,4

B.4,4

C.3,3

D.4,3答案:B5.若拋物線y2=2px(p>0)的焦點與雙曲線的右焦點重合,則p的值為()

A.2

B.4

C.8

D.4答案:C6.已知l∥α,且l的方向向量為(2,-8,1),平面α的法向量為(1,y,2),則y=______.答案:∵l∥α,∴l(xiāng)的方向向量(2,-8,1)與平面α的法向量(1,y,2)垂直,∴2×1-8×y+2=0,解得y=12.故為12.7.已知△ABC是邊長為4的正三角形,D、P是△ABC內(nèi)部兩點,且滿足AD=14(AB+AC),AP=AD+18BC,則△APD的面積為______.答案:取BC的中點E,連接AE,根據(jù)△ABC是邊長為4的正三角形∴AE⊥BC,AE=12(AB+AC)而AD=14(AB+AC),則點D為AE的中點,AD=3取AF=18BC,以AD,AF為邊作平行四邊形,可知AP=AD+18BC=AD+AF而△APD為直角三角形,AF=12∴△APD的面積為12×12×3=34故為:348.已知雙曲線x2-y22=1,經(jīng)過點M(1,1)能否作一條直線l,使直線l與雙曲線交于A、B,且M是線段AB的中點,若存在這樣的直線l,求出它的方程;若不存在,說明理由.答案:設(shè)過點M(1,1)的直線方程為y=k(x-1)+1或x=1(1)當(dāng)k存在時有y=k(x-1)+1x2

-y22=1得(2-k2)x2+(2k2-2k)x-k2+2k-3=0

(1)當(dāng)直線與雙曲線相交于兩個不同點,則必有△=(2k2-2k)2-4(2-k2)(-k2+2k-3)>0,k<32

又方程(1)的兩個不同的根是兩交點A、B的橫坐標(biāo)∴x1+x2=2(k-k2)2-k2

又M(1,1)為線段AB的中點∴x1+x22=1

即k-k22-k2=1

k=2

∴k=2,使2-k2≠0但使△<0因此當(dāng)k=2時,方程(1)無實數(shù)解故過點m(1,1)與雙曲線交于兩點A、B且M為線段AB中點的直線不存在.(2)當(dāng)x=1時,直線經(jīng)過點M但不滿足條件,綜上,符合條件的直線l不存在9.P是直線3x+y+1=0上一點,P到點Q(0,2)距離的最小值是______.答案:過點Q作直線的垂線段,當(dāng)P是垂足時,線段PQ最短,故最小距離是點Q(0,2)到直線3x+y+1=0的距離d,d=|0+2+1|3+1=32=1.5.∴P到點Q(0,2)距離的最小值是1.5;故為1.5.10.欲對某商場作一簡要審計,通過檢查發(fā)票及銷售記錄的2%來快速估計每月的銷售總額.現(xiàn)采用如下方法:從某本50張的發(fā)票存根中隨機(jī)抽一張,如15號,然后按序往后將65號,115號,165號,…發(fā)票上的銷售額組成一個調(diào)查樣本.這種抽取樣本的方法是()A.簡單隨機(jī)抽樣B.系統(tǒng)抽樣C.分層抽樣D.其它方式的抽樣答案:∵總體的個體比較多,抽樣時某本50張的發(fā)票存根中隨機(jī)抽一張,如15號,這是系統(tǒng)抽樣中的分組,然后按序往后將65號,115號,165號,…發(fā)票上的銷售額組成一個調(diào)查樣本.故選B.11.方程2x2+ky2=1表示的曲線是長軸在y軸的橢圓,則實數(shù)k的范圍是()A.(0,+∞)B.(2,+∞)C.(0,2)D.(2,0)答案:橢圓方程化為x212+y21k=1.焦點在y軸上,則1k>12,即k<2.又k>0,∴0<k<2.故選C.12.棱長為2的正方體ABCD-A1B1C1D1中,BC1?B1D1=()A.22B.4C.-22D.-4答案:棱長為2的正方體ABCD-A1B1C1D1中,BC1與

B1D1的夾角等于BC1與BD的夾角,等于60°.∴BC1?B1D1=22×22cos60°=4,故選B.13.已知a=(5,4),b=(3,2),則與2a-3b同向的單位向量為

______.答案:∵a=(5,4),b=(3,2),∴2a-3b=(1,2)設(shè)與2a-3b平行的單位向量為e=(x,y),則2a-3b=λe,|e|=1∴(1,2)=(λx,λy);x2+y2=1∴1=λx2=λyx2+y2=1解之x=55y=255或x=-55y=-255故為e=±(55,255)14.某航空公司經(jīng)營A,B,C,D這四個城市之間的客運業(yè)務(wù),它們之間的直線距離的部分機(jī)票價格如下:AB為2000元;AC為1600元;AD為2500元;CD為900元;BC為1200元,若這家公司規(guī)定的機(jī)票價格與往返城市間的直線距離成正比,則BD間直線距離的票價為(設(shè)這四個城在同一水平面上)()

A.1500元

B.1400元

C.1200元

D.1000元答案:A15.已知a=5-12,則不等式logax>loga5的解集是______.答案:∵0<a<1,∴f(x)=logax在(0,+∞)上單調(diào)遞減∵logax>loga5∴0<x<5故為:(0,5)16.甲、乙兩人參加一次考試,已知在備選的10道試題中,甲能答對其中6題,乙能答對其中8題.若規(guī)定每次考試分別都從這10題中隨機(jī)抽出3題進(jìn)行測試,至少答對2題算合格.

(1)分別求甲、乙兩人考試合格的概率;

(2)求甲、乙兩人至少有一人合格的概率.答案:(1)(2)解析:(1)設(shè)甲、乙考試合格分別為事件A、B,甲考試合格的概率為P(A)=,乙考試合格的概率為P(B)=.(2)A與B相互獨立,且P(A)=,P(B)=,則甲、乙兩人至少有一人合格的概率為P(AB++A)=×+×+×=.17.已知空間向量a=(1,2,3),點A(0,1,0),若AB=-2a,則點B的坐標(biāo)是()A.(-2,-4,-6)B.(2,4,6)C.(2,3,6)D.(-2,-3,-6)答案:設(shè)B=(x,y,z),因為AB=-2a,所以(x,y-1,z)=-2(1,2,3),所以:x=-2,y-1=-4,z=-6,即x=-2,y=-3,z=-6.B(-2,-3,-6).故選D.18.若一元二次方程x2+(a-1)x+1-a2=0有兩個正實數(shù)根,則a的取值范圍是(

A.(-1,1)

B.(-∞,)∪[1,+∞)

C.(-1,]

D.[,1)答案:C19.已知矩陣A=abcd,若矩陣A屬于特征值3的一個特征向量為α1=11,屬于特征值-1的一個特征向量為α2=1-1,則矩陣A=______.答案:由矩陣A屬于特征值3的一個特征向量為α1=11可得abcd11=311,即a+b=3c+d=3;(4分)由矩陣A屬于特征值2的一個特征向量為α2=1-1,可得abcd1-1=(-1)1-1,即a-b=-1c-d=1,(6分)解得a=1b=2c=2d=1,即矩陣A=1221.(10分)故為:1221.20.在程序語言中,下列符號分別表示什么運算*;\;∧;SQR;ABS?答案:“*”表示乘法運算;“\”表示除法運算;“∧”表示乘方運算;“SQR()”表示求算術(shù)平方根運算;“ABS()”表示求絕對值運算.21.若兩條平行線L1:x-y+1=0,與L2:3x+ay-c=0

(c>0)之間的距離為,則等于()

A.-2

B.-6

C..2

D.0答案:A22.已知大于1的正數(shù)x,y,z滿足x+y+z=33.

(1)求證:x2x+2y+3z+y2y+2z+3x+z2z+2x+3y≥32.

(2)求1log3x+log3y+1log3y+log3z+1log3z+log3x的最小值.答案:(1)由柯西不等式得,(x2x+2y+3z+y2y+2z+3z+z2z+2x+3y)[(x+2y+3z)+(y+2z+3x)+(z+2x+3y)]≥(x+y+z)2=27得:x2x+2y+3z+y2y+2z+3x+z2z+2x+3y≥32;(2)∵1log3x+log3y+1log3y+log3z+1log3z+log3x=1log3(xy)+1log3(yz)+1log3(zx),由柯西不等式得:(1log3(xy)+1log3(yz)+1log3(zx))(log3(xy)+log3(yz)+log3(zx)),由柯西不等式得:(1log3(xy)+1log3(yz)+1log3(zx))(log3(xy)+log3(yz)+log3(zx))≥9所以,(1log3(xy)+1log3(yz)+1log3(zx))≥9(log3(xy)+log3(yz)+log3(zx))=92log3(xyz),又∵33=x+y+z≥33xyz.∴xyz≤33.∴l(xiāng)og3xyz≤32.得92log3xyz≥92×23=3所以,1log3x+log3y+1log3y+log3z+1log3z+log3x≥3當(dāng)且僅當(dāng)x=y=z=3時,等號成立.故所求的最小值是3.23.若方程Ax2+By2=1表示焦點在y軸上的雙曲線,則A、B滿足的條件是()

A.A>0,且B>0

B.A>0,且B<0

C.A<0,且B>0

D.A<0,且B<0答案:C24.已知P為拋物線y2=4x上一個動點,Q為圓x2+(y-4)2=1上一個動點,那么點P到點Q的距離與點P到拋物線的準(zhǔn)線距離之和的最小值是()

A.2-1

B.2-2

C.-1

D.-2答案:C25.已知△ABC中,過重心G的直線交邊AB于P,交邊AC于Q,設(shè)AP=pPB,AQ=qQC,則pqp+q=()A.1B.3C.13D.2答案:取特殊直線PQ使其過重心G且平行于邊BC∵點G為重心∴APPB=AQQC=21∵AP=pPB,AQ=qQC∴p=2,q=2∴pqp+q=44=1故選項為A26.若平面α與β的法向量分別是a=(1,0,-2),b=(-1,0,2),則平面α與β的位置關(guān)系是()A.平行B.垂直C.相交不垂直D.無法判斷答案:∵a=(1,0,-2),b=(-1,0,2),∴a+b=(1-1,0+0,-2+2)=(0,0,0),即a+b=0由此可得a∥b∵a、b分別是平面α與β的法向量∴平面α與β的法向量平行,可得平面α與β互相平行.27.2008年9月25日下午4點30分,“神舟七號”載人飛船發(fā)射升空,其運行的軌道是以地球的中心F為一個焦點的橢圓,若這個橢圓的長軸長為2a,離心率為e,則“神舟七號”飛船到地球中心的最大距離為______.答案:如圖,根據(jù)橢圓的幾何性質(zhì)可知,頂點B到橢圓的焦點F的距離最大.最大為a+c=a+ae.故為:a+ae.28.用三段論的形式寫出下列演繹推理.

(1)若兩角是對頂角,則該兩角相等,所以若兩角不相等,則該兩角不是對頂角;

(2)矩形的對角線相等,正方形是矩形,所以,正方形的對角線相等.答案:(1)兩個角是對頂角則兩角相等,大前提∠1和∠2不相等,小前提∠1和∠2不是對頂角.結(jié)論(2)每一個矩形的對角線相等,大前提正方形是矩形,小前提正方形的對角線相等.結(jié)論29.我市某機(jī)構(gòu)為調(diào)查2009年下半年落實中學(xué)生“陽光體育”活動的情況,設(shè)平均每人每天參加體育鍛煉時間為X(單位:分鐘),按鍛煉時間分下列四種情況統(tǒng)計:①0~10分鐘;②11~20分鐘;③21~30分鐘;④30分鐘以上,有10000名中學(xué)生參加了此項活動,右圖是此次調(diào)查中某一項的流程圖,其輸出的結(jié)果是6200,則平均每天參加體育鍛煉時間在0~20分鐘內(nèi)的學(xué)生的頻率是()A.0.62B.0.38C.6200D.3800答案:由圖知輸出的S的值是運動時間超過20分鐘的學(xué)生人數(shù),由于統(tǒng)計總?cè)藬?shù)是10000,又輸出的S=6200,故運動時間不超過20分鐘的學(xué)生人數(shù)是3800事件“平均每天參加體育鍛煉時間在0~20分鐘內(nèi)的學(xué)生的”頻率是380010000=0.38故選B30.現(xiàn)有10個保送上大學(xué)的名額,分配給7所學(xué)校,每校至少有1個名額,名額分配的方法共有______種(用數(shù)字作答).答案:根據(jù)題意,將10個名額,分配給7所學(xué)校,每校至少有1個名額,可以轉(zhuǎn)化為10個元素之間有9個間隔,要求分成7份,每份不空;相當(dāng)于用6塊檔板插在9個間隔中,共有C96=84種不同方法.所以名額分配的方法共有84種.31.下列點在x軸上的是()

A.(0.1,0.2,0.3)

B.(0,0,0.001)

C.(5,0,0)

D.(0,0.01,0)答案:C32.試求288和123的最大公約數(shù)是

答案:3解析:,,,.∴和的最大公約數(shù)33.OA、OB(O為原點)是圓x2+y2=2的兩條互相垂直的半徑,C是該圓上任一點,且OC=λOA+μOB,則λ2+μ2=______.答案:∵OC=λOA+μOB,OA⊥OB∴OA?OB=0∴OA2=OB2=OC2=2∴OC2=(λOA+μOB)2=λ2OA2+μ2OB2=2(λ2+μ2)=2∴λ2+μ2=1故為:134.設(shè)集合A和B都是自然數(shù)集合N,映射f:A→B把集合A中的元素n映射到集合B中的元素2n+n,則在映射f下,象20的原象是()A.2B.3C.4D.5答案:由2n+n=20求n,用代入法可知選C.故選C35.拋物線y2=4x上一點M與該拋物線的焦點F的距離|MF|=4,則點M的橫坐標(biāo)x=______.答案:∵拋物線y2=4x=2px,∴p=2,由拋物線定義可知,拋物線上任一點到焦點的距離與到準(zhǔn)線的距離是相等的,∴|MF|=4=x+p2=4,∴x=3,故為:3.36.將兩個數(shù)a=8,b=17交換,使a=17,b=8,下面語句正確一組是()

A.a(chǎn)=bb=a

B.c=b

b=a

a=c

C.b=aa=b

D.a(chǎn)=cc=bb=a答案:B37.如圖,已知AP是⊙O的切線,P為切點,AC是⊙O的割線,與⊙O交于B,C兩點,圓心O在∠PAC的內(nèi)部,點M是BC的中點.

(Ⅰ)證明A,P,O,M四點共圓;

(Ⅱ)求∠OAM+∠APM的大?。鸢福鹤C明:(Ⅰ)連接OP,OM.因為AP與⊙O相切于點P,所以O(shè)P⊥AP.因為M是⊙O的弦BC的中點,所以O(shè)M⊥BC.于是∠OPA+∠OMA=180°.由圓心O在∠PAC的內(nèi)部,可知四邊形M的對角互補(bǔ),所以A,P,O,M四點共圓.(Ⅱ)由(Ⅰ)得A,P,O,M四點共圓,所以∠OAM=∠OPM.由(Ⅰ)得OP⊥AP.由圓心O在∠PAC的內(nèi)部,可知∠OPM+∠APM=90°.又∵A,P,O,M四點共圓∴∠OPM=∠OAM所以∠OAM+∠APM=90°.38.引入復(fù)數(shù)后,數(shù)系的結(jié)構(gòu)圖為()

A.

B.

C.

D.

答案:A39.隨機(jī)變量ξ的分布列為

ξ01xP15p310且Eξ=1.1,則p=______;x=______.答案:由15+p+310=1,得p=12.由Eξ=0×15+1×12+310x=1.1,得x=2.故為12;2.40.已知200輛汽車通過某一段公路時的時速的頻率分布直方圖如圖所示,則時速在[60,70]的汽車大約有()輛.A.90B.80C.70D.60答案:由已知可得樣本容量為200,又∵數(shù)據(jù)落在區(qū)間[60,70]的頻率為0.04×10=0.4∴時速在[60,70]的汽車大約有200×0.4=80故選B.41.下列語句是命題的是______.

①求證3是無理數(shù);

②x2+4x+4≥0;

③你是高一的學(xué)生嗎?

④一個正數(shù)不是素數(shù)就是合數(shù);

⑤若x∈R,則x2+4x+7>0.答案:①是祈使句,所以①不是命題.②是命題,能夠判斷真假,因為x2+4x+4=(x+2)2≥0,所以②是命題.③是疑問句,所以③不是命題.④能夠判斷真假,所以④是命題.⑤能夠判斷真假,因為x2+4x+7=(x+2)2+3>0,所以⑤是命題.故為:②④⑤.42.下列說法中正確的是()

A.若∥,則與向相同

B.若||<||,則<

C.起點不同,但方向相同且模相等的兩個向量相等

D.所有的單位向量都相等答案:C43.已知|x|<ch,|y|>c>0.求證:|xy|<h.答案:證明:∵|y|>c>0∴0<|1y|<1c∵0<|x|<ch,∴|xy|<ch×1c=h.44.已知,棱長都相等的正三棱錐內(nèi)接于一個球,某學(xué)生畫出四個過球心的平面截球與正三棱錐所得的圖形,如下圖所示,則

A、以上四個圖形都是正確的

B、只有(2)(4)是正確的

C、只有(4)是錯誤的

D、只有(1)(2)是正確的答案:C45.設(shè)F1,F(xiàn)2分別是橢圓E:x2+y2b2=1(0<b<1)的左、右焦點,過F1的直線l與E相交于A,B兩點,且|AF2|,|AB|,|BF2|成等差數(shù)列,則|AB|的長為______.答案:∵|AF2|,|AB|,|BF2|成等差數(shù)列∴|AF2|+|BF2|=2|AB|,又橢圓E:x2+y2b2=1(0<b<1)中a=1∴|AF2|+|AB|+|BF2|=4,∴3|AB|=4,∴|AB|=43故為:4346.下列各圖形不是函數(shù)的圖象的是()A.

B.

C.

D.

答案:由函數(shù)的概念,B中有的x,存在兩個y與x對應(yīng),不符合函數(shù)的定義,而ACD均符合.故選B47.若向量a,b的夾角為120°,且|a|=1,|b|=2,c=a+b,則有()A.c⊥aB.c⊥bC.c‖bD.c‖a答案:由題意知ac=a

(a+b)=a2+

a

b=1+1×2cos120°=0,所以a⊥c.故選A.48.若f(x)在定義域[a,b]上有定義,則在該區(qū)間上()A.一定連續(xù)B.一定不連續(xù)C.可能連續(xù)也可能不連續(xù)D.以上均不正確答案:f(x)有定義是f(x)在區(qū)間上連續(xù)的必要而不充分條件.有定義不一定連續(xù).還需加上極限存在才能推出連續(xù).故選C.49.已知向量a=2e1-3e2,b=2e1+3e2,其中e1、e2不共線,向量c=2e1-9e2.問是否存在這樣的實數(shù)λ、μ,使向量d=λa+μb與c共線?答案:∵d=λ(2e1-3e2)+μ(2e1+3e2)=(2λ+2μ)e1+(-3λ+3μ)e2,若d與c共線,則存在實數(shù)k≠0,使d=kc,即(2λ+2μ)e1+(-3λ+3μ)e2=2ke1-9ke2,由2λ+2μ=2k-3λ+3μ=-9k得λ=-2μ.故存在這樣的實數(shù)λ、μ,只要λ=-2μ,就能使d與c共線.50.若函數(shù)y=f(x)是函數(shù)y=ax(a>0且a≠1)的反函數(shù),且y=f(x)的圖象過點(2,1),則f(x)=______.答案:因為函數(shù)y=f(x)是函數(shù)y=ax(a>0且a≠1)的反函數(shù),且y=f(x)的圖象過點(2,1),所以函數(shù)y=ax經(jīng)過(1,2),所以a=2,所以函數(shù)y=f(x)=log2x.故為:log2x.第2卷一.綜合題(共50題)1.如圖,點O是平行六面體ABCD-A1B1C1D1的對角線BD1與A1C的交點,=,=,=,則=()

A.++

B.++

C.--+

D.+-

答案:C2.與

向量

=(2,-1,2)共線且滿足方程=-18的向量為()

A.不存在

B.-2

C.(-4,2,-4)

D.(4,-2,4)答案:D3.若a2+b2=c2,求證:a,b,c不可能都是奇數(shù).答案:證明:假設(shè)a,b,c都是奇數(shù),則a2,b2,c2都是奇數(shù),得a2+b2為偶數(shù),而c2為奇數(shù),即a2+b2≠c2,這與a2+b2=c2相矛盾,所以假設(shè)不成立,故原命題成立.4.已知圓C:x2+y2-4x-6y+12=0的圓心在點C,點A(3,5),求:

(1)過點A的圓的切線方程;

(2)O點是坐標(biāo)原點,連接OA,OC,求△AOC的面積S.答案:(1)⊙C:(x-2)2+(y-3)2=1.當(dāng)切線的斜率不存在時,對直線x=3,C(2,3)到直線的距離為1,滿足條件;當(dāng)k存在時,設(shè)直線y-5=k(x-3),即y=kx+5-3k,∴|-k+2|k2+1=1,得k=34.∴得直線方程x=3或y=34x+114.(2)|AO|=9+25=34,l:5x-3y=0,d=134,S=12d|AO|=12.5.(1)若三條直線2x+3y+8=0,x-y-1=0和x+ky=0相交于一點,則k的值為?

(2)若α∈N,又三點A(α,0),B(0,α+4),C(1,3)共線,求α的值.答案:(1)由2x+3y+8=0x-y-1=0解得x=-1,y=-2,∴直線2x+3y+8=0和x-y-1=0的交點為(-1,-2).∵三條直線2x+3y+8=0,x-y-1=0和x+ky=0相交于一點,∴(-1,-2)在直線x+ky=0上,∴-1-2k=0,解得k=-12.(2)A、B、C三點共線,說明直線AB與直線AC的斜率相等∴a+4-00-a=3-01-a,解得:a=26.將一枚均勻硬幣

隨機(jī)擲20次,則恰好出現(xiàn)10次正面向上的概率為()

A.

B.

C.

D.答案:D7.在極坐標(biāo)系中,直線l經(jīng)過圓ρ=2cosθ的圓心且與直線ρcosθ=3平行,則直線l與極軸的交點的極坐標(biāo)為______.答案:由ρ=2cosθ可知此圓的圓心為(1,0),直線ρcosθ=3是與極軸垂直的直線,所以所求直線的極坐標(biāo)方程為ρcosθ=1,所以直線l與極軸的交點的極坐標(biāo)為(1,0).故為:(1,0).8.已知隨機(jī)變量X的分布列是:(

)

X

4

a

9

10

P

0.3

0.1

b

0.2

且EX=7.5,則a的值為()

A.5

B.6

C.7

D.8答案:C9.設(shè)平面α內(nèi)兩個向量的坐標(biāo)分別為(1,2,1)、(-1,1,2),則下列向量中是平面的法向量的是()

A.(-1,-2,5)

B.(-1,1,-1)

C.(1,1,1)

D.(1,-1,-1)答案:B10.若方程sin2x+4sinx+m=0有實數(shù)解,則m的取值范圍是(

A、R

B、(-∞,-5]∪[3,+∞)

C、(-5,3)

D、[-5,3]答案:D11.雙曲線(n>1)的兩焦點為F1、、F2,P在雙曲線上,且滿足|PF1|+|PF2|=2,則△P

F1F2的面積為()

A.

B.1

C.2

D.4答案:B12.已知直線l的參數(shù)方程為x=3+12ty=7+32t(t為參數(shù)),曲線C的參數(shù)方程為x=4cosθy=4sinθ(θ為參數(shù)).

(I)將曲線C的參數(shù)方程轉(zhuǎn)化為普通方程;

(II)若直線l與曲線C相交于A、B兩點,試求線段AB的長.答案:(I)由x=4cosθy=4sinθ得x2=16cos2θy2=16sin2θ故圓的方程為x2+y2=16.(II)把x=3+12ty=7+32t代入方程x2+y2=16,得t2+83t+36=0∴線段AB的長為|AB|=|t1-t2|=(t1+t2)2-4t1t2=43.13.某工廠生產(chǎn)A,B,C三種不同型號的產(chǎn)品,產(chǎn)品數(shù)量之比依次為2:3:5.現(xiàn)用分層抽樣方法抽出一個容量為n的樣本,樣本中A型號產(chǎn)品有16件,則此樣本的容量為()

A.40

B.80

C.160

D.320答案:B14.對于回歸方程y=4.75x+2.57,當(dāng)x=28時,y

的估計值是______.答案:∵回歸方程y=4.75x+2.57,∴當(dāng)x=28時,y的估計值是4.75×28+2.57=135.57.故為:135.57.15.在平行六面體ABCD-A′B′C′D′中,若AC′=xAB+2yBC-3zC′C,則x+y+z等于______.答案:根據(jù)向量的加法法則可得,AC′=AC+CC′=AB+BC+CC′∵AC′=xAB+2yBC-3zC′C∴x=1,2y=1,-3z=1∴x=1,y=12,z=-13∴x+y+z=1+12-13=76故為:7616.已知雙曲線的頂點到漸近線的距離為2,焦點到漸近線的距離為6,則該雙曲線的離心率為(

A.

B.

C.3

D.2答案:C17.數(shù)集{1,x,2x}中的元素x應(yīng)滿足的條件是______.答案:根據(jù)集合中元素的互異性可得1≠x,x≠2x,1≠2x∴x≠1且x≠12且x≠0.故為:x≠1且x≠12且x≠0.18.已知x,y的取值如下表所示:

x3711y102024從散點圖分析,y與x線性相關(guān),且y=74x+a,則a=______.答案:∵線性回歸方程為y=74x+a,,又∵線性回歸方程過樣本中心點,.x=3+7+113=7,.y=10+20+243=18,∴回歸方程過點(7,18)∴18=74×7+a,∴a=234.故為:234.19.復(fù)數(shù)32i+11-i的虛部是______.答案:復(fù)數(shù)32i+11-i=32i+1+i(1-i)(1+i)=32i+1+i2=12+2i∴復(fù)數(shù)的虛部是2,故為:220.設(shè)O為坐標(biāo)原點,給定一個定點A(4,3),而點B(x,0)在x正半軸上移動,l(x)表示AB的長,則△OAB中兩邊長的比值的最大值為()

A.

B.

C.

D.答案:B21.(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系(ρ,θ)(ρ>0,0≤θ<π2)中,曲線ρ=2sinθ與ρ=2cosθ的交點的極坐標(biāo)為______.答案:兩式ρ=2sinθ與ρ=2cosθ相除得tanθ=1,∵0≤θ<π2,∴θ=π4,∴ρ=2sinπ4=2,故交點的極坐標(biāo)為(2,π4).故為:(2,π4).22.已知x2+4y2+kz2=36,(其中k>0)且t=x+y+z的最大值是7,則

k=______.答案:因為已知x2+4y2+kz2=36根據(jù)柯西不等式(ax+by+cz)2≤(a2+b2+c2)(x2+y2+z2)構(gòu)造得:即(x+y+z)2≤(x2+4y2+kz2)(12+(12)2+(1k)2)=36×[12+(12)2+(1k)2]=49.故k=9.故為:9.23.求證:定義在實數(shù)集上的單調(diào)減函數(shù)y=f(x)的圖象與x軸至多只有一個公共點.答案:證明:假設(shè)函數(shù)y=f(x)的圖象與x軸有兩個交點…(2分)設(shè)交點的橫坐標(biāo)分別為x1,x2,且x1<x2.因為函數(shù)y=f(x)在實數(shù)集上單調(diào)遞減所以f(x1)>f(x2),…(6分)這與f(x1)=f(x2)=0矛盾.所以假設(shè)不成立.

…(12分)故原命題成立.…(14分)24.已知二項分布ξ~B(4,12),則該分布列的方差Dξ值為______.答案:∵二項分布ξ~B(4,12),∴該分布列的方差Dξ=npq=4×12×(1-12)=1故為:125.已知A(0,1),B(3,7),C(x,15)三點共線,則x的值是()

A.5

B.6

C.7

D.8答案:C26.如圖,圓O上一點C在直徑AB上的射影為D.AD=2,AC=25,則AB=______.答案:∵AB是直徑,∴△ABC是直角三角形,∵C在直徑AB上的射影為D,∴CD⊥AB,∴AC2=AD?AB,∴AB=AC2AD=202=10,故為:1027.平面ABCD中,點A坐標(biāo)為(0,1,1),點B坐標(biāo)為(1,2,1),點C坐標(biāo)為(-1,0,-1).若向量a=(-2,y,z),且a為平面ABC的法向量,則yz=()A.2B.0C.1D.-1答案:AB=(1,1,0),AC=(-1,-1,-2),與平面ABC垂直的向量應(yīng)與上面的向量的數(shù)量積為零,向量a=(-2,y,z),且a為平面ABC的法向量,則a⊥AB且a⊥AC,即a?AB=0,且a?AC=0,即-2+y+0=0且2-y-2z=0,即y=2z=0,∴則yz=20=1,故選C.28.直線y=2的傾斜角和斜率分別是()A.90°,斜率不存在B.90°,斜率為0C.180°,斜率為0D.0°,斜率為0答案:由題意,直線y=2的傾斜角是0°,斜率為0故選D.29.將函數(shù)y=sin(x+)的圖象按向量=(-m,0)平移所得的圖象關(guān)于y軸對稱,則m最小正值是

A.

B.

C.

D.答案:A30.用反證法證明命題“a,b∈N,如果ab可被5整除,那么a,b至少有1個能被5整除.”則假設(shè)的內(nèi)容是()

A.a(chǎn),b都能被5整除

B.a(chǎn),b都不能被5整除

C.a(chǎn),b不能被5整除

D.a(chǎn),b有1個不能被5整除答案:B31.Rt△ABC的直角邊AB在平面α內(nèi),頂點C在平面α外,則直角邊BC、斜邊AC在平面α上的射影與直角邊AB組成的圖形是()

A.線段或銳角三角形

B.線段與直角三角形

C.線段或鈍角三角形

D.線段、銳角三角形、直角三角形或鈍角三角形答案:B32.從橢圓

x2a2+y2b2=1(a>b>0)上一點P向x軸作垂線,垂足恰為左焦點F1,又點A是橢圓與x軸正半軸的交點,點B是橢圓與y軸正半軸的交點,且AB∥OP,|F1A|=10+5,求橢圓的方程.答案:∵AB∥OP∴PF1F1O=BOOA?PF1=bca又∵PF1⊥x軸∴c2a2+y2b2=1?y=b2a∴b=c由a+c=10+5b=ca2=b2+c2解得:a=10b=5c=5∴橢圓方程為x210+y25=1.33.設(shè)a,b,c都是正數(shù),求證:

(1)(a+b+c)≥9;

(2)(a+b+c)≥.答案:證明略解析:證明

(1)∵a,b,c都是正數(shù),∴a+b+c≥3,++≥3.∴(a+b+c)≥9,當(dāng)且僅當(dāng)a=b=c時,等號成立.(2)∵(a+b)+(b+c)+(c+a)≥3,又≥,∴(a+b+c)≥,當(dāng)且僅當(dāng)a=b=c時,等號成立.34.已知實數(shù)x、y滿足(x-2)2+y2+(x+2)2+y2=6,則2x+y的最大值等于______.答案:∵實數(shù)x、y滿足(x-2)2+y2+(x+2)2+y2=6,∴點(x,y)的軌跡是橢圓,其方程為x29+y25=1,所以可設(shè)x=3cosθ,y=5sinθ,則z=6cosθ+5sinθ=41sin(θ+

β)≤41,∴2x+y的最大值等于41.故為:4135.橢圓的中心在坐標(biāo)原點,焦點在坐標(biāo)軸上,兩頂點分別是(3,0),(0,2),則此橢圓的方程是______.答案:依題意,此橢圓方程為標(biāo)準(zhǔn)方程,且焦點在x軸上,設(shè)為x2a2+y2b2=1∵橢圓的兩頂點分別是(3,0),(0,2),∴a=3,b=2∵∴此橢圓的標(biāo)準(zhǔn)方程為:x29+y22=1.故為:x29+y22=1.36.已知P(4,-9),Q(-2,3)且Y軸與線段PQ交于M,則Q分的比為()

A.-2

B.-

C.

D.3答案:B37.袋中裝著標(biāo)有數(shù)字1,2,3,4,5的小球各2個,現(xiàn)從袋中任意取出3個小球,假設(shè)每個小球被取出的可能性都相等.

(Ⅰ)求取出的3個小球上的數(shù)字分別為1,2,3的概率;

(Ⅱ)求取出的3個小球上的數(shù)字恰有2個相同的概率;

(Ⅲ)用X表示取出的3個小球上的最大數(shù)字,求P(X≥4)的值.答案:(I)記“取出的3個小球上的數(shù)字分別為1,2,3”的事件記為A,則P(A)=C12C12C12C310=8120=115;(Ⅱ)記“取出的3個小球上的數(shù)字恰有2個相同”的事件記為A,則P(B)=C15C18C310=40120=13;(Ⅲ)用X表示取出的3個小球上的最大數(shù)字,則X≥4包含取出的3個小球上的最大數(shù)字為4或5兩種情況,當(dāng)取出的3個小球上的最大數(shù)字為4時,P(X=4)=C12C26+C22C16C310=36120=310;當(dāng)取出的3個小球上的最大數(shù)字為5時,P(X=5)=C12C28+C22C18C310=64120=815故P(X≥4)=56.38.如圖,平行四邊形ABCD中,AE:EB=1:2,若△AEF的面積等于1cm2,則△CDF的面積等于______cm2.答案:平行四邊形ABCD中,有△AEF~△CDF∴△AEF與△CDF的面積之比等于對應(yīng)邊長之比的平方,∵AE:EB=1:2,∴AE:CD=1:3∵△AEF的面積等于1cm2,∴∵△CDF的面積等于9cm2故為:939.為了檢測某種產(chǎn)品的直徑(單位mm),抽取了一個容量為100的樣本,其頻率分布表(不完整)如下:

分組頻數(shù)累計頻數(shù)頻率[10.75,10.85)660.06[10.85,10.95)1590.09[10.95,11.05)30150.15[11.05,11.15)48180.18[11.15,11.25)

(Ⅰ)完成頻率分布表;

(Ⅱ)畫出頻率分布直方圖;

(Ⅲ)據(jù)上述圖表,估計產(chǎn)品直徑落在[10.95,11.35)范圍內(nèi)的可能性是百分之幾?答案:解(Ⅰ)分組頻數(shù)累計頻數(shù)頻率[10.75,10.85)660.06[10.85,10.95)1590.09[10.95,11.05)30150.15[11.05,11.15)48180.18[11.15,11.25)72240.24[11.25,11.35)84120.12[11.35,11.45)9280.08[11.45,11.55)9860.06[11.55,11.65)10020.02(Ⅲ)0.15+0.18+0.24+0.12=0.69=69%,所以產(chǎn)品直徑落在[10.95,11.35)范圍內(nèi)的可能性為69%.40.使關(guān)于的不等式有解的實數(shù)的最大值是(

)A.B.C.D.答案:D解析:令則的最大值為。選D。還可用Cauchy不等式。41.在三棱錐O-ABC中,M,N分別是OA,BC的中點,點G是MN的中點,則OG可用基底{OA,OB,OC}表示成:OG=______.答案:如圖,連接ON,在△OBC中,點N是BC中點,則由平行四邊形法則得ON=12(OB+OC)在△OMN中,點G是MN中點,則由平行四邊形法則得OG=12(OM+ON)=12OM+12ON=14OA+12?12(OB+OC)14(OA+OB+OC),故為:14(OA+OB+OC).42.若,,,則

(

)

A.

B.

C.

D.答案:A43.若點A(1,2,3),B(-3,2,7),且AC+BC=0,則點C的坐標(biāo)為______.答案:設(shè)C(x,y,z),則AC+BC=(2x+2,2y-4,2z-10)=0,∴x=-1,y=2,z=5.故為(-1,2,5)44.下列數(shù)字特征一定是數(shù)據(jù)組中的數(shù)是()

A.眾數(shù)

B.中位數(shù)

C.標(biāo)準(zhǔn)差

D.平均數(shù)答案:A45.直線y=3的一個單位法向量是______.答案:直線y=3的方向向量是(a,0)(a≠0),不妨?。?,0)設(shè)直線y=3的法向量為n=(x,y)∴(x,y)?(1,0)=0∴x=0∴直線y=3的一個單位法向量是(0,1)故為:(0,1)46.設(shè)拋物線C:y2=3px(p>0)的焦點為F,點M在C上,|MF|=5,若以MF為直徑的圓過點(0,2),則C的方程為()

A.y2=4x或y2=8x

B.y2=2x或y2=8x

C.y2=4x或y2=16x

D.y2=2x或y2=16x答案:C47.設(shè)直線l過點P(-3,3),且傾斜角為56π

(1)寫出直線l的參數(shù)方程;

(2)設(shè)此直線與曲線C:x=2cosθy=4sinθ(θ為參數(shù))交A、B兩點,求|PA|?|PB|答案:(1)由于過點(a,b)傾斜角為α的直線的參數(shù)方程為

x=a+t?cosαy=b+t?sinα(t是參數(shù)),∵直線l經(jīng)過點P(-3,3),傾斜角α=5π6,故直線的參數(shù)方程是x=-3-32ty=3+12t(t是參數(shù)).…(5分)(2)因為點A,B都在直線l上,所以可設(shè)它們對應(yīng)的參數(shù)為t1和t1,則點A,B的坐標(biāo)分別為A(-3-32t1,3+12t1),B(2-32t1,3+12t1).把直線L的參數(shù)方程代入橢圓的方程4x2+y2=16整理得到t2+(123+3)t+11613=0①,…(8分)因為t1和t2是方程①的解,從而t1t2=11613,由t的幾何意義可知|PA||PB|=|t1||t2|=11613.…(10分)即|PA|?|PB|=11613.48.如圖所示,已知PA切圓O于A,割線PBC交圓O于B、C,PD⊥AB于D,PD與AO的延長線相交于點E,連接CE并延長交圓O于點F,連接AF.

(1)求證:B,C,E,D四點共圓;

(2)當(dāng)AB=12,tan∠EAF=23時,求圓O的半徑.答案:(1)由切割線定理PA2=PB?PC由已知易得Rt△PAD∽Rt△PEA,∴PA2=PD?PE,∴PA2=PB?PC=PA2=PD?PE,又∠BPD為公共角,∴△PBD∽△PEC,∴∠BDP=∠C∴B,C,E,D四點共圓

(2)作OG⊥AB于G,由(1)知∠PBD=∠PEC,∵∠PBD=∠F,∴∠F=∠PEC,∴PE∥AF.∵AB=12,∴AG=6.∵PD⊥AB,∴PD∥OG.∴PE∥OG∥AF,∴∠AOG=∠EAF.在Rt△AOG中,tan∠AOG=tan∠EAF=23=6OG,∴OG=9∴R=AO=AG2+OG2=313∴圓O的半徑313.49.對任意實數(shù)x,y,定義運算x*y=ax+by+cxy,其中a,b,c是常數(shù),等式右邊的運算是通常的加法和乘法運算。已知1*2=3,2*3=4,并且有一個非零常數(shù)m,使得對任意實數(shù)x,都有x*m=x,則m的值是[

]

A.4

B.-4

C.-5

D.6答案:A50.已知一種材料的最佳加入量在l000g到2000g之間,若用0.618法安排試驗,則第一次試點的加入量可以是(

)g。答案:1618或1382第3卷一.綜合題(共50題)1.若直線x=1的傾斜角為α,則α等于

______.答案:因為直線x=1與y軸平行,所以直線x=1的傾斜角為90°.故為:90°2.已知f(x)=,則不等式xf(x)+x≤2的解集是(

)。答案:{x|x≤1}3.(本小題滿分12分)

如圖,已知橢圓C1的中心在圓點O,長軸左、右端點M、N在x軸上,橢圓C1的短軸為MN,且C1,C2的離心率都為e,直線l⊥MN,l與C1交于兩點,與C1交于兩點,這四點按縱坐標(biāo)從大到小依次為A、B、C、D.

(I)設(shè)e=,求|BC|與|AD|的比值;

(II)當(dāng)e變化時,是否存在直線l,使得BO//AN,并說明理由.答案:(II)t=0時的l不符合題意,t≠0時,BO//AN當(dāng)且僅當(dāng)BO的斜率kBO與AN的斜率kAN相等,即,解得。因為,又,所以,解得。所以當(dāng)時,不存在直線l,使得BO//AN;當(dāng)時,存在直線l使得BO//AN。解析:略4.用反證法證明“如果a<b,那么“”,假設(shè)的內(nèi)容應(yīng)是()

A.

B.

C.且

D.或

答案:D5.一射手對靶射擊,直到第一次命中為止每次命中的概率為0.6,現(xiàn)有4顆子彈,命中后的剩余子彈數(shù)目ξ的期望為()

A.2.44

B.3.376

C.2.376

D.2.4答案:C6.已知兩組樣本數(shù)據(jù)x1,x2,…xn的平均數(shù)為h,y1,y2,…ym的平均數(shù)為k,則把兩組數(shù)據(jù)合并成一組以后,這組樣本的平均數(shù)為()

A.

B.

C.

D.答案:B7.已知a,b,c為正數(shù),且兩兩不等,求證:2(a3+b3+c3)>a2(b+c)+b2(a+c)+c2(a+b).答案:證明:不妨設(shè)a>b>c>0,則(a-b)2>0,(b-c)2>0,(c-a)2>0.由于2(a3+b3+c3)-a2(b+c)+b2(a+c)+c2(a+b)=a2(a-b)+a2(a-c)+b2(b-c)+b2(b-a)+c2(c-a)+c2(c-b)

=(a-b)2(a+b)+(b-c)2(b+c)+(c-a)2(c+a)>0,故有2(a3+b3+c3)>a2(b+c)+b2(a+c)+c2(a+b)成立.8.下圖是由A、B、C、D中的哪個平面圖旋轉(zhuǎn)而得到的(

)答案:A9.等于()

A.a(chǎn)16

B.a(chǎn)8

C.a(chǎn)4

D.a(chǎn)2答案:C10.如圖所示,設(shè)P為△ABC所在平面內(nèi)的一點,并且AP=15AB+25AC,則△ABP與△ABC的面積之比等于()A.15B.12C.25D.23答案:連接CP并延長交AB于D,∵P、C、D三點共線,∴AP=λAD+μAC且λ+μ=1設(shè)AB=kAD,結(jié)合AP=15AB+25AC得AP=k5AD+25AC由平面向量基本定理解之,得λ=35,k=3且μ=25∴AP=35AD+25AC,可得PD=25CD,∵△ABP的面積與△ABC有相同的底邊AB高的比等于|PD|與|CD|之比∴△ABP的面積與△ABC面積之比為25故選:C11.當(dāng)a>0時,不等式組的解集為(

)。答案:當(dāng)a>時為;當(dāng)a=時為{};當(dāng)0<a<時為[a,1-a]12.設(shè)函數(shù)f(x)的定義域為D,如果對于任意的x1∈D,存在唯一的x2∈D,使得

f(x1)+f(x2)2=C成立(其中C為常數(shù)),則稱函數(shù)y=f(x)在D上的均值為C,現(xiàn)在給出下列4個函數(shù):①y=x3②y=4sinx③y=lgx④y=2x,則在其定義域上的均值為

2的所有函數(shù)是下面的()A.①②B.③④C.①③④D.①③答案:由題意可得,均值為2,則f(x1)+f(x2)2=2即f(x1)+f(x2)=4①:y=x3在定義域R上單調(diào)遞增,對應(yīng)任意的x1,則存在唯一x2滿足x13+x23=4①正確②:y=4sinx,滿足4sinx1+4sinx2=4,令x1=π2,則根據(jù)三角函數(shù)的周期性可得,滿足sinx2=0的x2無窮多個,②錯誤③y=lgx在(0,+∞)單調(diào)遞增,對應(yīng)任意的x1>0,則滿足lgx1+lgx2=4的x2唯一存在③正確④y=2x滿足2x1+2x2=4,令x1=3時x2不存在④錯誤故選D.13.已知直角三角形兩直角邊長為a,b,求斜邊長c的一個算法分下列三步:

①計算c=a2+b2;

②輸入直角三角形兩直角邊長a,b的值;

③輸出斜邊長c的值;

其中正確的順序是()A.①②③B.②③①C.①③②D.②①③答案:由算法規(guī)則得:第一步:輸入直角三角形兩直角邊長a,b的值,第二步:計算c=a2+b2,第三步:輸出斜邊長c的值;這樣一來,就是斜邊長c的一個算法.故選D.14.如果一個圓錐的正視圖是邊長為2的等邊三角形,則該圓錐的表面積是______.答案:由已知,圓錐的底面直徑為2,母線為2,則這個圓錐的表面積是12×2π×2+π?12=3π.故:3π.15.某賽季,甲、乙兩名籃球運動員都參加了7場比賽,他們所有比賽得分的情況用如圖所示的莖葉圖表示,則甲、乙兩名運動員得分的平均數(shù)分別為()A.14、12B.13、12C.14、13D.12、14答案:.x甲=8+9+6+15+17+19+247=14,.x乙=8+5+7+11+13+15+257=12.故選A.16.用秦九韶算法求多項式f(x)=8x7+5x6+3x4+2x+1,當(dāng)x=2時的值.答案:根據(jù)秦九韶算法,把多項式改寫成如下形式f(x)=8x7+5x6+0?x5+3?x4+0?x3+0?x2+2x+1=((((((8x+5)x+0)x+3)x+0)x+0)x+2)x+1v0=8,v1=8×2+5=21v2=21×2+0=42,v3=42×2+3=87v4=87×2+0=174,v5=174×2+0=348v6=348×2+2=698,v7=698×2+1=1397.∴當(dāng)x=2時,多項式的值為1397.17.(參數(shù)方程與極坐標(biāo))已知F是曲線x=2cosθy=1+cos2θ(θ∈R)的焦點,M(12,0),則|MF|的值是

______.答案:y=1+cos2θ=2cos2θ=2?(x2)2化簡得x2=2y∴F(0,12)而M(12,0),∴|MF|=22故為:2218.不等式lgxx<0的解集是______.答案:∵lgx的定義域為(0,+∞)∴x>0∵lgxx<0∴l(xiāng)gx<0=lg1即0<x<1∴不等式lgxx<0的解集是{x|0<x<1}故為:{x|0<x<1}19.已知空間三點A(1,1,1)、B(-1,0,4)、C(2,-2,3),則AB與CA的夾角θ的大小是

______答案:AB=(-2,-1,3),CA=(-1,3,-2),cos<AB,CA>=(-2)×(-1)+(-1)×3+3×(-2)14?14=-714=-12,∴θ=<AB,CA>=120°.故為120°20.一張紙上畫有一個半徑為R的圓O和圓內(nèi)一個定點A,且OA=a,折疊紙片,使圓周上某一點A′剛好與點A重合.這樣的每一種折法,都留下一條折痕.當(dāng)A′取遍圓周上所有點時,求所有折痕所在直線上點的集合.答案:對于⊙O上任意一點A′,連AA′,作AA′的垂直平分線MN,連OA′,交MN于點P,則OP+PA=OA′=R.由于點A在⊙O內(nèi),故OA=a<R.從而當(dāng)點A′取遍圓周上所有點時,點P的軌跡是以O(shè)、A為焦點,OA=a為焦距,R(R>a)為長軸的橢圓C.而MN上任一異于P的點Q,都有OQ+QA=OQ+QA′>OA′,故點Q在橢圓C外,即折痕上所有的點都在橢圓C上及C外.反之,對于橢圓C上或外的一點S,以S為圓心,SA為半徑作圓,交⊙O于A′,則S在AA′的垂直平分線上,從而S在某條折痕上.最后證明所作⊙S與⊙O必相交.1°

當(dāng)S在⊙O外時,由于A在⊙O內(nèi),故⊙S與⊙O必相交;2°

當(dāng)S在⊙O內(nèi)時(例如在⊙O內(nèi),但在橢圓C外或其上的點S′),取過S′的半徑OD,則由點S′在橢圓C外,故OS′+S′A≥R(橢圓的長軸).即S′A≥S′D.于是D在⊙S′內(nèi)或上,即⊙S′與⊙O必有交點.于是上述證明成立.綜上可知,折痕上的點的集合為橢圓C上及C外的所有點的集合.21.已知a,b,c∈R+,且a+b+c=1,求3a+1+3b+1+3c+1的最大值.答案:根據(jù)柯西不等式,可得(3a+1+3b+1+3c+1)2=(1?3a+1+1?3b+1+1?3c+1)2≤(12+12+12)[(3a+1)2+(3b+1)2+(3c+1)2]=3[3(a+b+c)+3]=18當(dāng)且僅當(dāng)3a+1=3b+1=3c+1,即a=b=c=13時,(3a+1+3b+1+3c+1)2的最大值為18因此,3a+1+3b+1+3c+1的最大值為18=3222.如圖,△ABC中,D,E,F(xiàn)分別是邊BC,AB,CA的中點,在以A、B、C、D、E、F為端點的有向線段中所表示的向量中,

(1)與向量FE共線的有

______.

(2)與向量DF的模相等的有

______.

(3)與向量ED相等的有

______.答案:(1)∵EF是△ABC的中位線,∴EF∥BC且EF=12BC,則與向量FE共線的向量是BC、BD、DC、CB、DB、CD;(2))∵DF是△ABC的中位線,∴DF∥AC且DF=12AC,則與向量DF的模相等的有CE,EA,EC,AF;(3)∵DE是△ABC的中位線,∴DE∥AB且DE=12AB,則與向量ED相等的有AF,F(xiàn)B.23.若命題p的否命題是q,命題q的逆命題是r,則r是p的逆命題的()A.原命題B.逆命題C.否命題D.逆否命題答案:設(shè)命題p為“若k,則s”;則其否命題q是“若¬k,則¬s”;∴命題q的逆命題r是“若¬s,則¬k”,而p的逆命題為“若s,則k”,故r是p的逆命題的否命題.故選C.24.在空間直角坐標(biāo)系中,O為坐標(biāo)原點,設(shè)A(,,),B(,,0),C(

,,),則(

A.OA⊥AB

B.AB⊥AC

C.AC⊥BC

D.OB⊥OC答案:C25.關(guān)于生活中的圓錐曲線,有下面幾個結(jié)論:

(1)標(biāo)準(zhǔn)田徑運動場的內(nèi)道是一個橢圓;

(2)接受衛(wèi)星轉(zhuǎn)播的電視信號的天線設(shè)備,其軸截面與天線設(shè)備的交線是拋物線;

(3)大型熱電廠的冷卻通風(fēng)塔,其軸截面與通風(fēng)塔的交線是雙曲線;

(4)地球圍繞太陽運行的軌跡可以近似地看成一個橢圓.

其中正確命題的序號是______(把你認(rèn)為正確命題的序號都填上).答案:(1)標(biāo)準(zhǔn)田徑運動場的內(nèi)道是有直道和彎道部分是半圓組成,不是橢圓.故錯誤(2)接受衛(wèi)星轉(zhuǎn)播的電視信號的天線設(shè)備,其軸截面與天線設(shè)備的交線是拋物線.故正確.(3)大型熱電廠的冷卻通風(fēng)塔,其軸截面與通風(fēng)塔的交線是雙曲線.故正確.(4)地球圍繞太陽運行的軌跡可以近似地看成一個橢圓.故正確.故為:(2)(3)(4)26.有一個容量為66的樣本,數(shù)據(jù)的分組及各組的頻數(shù)如下:

[11.5,15.5)2[15.5,19.5)4[19.5,23.5)9[23.5,27.5)18

[27.5,31.5)11[31.5,35.5)12[35.5,39.5)7[39.5,43.5)3

根據(jù)樣本的頻率分布估計,大于或等于31.5的數(shù)據(jù)約占()A.211B.13C.12D.23答案:根據(jù)所給的數(shù)據(jù)的分組和各組的頻數(shù)知道,大于或等于31.5的數(shù)據(jù)有[31.5,35.5)12;[35.5,39.5)7;[39.5,43.5)3,可以得到共有12+7+3=22,∵本組數(shù)據(jù)共有66個,∴大于或等于31.5的數(shù)據(jù)約占2266=13,故選B27.已知直線l1:y=kx+(k<0=被圓x2+y2=4截得的弦長為,則l1與直線l2:y=(2+)x的夾角的大小是()

A.30°

B.45°

C.60°

D.75°答案:B28.柱坐標(biāo)(2,,5)對應(yīng)的點的直角坐標(biāo)是

。答案:()解析:∵柱坐標(biāo)(2,,5),且,2,∴對應(yīng)直角坐標(biāo)是()29.把一枚硬幣連續(xù)拋擲兩次,事件A=“第一次出現(xiàn)正面”,事件B=“第二次出現(xiàn)正面”,則P(B|A)等于(

A.

B.

C.

D.答案:A30.若關(guān)于x的方程x2-2ax+2+a=0有兩個不相等的實根,求分別滿足下列條件的a的取值范圍.

(1)方程兩根都大于1;

(2)方程一根大于1,另一根小于1。答案:解:設(shè)f(x)=x2-2ax+2+a,(1)∵兩根都大于1,∴,解得:2<a<3;(2)∵方程一根大于1,一根小于1,∴f(1)<0,∴a>3。31.如圖,PT是⊙O的切線,切點為T,直線PA與⊙O交于A、B兩點,∠TPA的平分線分別交直線TA、TB于D、E兩點,已知PT=2,PB=3,則PA=______,TEAD=______.答案:由題意,如圖可得PT2=PB×PA又由已知PT=2,PB=3,故可得PA=433又TPA的平分線分別交直線TA、TB于D、E兩點,可得∠TPE=∠APD又由弦切角定理知∠PTE=∠PAD故有△PET≈△P

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論