版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
長風(fēng)破浪會有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年福建信息職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.有一批機(jī)器,編號為1,2,3,…,112,為調(diào)查機(jī)器的質(zhì)量問題,打算抽取10臺,問此樣本若采用簡單的隨機(jī)抽樣方法將如何獲得?答案:本題可以采用抽簽法來抽取樣本,首先把該校學(xué)生都編上號001,002,112…用抽簽法做112個(gè)形狀、大小相同的號簽,然后將這些號簽放到同一個(gè)箱子里,進(jìn)行均勻攪拌,抽簽時(shí),每次從中抽一個(gè)號簽,連續(xù)抽取10次,就得到一個(gè)容量為10的樣本.2.用反證法證明“a+b=1”時(shí)的反設(shè)為()
A.a(chǎn)+b>1且a+b<1
B.a(chǎn)+b>1
C.a(chǎn)+b>1或a+b<1
D.a(chǎn)+b<1答案:C3.如果如圖所示的程序中運(yùn)行后輸出的結(jié)果為132,那么在程序While后面的“條件”應(yīng)為______.答案:第一次循環(huán)之后s=12,i=11;第二次循環(huán)之后結(jié)果是s=132,i=10,已滿足題意跳出循環(huán).由于此循環(huán)體是當(dāng)型循環(huán)i=12、11都滿足條件,i=10不滿足條件.故為:i≥114.某校對文明班的評選設(shè)計(jì)了a,b,c,d,e五個(gè)方面的多元評價(jià)指標(biāo),并通過經(jīng)驗(yàn)公式樣S=ab+cd+1e來計(jì)算各班的綜合得分,S的值越高則評價(jià)效果越好,若某班在自測過程中各項(xiàng)指標(biāo)顯示出0<c<d<e<b<a,則下階段要把其中一個(gè)指標(biāo)的值增加1個(gè)單位,而使得S的值增加最多,那么該指標(biāo)應(yīng)為()A.a(chǎn)B.bC.cD.d答案:因a,b,cde都為正數(shù),故分子越大或分母越小時(shí),S的值越大,而在分子都增加1的前提下,分母越小時(shí),S的值增長越多,由于0<c<d<e<b<a,分母中d最小,所以c增大1個(gè)單位會使得S的值增加最多.故選C.5.將函數(shù)進(jìn)行平移,使得到的圖形與拋物線的兩個(gè)交點(diǎn)關(guān)于原點(diǎn)對稱,試求平移后的圖形對應(yīng)的函數(shù)解析式.答案:函數(shù)解析式是解析:將函數(shù)進(jìn)行平移,使得到的圖形與拋物線的兩個(gè)交點(diǎn)關(guān)于原點(diǎn)對稱,試求平移后的圖形對應(yīng)的函數(shù)解析式.6.在直角坐標(biāo)系中,畫出下列向量:
(1)|a|=2,a的方向與x軸正方向的夾角為60°,與y軸正方向的夾角為30°;
(2)|a|=4,a的方向與x軸正方向的夾角為30°,與y軸正方向的夾角為120°;
(3)|a|=42,a的方向與x軸正方向的夾角為135°,與y軸正方向的夾角為135°.答案:由題意作出向量a如右圖所示:(1)(2)(3)7.命題“若a>3,則a>5”的逆命題是______.答案:∵原命題“若a>3,則a>5”的條件是a>3,結(jié)論是a>5∴逆命題是“若a>5,則a>3”故為:若a>5,則a>38.將圖形F按=(,)(其中)平移,就是將圖形F()A.向x軸正方向平移個(gè)單位,同時(shí)向y軸正方向平移個(gè)單位.B.向x軸負(fù)方向平移個(gè)單位,同時(shí)向y軸正方向平移個(gè)單位.C.向x軸負(fù)方向平移個(gè)單位,同時(shí)向y軸負(fù)方向平移個(gè)單位.D.向x軸正方向平移個(gè)單位,同時(shí)向y軸負(fù)方向平移個(gè)單位.答案:A解析:根據(jù)圖形容易得出結(jié)論.9.在測量某物理量的過程中,因儀器和觀察的誤差,使得n次測量分別得到a1,a2,…,an,共n個(gè)數(shù)據(jù).我們規(guī)定所測量的“量佳近似值”a是這樣一個(gè)量:與其他近似值比較,a與各數(shù)據(jù)的差的平方和最?。来艘?guī)定,從a1,a2,…,an推出的a=______.答案:∵所測量的“量佳近似值”a是與其他近似值比較,a與各數(shù)據(jù)的差的平方和最小.根據(jù)均值不等式求平方和的最小值知這些數(shù)的底數(shù)要盡可能的接近,∴a是所有數(shù)字的平均數(shù),∴a=a1+a2+…+ann,故為:a1+a2+…+ann10.已知x,y的取值如下表:
x0134y2.24.34.86.7從散點(diǎn)圖分析,y與x線性相關(guān),則回歸方程為.y=bx+a必過點(diǎn)______.答案:.X=0+1+3+44=2,.Y=2.2+4.3+4.8+6.74=92,故樣本中心點(diǎn)的坐標(biāo)為(2,92).故為:(2,92).11.在極坐標(biāo)系(ρ,θ)(0≤θ<2π)中,曲線ρ=2sinθ與ρcosθ=-1的交點(diǎn)的極坐標(biāo)為
______.答案:兩條曲線的普通方程分別為x2+y2=2y,x=-1.解得x=-1y=1.由x=ρcosθy=ρsinθ得點(diǎn)(-1,1),極坐標(biāo)為(2,3π4).故填:(2,3π4).12.在極坐標(biāo)系下,圓C:ρ2+4ρsinθ+3=0的圓心坐標(biāo)為()
A.(2,0)
B.
C.(2,π)
D.答案:D13.設(shè)U={(x,y)|x2+y2≤1,x,y∈R},M={(x,y)|x|+|y|≤1,x,y∈R},現(xiàn)有一質(zhì)點(diǎn)隨機(jī)落入?yún)^(qū)域U中,則質(zhì)點(diǎn)落入M中的概率是()A.2πB.12πC.1πD.2π答案:滿足條件U={(x,y)|x2+y2≤1,x,y∈R}的圓,如下圖示:其中滿足條件M={(x,y)|x|+|y|≤1,x,y∈R}的平面區(qū)域如圖中陰影所示:則圓的面積S圓=π陰影部分的面積S陰影=2故質(zhì)點(diǎn)落入M中的概率概率P=S陰影S正方形=2π故選D14.下面程序框圖輸出的S表示什么?虛線框表示什么結(jié)構(gòu)?答案:由框圖知,當(dāng)r=5時(shí),輸出的s=πr2所以程序框圖輸出的S表示:求半徑為5的圓的面積的算法的程序框圖,虛線框是一個(gè)順序結(jié)構(gòu).15.直三棱柱ABC-A1B1C1中,若CA=a,CB=b,CC1=c,則A1B=()A.a(chǎn)+b-cB.a(chǎn)-b+cC.-a+b+cD.-a+b-c答案:A1B=A1A+AB=-CC1+CB-CA=-c+b-a故選D.16.半徑為R的球內(nèi)接一個(gè)正方體,則該正方體的體積為()A.22RB.4π3R3C.893R3D.193R3答案:∵半徑為R的球內(nèi)接一個(gè)正方體,設(shè)正方體棱長為a,正方體的對角線過球心,可得正方體對角線長為:a2+a2+a2=2R,可得a=2R3,∴正方體的體積為a3=(2R3)3=83R39,故選C;17.已知復(fù)數(shù)z=2+i,則z2對應(yīng)的點(diǎn)在第()象限.A.ⅠB.ⅡC.ⅢD.Ⅳ答案:由z=2+i,則z2=(2+i)2=22+4i+i2=3+4i.所以,復(fù)數(shù)z2的實(shí)部等于3,虛部等于4.所以z2對應(yīng)的點(diǎn)在第Ⅰ象限.故選A.18.柱坐標(biāo)(2,,5)對應(yīng)的點(diǎn)的直角坐標(biāo)是
。答案:()解析:∵柱坐標(biāo)(2,,5),且,2,∴對應(yīng)直角坐標(biāo)是()19.口袋中裝有三個(gè)編號分別為1,2,3的小球,現(xiàn)從袋中隨機(jī)取球,每次取一個(gè)球,確定編號后放回,連續(xù)取球兩次.則“兩次取球中有3號球”的概率為()A.59B.49C.25D.12答案:每次取球時(shí),出現(xiàn)3號球的概率為13,則兩次取得球都是3號求得概率為C22?(13)2=19,兩次取得球只有一次取得3號求得概率為C12?13?23=49,故“兩次取球中有3號球”的概率為19+49=59,故選A.20.設(shè)某批產(chǎn)品合格率為,不合格率為,現(xiàn)對該產(chǎn)品進(jìn)行測試,設(shè)第ε次首次取到正品,則P(ε=3)等于()
A.
B.
C.
D.答案:C21.如圖,在復(fù)平面內(nèi),點(diǎn)A表示復(fù)數(shù)z的共軛復(fù)數(shù),則復(fù)數(shù)z對應(yīng)的點(diǎn)是()A.AB.BC.CD.D答案:兩個(gè)復(fù)數(shù)是共軛復(fù)數(shù),兩個(gè)復(fù)數(shù)的實(shí)部相同,下部相反,對應(yīng)的點(diǎn)關(guān)于x軸對稱.所以點(diǎn)A表示復(fù)數(shù)z的共軛復(fù)數(shù)的點(diǎn)是B.故選B.22.△OAB中,OA=a,OB=b,OP=p,若p=t(a|a|+b|b|),t∈R,則點(diǎn)P一定在()A.∠AOB平分線所在直線上B.線段AB中垂線上C.AB邊所在直線上D.AB邊的中線上答案:∵△OAB中,OA=a,OB=b,OP=p,p=t(a|a|+b|b|),t∈R,∵a|a|
和b|b|
是△OAB中邊OA、OB上的單位向量,∴(a|a|+b|b|
)在∠AOB平分線線上,∴t(a|a|+b|b|
)在∠AOB平分線線上,∴則點(diǎn)P一定在∠AOB平分線線上,故選A.23.下列四組函數(shù),表示同一函數(shù)的是()A.f(x)=x2,g(x)=xB.f(x)=x,g(x)=x2xC.f(x)=lnx2,g(x)=2lnxD.f(x)=logaax(0<a≠1),g(x)=3x3答案:同一函數(shù)必然具有相同的定義域、值域、對應(yīng)關(guān)系,A中的2個(gè)函數(shù)的值域不同,B中的2個(gè)函數(shù)的定義域不同,C中的2個(gè)函數(shù)的對應(yīng)關(guān)系不同,只有D的2個(gè)函數(shù)的定義域、值域、對應(yīng)關(guān)系完全相同,故選D.24.已知兩點(diǎn)P(4,-9),Q(-2,3),則直線PQ與y軸的交點(diǎn)分有向線段PQ的比為______.答案:直線PQ與y軸的交點(diǎn)的橫坐標(biāo)等于0,由定比分點(diǎn)坐標(biāo)公式可得0=4+λ(-2)1+λ,解得λ=2,故直線PQ與y軸的交點(diǎn)分有向線段PQ的比為
λ=2,故為:2.25.已知向量=(1,2),=(2,x),且=-1,則x的值等于()
A.
B.
C.
D.答案:D26.甲、乙兩位運(yùn)動(dòng)員在5場比賽的得分情況如莖葉圖所示,記甲、乙兩人的平均得分分別為.x甲,.x乙,則下列判斷正確的是()A..x甲>.x乙;甲比乙成績穩(wěn)定B..x甲>.x乙;乙比甲成績穩(wěn)定C..x甲<.x乙;甲比乙成績穩(wěn)定D..x甲<.x乙;乙比甲成績穩(wěn)定答案:5場比賽甲的得分為16、17、28、30、34,5場比賽乙的得分為15、26、28、28、33∴.x甲=15(16+17+28+30+34)=25,.x乙=15(15+26+28+28+33)=26s甲2=15(81+64+9+25+81)=52,s乙2=15(121+4+4+49)=35.6∴.x甲<.x乙,乙比甲成績穩(wěn)定故選D.27.在平面直角坐標(biāo)系xOy中,點(diǎn)P(x,y)是橢圓x23+y2=1上的一個(gè)動(dòng)點(diǎn),求S=x+y的最大值.答案:因橢圓x23+y2=1的參數(shù)方程為x=3cos?y=sin?(?為參數(shù))故可設(shè)動(dòng)點(diǎn)P的坐標(biāo)為(3cos?,sin?),其中0≤?<2π.因此S=x+y=3cos?+sin?=2(32cos?+12sin?)=2sin(?+π3)所以,當(dāng)?=π6時(shí),S取最大值2.28.已知點(diǎn)A(-3,8),B(2,4),若y軸上的點(diǎn)P滿足PA的斜率是PB斜率的2倍,則P點(diǎn)的坐標(biāo)為______.答案:設(shè)P(0,y),則∵點(diǎn)P滿足PA的斜率是PB斜率的2倍,∴y-80+3=2?y-40-2∴y=5∴P(0,5)故為:(0,5)29.曲線y=log2x在M=0110作用下變換的結(jié)果是曲線方程______.答案:設(shè)P(x,y)是曲線y=log2x上的任一點(diǎn),P1(x′,y′)是P(x,y)在矩陣M=0110對應(yīng)變換作用下新曲線上的對應(yīng)點(diǎn),則x′y′=0110xy=yx(3分)即x′=yy′=x,所以x=y′y=x′,(6分)將x=y′y=x′代入曲線y=log2x,得x′=log2y′,(8分)即y′=2x′曲線y=log2x在M=0110作用下變換的結(jié)果是曲線方程y=2x故為:y=2x30.圓錐曲線x=4secθ+1y=3tanθ的焦點(diǎn)坐標(biāo)是______.答案:由x=4secθ+1y=3tanθ可得secθ=x-14tanθ=y3,由三角函數(shù)的運(yùn)算可得tan2θ+1=sec2θ,代入可得(x-14)2-(y3)2=1,即(x-1)216-y29=1,可看作雙曲線x216-y29=1向右平移1個(gè)單位得到,而雙曲線x216-y29=1的焦點(diǎn)為(-5,0),(5,0)故所求雙曲線的焦點(diǎn)為(-4,0),(6,0)故為:(-4,0),(6,0)31.為了調(diào)查高中生的性別與是否喜歡足球之間有無關(guān)系,一般需要收集以下數(shù)據(jù)______.答案:為了調(diào)查高中生的性別與是否喜歡足球之間有無關(guān)系,一般需要收集男女生中喜歡或不喜歡足球的人數(shù),再得出2×2列聯(lián)表,最后代入隨機(jī)變量的觀測值公式,得出結(jié)果.故為:男女生中喜歡或不喜歡足球的人數(shù).32.已知:空間四邊形ABCD,AB=AC,DB=DC,求證:BC⊥AD.答案:取BC的中點(diǎn)為E,∵AB=AC,∴AE⊥BC.∵DB=DC,∴DE⊥BC.這樣,BC就和平面ADE內(nèi)的兩條相交直線AE、DE垂直,∴BC⊥面ADE,∴BC⊥AD.33.有50件產(chǎn)品編號從1到50,現(xiàn)在從中抽取抽取5件檢驗(yàn),用系統(tǒng)抽樣確定所抽取的編號為()
A.5,10,15,20,25
B.5,15,20,35,40
C.5,11,17,23,29
D.10,20,30,40,50答案:D34.下列給出的輸入語句、輸出語句和賦值語句
(1)輸出語句INPUT
a;b;c
(2)輸入語句INPUT
x=3
(3)賦值語句3=B
(4)賦值語句A=B=2
則其中正確的個(gè)數(shù)是()
A.0個(gè)
B.1個(gè)
C.2個(gè)
D.3個(gè)答案:A35.在平行六面體ABCD-A′B′C′D′中,向量是()
A.有相同起點(diǎn)的向量
B.等長的向量
C.共面向量
D.不共面向量答案:C36.下列敘述中:
①變量間關(guān)系有函數(shù)關(guān)系,還有相關(guān)關(guān)系;②回歸函數(shù)即用函數(shù)關(guān)系近似地描述相關(guān)關(guān)系;③=x1+x2+…+xn;④線性回歸方程一定可以近似地表示所有相關(guān)關(guān)系.其中正確的有()
A.①②③
B.①②④
C.①③
D.③④答案:A37.若橢圓x2+4(y-a)2=4與拋物線x2=2y有公共點(diǎn),則實(shí)數(shù)a的取值范圍是______.答案:橢圓x2+4(y-a)2=4與拋物線x2=2y聯(lián)立可得2y=4-4(y-a)2,∴2y2-(4a-1)y+2a2-2=0.∵橢圓x2+4(y-a)2=4與拋物線x2=2y有公共點(diǎn),∴方程2y2-(4a-1)y+2a2-2=0至少有一個(gè)非負(fù)根.∴△=(4a-1)2-16(a2-1)=-8a+17≥0,∴a≤178.又∵兩根皆負(fù)時(shí),由韋達(dá)定理可得2a2>2,4a-1<0,∴-1<a<1且a<14,即a<-1.∴方程2y2-(4a-1)y+2a2-2=0至少有一個(gè)非負(fù)根時(shí),-1≤a≤178故為:-1≤a≤17838.試比較nn+1與(n+1)n(n∈N*)的大?。?/p>
當(dāng)n=1時(shí),有nn+1______(n+1)n(填>、=或<);
當(dāng)n=2時(shí),有nn+1______(n+1)n(填>、=或<);
當(dāng)n=3時(shí),有nn+1______(n+1)n(填>、=或<);
當(dāng)n=4時(shí),有nn+1______(n+1)n(填>、=或<);
猜想一個(gè)一般性的結(jié)論,并加以證明.答案:當(dāng)n=1時(shí),nn+1=1,(n+1)n=2,此時(shí),nn+1<(n+1)n,當(dāng)n=2時(shí),nn+1=8,(n+1)n=9,此時(shí),nn+1<(n+1)n,當(dāng)n=3時(shí),nn+1=81,(n+1)n=64,此時(shí),nn+1>(n+1)n,當(dāng)n=4時(shí),nn+1=1024,(n+1)n=625,此時(shí),nn+1>(n+1)n,根據(jù)上述結(jié)論,我們猜想:當(dāng)n≥3時(shí),nn+1>(n+1)n(n∈N*)恒成立.①當(dāng)n=3時(shí),nn+1=34=81>(n+1)n=43=64即nn+1>(n+1)n成立.②假設(shè)當(dāng)n=k時(shí),kk+1>(k+1)k成立,即:kk+1(k+1)k>1則當(dāng)n=k+1時(shí),(k+1)k+2(k+2)k+1=(k+1)?(k+1k+2)k+1>(k+1)?(kk+1)k+1=kk+1(k+1)k>1即(k+1)k+2>(k+2)k+1成立,即當(dāng)n=k+1時(shí)也成立,∴當(dāng)n≥3時(shí),nn+1>(n+1)n(n∈N*)恒成立.39.對任意實(shí)數(shù)x,y,定義運(yùn)算x*y=ax+by+cxy,其中a,b,c是常數(shù),等式右邊的運(yùn)算是通常的加法和乘法運(yùn)算。已知1*2=3,2*3=4,并且有一個(gè)非零常數(shù)m,使得對任意實(shí)數(shù)x,都有x*m=x,則m的值是(
)
A.4
B.-4
C.-5
D.6答案:A40.在吸煙與患肺病這兩個(gè)分類變量的計(jì)算中,下列說法正確的是()
①若K2的觀測值滿足K2≥6.635,我們有99%的把握認(rèn)為吸煙與患肺病有關(guān)系,那么在100個(gè)吸煙的人中必有99人患有肺??;
②從獨(dú)立性檢驗(yàn)可知有99%的把握認(rèn)為吸煙與患病有關(guān)系時(shí),我們說某人吸煙,那么他有99%的可能患有肺??;
③從統(tǒng)計(jì)量中得知有95%的把握認(rèn)為吸煙與患肺病有關(guān)系,是指有5%的可能性使得推斷出現(xiàn)錯(cuò)誤.
A.①
B.①③
C.③
D.②答案:C41.從橢圓
x2a2+y2b2=1(a>b>0)上一點(diǎn)P向x軸作垂線,垂足恰為左焦點(diǎn)F1,又點(diǎn)A是橢圓與x軸正半軸的交點(diǎn),點(diǎn)B是橢圓與y軸正半軸的交點(diǎn),且AB∥OP,|F1A|=10+5,求橢圓的方程.答案:∵AB∥OP∴PF1F1O=BOOA?PF1=bca又∵PF1⊥x軸∴c2a2+y2b2=1?y=b2a∴b=c由a+c=10+5b=ca2=b2+c2解得:a=10b=5c=5∴橢圓方程為x210+y25=1.42.與原數(shù)據(jù)單位不一樣的是()
A.眾數(shù)
B.平均數(shù)
C.標(biāo)準(zhǔn)差
D.方差答案:D43.某工程隊(duì)有6項(xiàng)工程需要單獨(dú)完成,其中工程乙必須在工程甲完成后才能進(jìn)行,工程丙必須在工程乙完成后才能進(jìn)行,有工程丁必須在工程丙完成后立即進(jìn)行.那么安排這6項(xiàng)工程的不同排法種數(shù)是______.(用數(shù)字作答)答案:依題意,乙必須在甲后,丙必須在乙后,丙丁必相鄰,且丁在丙后,只需將剩余兩個(gè)工程依次插在由甲、乙、丙丁四個(gè)工程之間即可,第一個(gè)插入時(shí)有4種,第二個(gè)插入時(shí)共5個(gè)空,有5種方法;可得有5×4=20種不同排法.故為:2044.如圖⊙0的直徑AD=2,四邊形ABCD內(nèi)接于⊙0,直線MN切⊙0于點(diǎn)B,∠MBA=30°,則AB的長為______.答案:連BD,則∠MBA=∠ADB=30°,在直角三角形ABD中sin30°=ABAD,∴AB=12×2=1故為:145.把平面上一切單位向量的始點(diǎn)放在同一點(diǎn),那么這些向量的終點(diǎn)所構(gòu)成的圖形是()
A.一條線段
B.一段圓弧
C.圓上一群孤立點(diǎn)
D.一個(gè)單位圓答案:D46.由1、2、3可以組成______個(gè)沒有重復(fù)數(shù)字的兩位數(shù).答案:沒有重復(fù)數(shù)字的兩位數(shù)共有3×2=6個(gè)故為:647.過點(diǎn)(1,0)且與直線x-2y-2=0平行的直線方程是()
A.x-2y-1=0
B.x-2y+1=0
C.2x+y-2=0
D.x+2y-1=0答案:A48.若A=1324,B=-123-3,則3A-B=______.答案:∵A=1324,B=-123-3,則3A-B=31324--123-3=39612--123-3=47315.故為:47315.49.盒子中有10張獎(jiǎng)券,其中3張有獎(jiǎng),甲、乙先后從中各抽取1張(不放回),記“甲中獎(jiǎng)”為A,“乙中獎(jiǎng)”為B.
(1)求P(A),P(B),P(AB),P(A|B);
(2)A與B是否相互獨(dú)立,說明理由.答案:(1)P(A)==,P(B)=,P(AB)==,P(A|B)=.(2)因?yàn)镻(A)≠P(A|B),所以A與B不相互獨(dú)立.解析:(1)P(A)==,P(B)=,P(AB)==,P(A|B)=.(2)因?yàn)镻(A)≠P(A|B),所以A與B不相互獨(dú)立.50.在平面直角坐標(biāo)系中,橫坐標(biāo)、縱坐標(biāo)均為有理數(shù)的點(diǎn)稱為有理點(diǎn).試根據(jù)這一定義,證明下列命題:若直線y=kx+b(k≠0)經(jīng)過點(diǎn)M(2,1),則此直線不能經(jīng)過兩個(gè)有理點(diǎn).答案:證明:假設(shè)此直線上有兩個(gè)有理點(diǎn)A(x1,y1),B(x2,y2),其中x1、y1、x2、y2均為有理數(shù),則有y1=kx1+b,y2=kx2+b,兩式相減,得y1-y2=k(x1-x2).∵斜率k存在,∴x1≠x2,得k=y1-y2x1-x2.而有理數(shù)經(jīng)過四則運(yùn)算后還是有理數(shù),故k為有理數(shù).又由y1=kx1+b知,b也是有理數(shù).又∵點(diǎn)M(2,1)在此直線上,∴1=2k+b,于是有2=1-bk(k≠0).此式左端為無理數(shù),右端為有理數(shù),顯然矛盾,故此直線不能經(jīng)過兩個(gè)有理點(diǎn).第2卷一.綜合題(共50題)1.圓x2+y2=1在矩陣10012對應(yīng)的變換作用下的結(jié)果為______.答案:設(shè)P(x,y)是圓C:x2+y2=1上的任一點(diǎn),P1(x′,y′)是P(x,y)在矩陣A=10012對應(yīng)變換作用下新曲線上的對應(yīng)點(diǎn),則x′y′=10012xy=1x12y即x′=xy′=12y,所以x=x′y=2y′,將x=x′y=2y′代入x2+y2=1,得x2+4y2=1,(8分)故為:x2+4y2=1.2.學(xué)校成員、教師、后勤人員、理科教師、文科教師的結(jié)構(gòu)圖正確的是()
A.
B.
C.
D.
答案:A3.有3名同學(xué)要爭奪2個(gè)比賽項(xiàng)目的冠軍,冠軍獲得者共有______種可能.答案:第一個(gè)項(xiàng)目的冠軍有3種情況,第二個(gè)項(xiàng)目的冠軍也有3種情況,根據(jù)分步計(jì)數(shù)原理,冠軍獲得者共有3×3=9種可能,故為9.4.(不等式選講選做題)已知x+2y+3z=1,求x2+y2+z2的最小值______.答案:解法一:由柯西不等式可知:(x+2y+3z)2≤(x2+y2+z2)(12+22+33),∴x2+y2+z2≥114,當(dāng)且僅當(dāng)x1=y2=z3,x+2y+3z=1,即x=114,y=17,z=314時(shí)取等號.即x2+y2+z2的最小值為114.解法二:設(shè)向量a=(1,2,3),b=(x,y,z),∵|a?b|≤|a|
|b|,∴1=x+2y+3z≤12+22+32x2+y2+z2,∴x2+y2+z2≥114,當(dāng)且僅當(dāng)a與b共線時(shí)取等號,即x1=y2=z3,x+2y+3z=1,解得x=114,y=17,z=314時(shí)取等號.故為114.5.已知隨機(jī)變量X~B(n,0.8),D(X)=1.6,則n的值是()
A.8
B.10
C.12
D.14答案:B6.已知點(diǎn)B是點(diǎn)A(2,-3,5)關(guān)于平面xOy的對稱點(diǎn),則|AB|=()
A.10
B.
C.
D.38答案:A7.“∵四邊形ABCD為矩形,∴四邊形ABCD的對角線相等”,補(bǔ)充以上推理的大前提為()
A.正方形都是對角線相等的四邊形
B.矩形都是對角線相等的四邊形
C.等腰梯形都是對角線相等的四邊形
D.矩形都是對邊平行且相等的四邊形答案:B8.棱長為1的正方體ABCD-A1B1C1D1的8個(gè)頂點(diǎn)都在球O的表面上,E,F(xiàn)分別是棱AA1,DD1的中點(diǎn),則直線EF被球O截得的線段長為()
A.
B.1
C.1+
D.答案:D9.在某次數(shù)學(xué)考試中,考生的成績X~N(90,100),則考試成績X位于區(qū)間(80,90)上的概率為______.答案:∵考生的成績X~N(90,100),∴正弦曲線關(guān)于x=90對稱,根據(jù)3?原則知P(80<x<100)=0.6829,∴考試成績X位于區(qū)間(80,90)上的概率為0.3413,故為:0.341310.已知直線ax+by+c=0(abc≠0)與圓x2+y2=1相切,則三條邊長分別為|a|、|b|、|c|的三角形()
A.是銳角三角形
B.是直角三角形
C.是鈍角三角形
D.不存在答案:B11.已知實(shí)數(shù)x、y滿足(x-2)2+y2+(x+2)2+y2=6,則2x+y的最大值等于______.答案:∵實(shí)數(shù)x、y滿足(x-2)2+y2+(x+2)2+y2=6,∴點(diǎn)(x,y)的軌跡是橢圓,其方程為x29+y25=1,所以可設(shè)x=3cosθ,y=5sinθ,則z=6cosθ+5sinθ=41sin(θ+
β)≤41,∴2x+y的最大值等于41.故為:4112.(幾何證明選講選做題)已知PA是⊙O的切線,切點(diǎn)為A,直線PO交⊙O于B、C兩點(diǎn),AC=2,∠PAB=120°,則⊙O的面積為______.答案:∵PA是圓O的切線,∴OA⊥AP又∵∠PAB=120°∴∠BAO=∠ABO=30°又∵在Rt△ABC中,AC=2∴BC=4,即圓O的直徑2R=4∴圓O的面積S=πR2=4π故為:4π.13.袋子A和袋子B均裝有紅球和白球,從A中摸出一個(gè)紅球的概率是13,從B中摸出一個(gè)紅球的概率是P.
(1)從A中有放回地摸球,每次摸出一個(gè),共摸5次,求恰好有3次摸到紅球的概率;
(2)若A、B兩個(gè)袋子中的總球數(shù)之比為1:2,將A、B中的球裝在一起后,從中摸出一個(gè)紅球的概率為25,求P的值.答案:(1)每次從A中摸一個(gè)紅球的概率是13,摸不到紅球的概率為23,根據(jù)獨(dú)立重復(fù)試驗(yàn)的概率公式,故共摸5次,恰好有3次摸到紅球的概率為:P=C35(13)3(23)2=10×127×49=40243.(2)設(shè)A中有m個(gè)球,A、B兩個(gè)袋子中的球數(shù)之比為1:2,則B中有2m個(gè)球,∵將A、B中的球裝在一起后,從中摸出一個(gè)紅球的概率是25,∴13m+2mp3m=25,解得p=1330.14.直線y=3x的傾斜角為______.答案:∵直線y=3x的斜率是3,∴直線的傾斜角的正切值是3,∵α∈[0°,180°],∴α=60°,故為:60°15.如果消息M發(fā)生的概率為P(M),那么消息M所含的信息量為I(M)=log2[P(M)+],若小明在一個(gè)有4排8列座位的小型報(bào)告廳里聽報(bào)告,則發(fā)布的以下4條消費(fèi)中,信息量最大的是()
A.小明在第4排
B.小明在第5列
C.小明在第4排第5列
D.小明在某一排答案:C16.不等式≥0的解集為[-2,3∪[7,+∞,則a-b+c的值是(
)A.2B.-2C.8D.6答案:B解析:∵-a、b的值為-2,7中的一個(gè),x≠c
c=3∴a-b=-(b-a)=-(-2+7)=-5a-b+c=-5+3=-2
選B評析:考察考生對不等式解集的結(jié)構(gòu)特征的理解,關(guān)注不等式中等號與不等號的關(guān)系。17.設(shè)曲線C的方程是,將C沿x軸,y軸正向分別平移單位長度后,得到曲線C1.(1)寫出曲線C1的方程;(2)證明曲線C與C1關(guān)于點(diǎn)A(,)對稱.答案:(1)(2)證明略解析:(1)由已知得,,則平移公式是即代入方程得曲線C1的方程是(2)在曲線C上任取一點(diǎn),設(shè)是關(guān)于點(diǎn)A的對稱點(diǎn),則有,,代入曲線C的方程,得關(guān)于的方程,即可知點(diǎn)在曲線C1上.反過來,同樣可以證明,在曲線C1上的點(diǎn)關(guān)于點(diǎn)A的對稱點(diǎn)在曲線C上,因此,曲線C與C1關(guān)于點(diǎn)A對稱.18.用冒泡法對43,34,22,23,54從小到大排序,需要(
)趟排序。
A.2
B.3
C.4
D.5答案:A19.設(shè)a=lg2+lg5,b=ex(x<0),則a與b的大小關(guān)系是?答案:a═lg2+lg5=lg10=1又b=ex,由指數(shù)函數(shù)的性質(zhì)知,當(dāng)x<0時(shí),0<b<1∴a>b20.若點(diǎn)A分有向線段所成的比是2,則點(diǎn)C分有向線段所成的比是()
A.
B.3
C.-2
D.-3答案:D21.已知|a|=8,e是單位向量,當(dāng)它們之間的夾角為π3時(shí),a在e方向上的投影為
______.答案:a在e方向上的投影為a?e=|a||e|cosπ3=4故為:422.下列哪組中的兩個(gè)函數(shù)是同一函數(shù)()A.y=(x)2與y=xB.y=(3x)3與y=xC.y=x2與y=(x)2D.y=3x3與y=x2x答案:A、y=x與y=x2的定義域不同,故不是同一函數(shù).B、y=(3x)3=x與y=x的對應(yīng)關(guān)系相同,定義域?yàn)镽,故是同一函數(shù).C、fy=x2與y=(x)2的定義域不同,故不是同一函數(shù).D、y=3x3與y=x2x
具的定義域不同,故不是同一函數(shù).故選B.23.已知x,y的取值如下表:
x0134y2.24.34.86.7從散點(diǎn)圖分析,y與x線性相關(guān),則回歸方程為.y=bx+a必過點(diǎn)______.答案:.X=0+1+3+44=2,.Y=2.2+4.3+4.8+6.74=92,故樣本中心點(diǎn)的坐標(biāo)為(2,92).故為:(2,92).24.如圖,在空間直角坐標(biāo)系中,已知直三棱柱的頂點(diǎn)A在x軸上,AB平行于y軸,側(cè)棱AA1平行于z軸.當(dāng)頂點(diǎn)C在y軸正半軸上運(yùn)動(dòng)時(shí),以下關(guān)于此直三棱柱三視圖的表述正確的是()
A.該三棱柱主視圖的投影不發(fā)生變化
B.該三棱柱左視圖的投影不發(fā)生變化
C.該三棱柱俯視圖的投影不發(fā)生變化
D.該三棱柱三個(gè)視圖的投影都不發(fā)生變化
答案:B25.P是△ABC所在平面上的一點(diǎn),且滿足,若△ABC的面積為1,則△PAB的面積為()
A.
B.
C.
D.答案:B26.下表是降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對應(yīng)數(shù)據(jù),根據(jù)表中提供的數(shù)據(jù),求出y關(guān)于x的線性回歸方程.y=0.7x+0.35,那么表中m的值為______.
x3456y2.5m44.5答案:∵根據(jù)所給的表格可以求出.x=3+4+5+64=4.5,.y=2.5+m+4+4.54=11+m4∵這組數(shù)據(jù)的樣本中心點(diǎn)在線性回歸直線上,∴11+m4=0.7×4.5+0.35,∴m=3,故為:327.用數(shù)字1,2,3,4,5組成的無重復(fù)數(shù)字的四位偶數(shù)的個(gè)數(shù)為()
A.8
B.24
C.48
D.120答案:C28.已知O是空間任意一點(diǎn),A、B、C、D四點(diǎn)滿足任三點(diǎn)均不共線,但四點(diǎn)共面,且=2x+3y+4z,則2x+3y+4z=(
)答案:﹣129.某校高一年級8個(gè)班參加合唱比賽的得分如莖葉圖所示,則這組數(shù)據(jù)的中位數(shù)是______.答案:由莖葉圖可知樣本數(shù)據(jù)共有8個(gè),按照從小到大的順序?yàn)椋?7,89,90,91,92,93,94,96.出現(xiàn)在中間兩位的數(shù)據(jù)是91,92.所以樣本的中位數(shù)是(91+92)÷2=91.5,故為:91.530.已知:正四棱柱ABCD—A1B1C1D1中,底面邊長為2,側(cè)棱長為4,E、F分別為棱AB、BC的中點(diǎn).
(1)求證:平面B1EF⊥平面BDD1B1;
(2)求點(diǎn)D1到平面B1EF的距離.答案:(1)證明略(2)解析:(1)
建立如圖所示的空間直角坐標(biāo)系,則D(0,0,0),B(2,2,0),E(2,,0),F(xiàn)(,2,0),D1(0,0,4),B1(2,2,4).=(-,,0),=(2,2,0),=(0,0,4),∴·=0,·=0.∴EF⊥DB,EF⊥DD1,DD1∩BD=D,∴EF⊥平面BDD1B1.又EF平面B1EF,∴平面B1EF⊥平面BDD1B1.(2)
由(1)知=(2,2,0),=(-,,0),=(0,-,-4).設(shè)平面B1EF的法向量為n,且n=(x,y,z)則n⊥,n⊥即n·=(x,y,z)·(-,,0)=-x+y=0,n·=(x,y,z)·(0,-,-4)=-y-4z=0,令x=1,則y=1,z=-,∴n="(1,1,-")∴D1到平面B1EF的距離d===.31.在研究打酣與患心臟病之間的關(guān)系中,通過收集數(shù)據(jù)、整理分析數(shù)據(jù)得“打酣與患心臟病有關(guān)”的結(jié)論,并且有99%以上的把握認(rèn)為這個(gè)結(jié)論是成立的.下列說法中正確的是()
A.100個(gè)心臟病患者中至少有99人打酣
B.1個(gè)人患心臟病,則這個(gè)人有99%的概率打酣
C.100個(gè)心臟病患者中一定有打酣的人
D.100個(gè)心臟病患者中可能一個(gè)打酣的人都沒有答案:D32.直線過原點(diǎn)且傾角的正弦值是45,則直線方程為______.答案:因?yàn)閮A斜角α的范圍是:0≤α<π,又由題意:sinα=45所以:tanα=±43x直線過原點(diǎn),由直線的點(diǎn)斜式方程得到:y=±43x故為:y=±43x33.已知橢圓(a>b>0)的焦點(diǎn)分別為F1,F(xiàn)2,b=4,離心率e=過F1的直線交橢圓于A,B兩點(diǎn),則△ABF2的周長為()
A.10
B.12
C.16
D.20答案:D34.某自動(dòng)化儀表公司組織結(jié)構(gòu)如圖所示,其中采購部的直接領(lǐng)導(dǎo)是()
A.副總經(jīng)理(甲)
B.副總經(jīng)理(乙)
C.總經(jīng)理
D.董事會
答案:B35.如圖是一個(gè)空間幾何體的三視圖,試用斜二測畫法畫出它的直觀圖.(尺寸不作嚴(yán)格要求,但是凡是未用鉛筆作圖不得分,隨手畫圖也不得分)答案:由題可知題目所述幾何體是正六棱臺,畫法如下:畫法:(1)、畫軸畫x軸、y軸、z軸,使∠x′O′y′=45°,∠x′O′z′=90°
(圖1)(2)、畫底面以O(shè)′為中心,在XOY坐標(biāo)系內(nèi)畫正六棱臺下底面正方形的直觀圖ABCDEF.在z′軸上取線段O′O1等于正六棱臺的高;過O1
畫O1M、O1N分別平行O’x′、O′y′,再以O(shè)1為中心,畫正六棱臺上底面正方形的直觀圖A′B′C′E′F′(3)、成圖連接AA′、BB′、CC′、DD′、EE′、FF′,并且加以整理,就得到正六棱臺的直觀圖
(如圖2).36.用反證法證明“3是無理數(shù)”時(shí),第一步應(yīng)假設(shè)“______.”答案:反證法肯定題設(shè)而否定結(jié)論,從而得出矛盾,題設(shè)“3是無理數(shù)”,那么假設(shè)為:3是有理數(shù).故為3是有理數(shù).37.過點(diǎn)A(1,4)且在x、y軸上的截距相等的直線共有______條.答案:當(dāng)直線過坐標(biāo)原點(diǎn)時(shí),方程為y=4x,符合題意;當(dāng)直線不過原點(diǎn)時(shí),設(shè)直線方程為x+y=a,代入A的坐標(biāo)得a=1+4=5.直線方程為x+y=5.所以過點(diǎn)A(1,4)且在x、y軸上的截距相等的直線共有2條.故為2.38.在輸入語句中,若同時(shí)輸入多個(gè)變量,則變量之間的分隔符號是()
A.逗號
B.空格
C.分號
D.頓號答案:A39.已知平面向量a,b,c滿足a+b+c=0,且a與b的夾角為135°,c與b的夾角為120°,|c|=2,則|a|=______.答案:∵a+b+c=0∴三個(gè)向量首尾相接后,構(gòu)成一個(gè)三角形且a與b的夾角為135°,c與b的夾角為120°,|c|=2,故所得三角形如下圖示:其中∠C=45°,∠A=60°,AB=2∴|a|=AB?Sin∠Asin∠C=6故為:640.若矩陣A=
72
69
67
65
62
59
81
74
68
64
59
52
85
79
76
72
69
64
228
219
211
204
195
183
是表示我校2011屆學(xué)生高二上學(xué)期的期中成績矩陣,A中元素aij(i=1,2,3,4;j=1,2,3,4,5,6)的含義如下:i=1表示語文成績,i=2表示數(shù)學(xué)成績,i=3表示英語成績,i=4表示語數(shù)外三門總分成績j=k,k∈N*表示第50k名分?jǐn)?shù).若經(jīng)過一定量的努力,各科能前進(jìn)的名次是一樣的.現(xiàn)小明的各科排名均在250左右,他想盡量提高三門總分分?jǐn)?shù),那么他應(yīng)把努力方向主要放在哪一門學(xué)科上()
A.語文
B.?dāng)?shù)學(xué)
C.外語
D.都一樣答案:B41.平面向量a與b的夾角為,若a=(2,0),|b|=1,則|a+2b|=()
A.
B.2
C.4
D.12答案:B42.設(shè)15000件產(chǎn)品中有1000件次品,從中抽取150件進(jìn)行檢查,則查得次品數(shù)的數(shù)學(xué)期望為______.答案:∵15000件產(chǎn)品中有1000件次品,從中抽取150件進(jìn)行檢查,∴查得次品數(shù)的數(shù)學(xué)期望為150×100015000=10.故為10.43.若a>0,使不等式|x-4|+|x-3|<a在R上的解集不是空集的a的取值是()
A.0<a<1
B.a(chǎn)=1
C.a(chǎn)>1
D.以上均不對答案:C44.若圓O1方程為(x+1)2+(y+1)2=4,圓O2方程為(x-3)2+(y-2)2=1,則方程(x+1)2+(y+1)2-4=(x-3)2+(y-2)2-1表示的軌跡是()
A.經(jīng)過兩點(diǎn)O1,O2的直線
B.線段O1O2的中垂線
C.兩圓公共弦所在的直線
D.一條直線且該直線上的點(diǎn)到兩圓的切線長相等答案:D45.某校對文明班的評選設(shè)計(jì)了a,b,c,d,e五個(gè)方面的多元評價(jià)指標(biāo),并通過經(jīng)驗(yàn)公式樣S=ab+cd+1e來計(jì)算各班的綜合得分,S的值越高則評價(jià)效果越好,若某班在自測過程中各項(xiàng)指標(biāo)顯示出0<c<d<e<b<a,則下階段要把其中一個(gè)指標(biāo)的值增加1個(gè)單位,而使得S的值增加最多,那么該指標(biāo)應(yīng)為()A.a(chǎn)B.bC.cD.d答案:因a,b,cde都為正數(shù),故分子越大或分母越小時(shí),S的值越大,而在分子都增加1的前提下,分母越小時(shí),S的值增長越多,由于0<c<d<e<b<a,分母中d最小,所以c增大1個(gè)單位會使得S的值增加最多.故選C.46.已知集合A={x|log2x<1},B={x|0<x<c,其中c>0},若A=B,則c=______.答案:集合A={x|log2x<1}={x|0<x<2},B={x|0<x<c,其中c>0},若A=B,則c=2,故為2.47.如圖,四面體ABCD中,點(diǎn)E是CD的中點(diǎn),記=(
)
A.
B.
C.
D.
答案:B48.拋物線y2=4px(p>0)的準(zhǔn)線與x軸交于M點(diǎn),過點(diǎn)M作直線l交拋物線于A、B兩點(diǎn).
(1)若線段AB的垂直平分線交x軸于N(x0,0),求證:x0>3p;
(2)若直線l的斜率依次為p,p2,p3,…,線段AB的垂直平分線與x軸的交點(diǎn)依次為N1,N2,N3,…,當(dāng)0<p<1時(shí),求1|N1N2|+1|N2N3|+…+1|N10N11|的值.答案:(1)證明:設(shè)直線l方程為y=k(x+p),代入y2=4px.得k2x2+(2k2p-4p)x+k2p2=0.△=4(k2p-2p)2-4k2?k2p2>0,得0<k2<1.令A(yù)(x1,y1)、B(x2,y2),則x1+x2=-2k2p-4pk2,y1+y2=k(x1+x2+2p)=4pk,AB中點(diǎn)坐標(biāo)為(2P-k2Pk2,2pk).AB垂直平分線為y-2pk=-1k(x-2P-k2Pk2).令y=0,得x0=k2P+2Pk2=p+2Pk2.由上可知0<k2<1,∴x0>p+2p=3p.∴x0>3p.(2)∵l的斜率依次為p,p2,p3,時(shí),AB中垂線與x軸交點(diǎn)依次為N1,N2,N3,(0<p<1).∴點(diǎn)Nn的坐標(biāo)為(p+2p2n-1,0).|NnNn+1|=|(p+2p2n-1)-(p+2p2n+1)|=2(1-p2)p2n+1,1|NnNn+1|=p2n+12(1-p2),所求的值為12(1-p2)[p3+p4++p21]=p3(1-p19)2(1-p)2(1+p).49.如果一個(gè)圓錐的正視圖是邊長為2的等邊三角形,則該圓錐的表面積是______.答案:由已知,圓錐的底面直徑為2,母線為2,則這個(gè)圓錐的表面積是12×2π×2+π?12=3π.故:3π.50.對任意實(shí)數(shù)x,y,定義運(yùn)算x*y為:x*y=ax+by+cxy,其中a,b,c為常數(shù),等式右端運(yùn)算為通常的實(shí)數(shù)加法和乘法,現(xiàn)已知1*2=3,2*3=4,并且有一個(gè)非零實(shí)數(shù)m,使得對于任意的實(shí)數(shù)都有x*m=x,則d的值為(
)
A.4
B.1
C.0
D.不確定答案:A第3卷一.綜合題(共50題)1.鐵路托運(yùn)行李,從甲地到乙地,按規(guī)定每張客票托運(yùn)行李不超過50kg時(shí),每千克0.2元,超過50kg時(shí),超過部分按每千克0.25元計(jì)算,畫出計(jì)算行李價(jià)格的算法框圖.答案:程序框圖:2.正方體ABCD-A1B1C1D1的棱長為2,MN是它的內(nèi)切球的一條弦(把球面上任意兩點(diǎn)之間的線段稱為球的弦),P為正方體表面上的動(dòng)點(diǎn),當(dāng)弦MN最長時(shí).PM?PN的最大值為______.答案:設(shè)點(diǎn)O是此正方體的內(nèi)切球的球心,半徑R=1.∵PM?PN≤|PM|
|PN|,∴當(dāng)點(diǎn)P,M,N三點(diǎn)共線時(shí),PM?PN取得最大值.此時(shí)PM?PN≤(PO-MO)?(PO+ON),而MO=ON,∴PM?PN≤PO2-R2=PO2-1,當(dāng)且僅當(dāng)點(diǎn)P為正方體的一個(gè)頂點(diǎn)時(shí)上式取得最大值,∴(PM?PN)max=(232)2-1=2.故為2.3.以過橢圓+=1(a>b>0)的右焦點(diǎn)的弦為直徑的圓與直線l:x=的位置關(guān)系是()
A.相交
B.相切
C.相離
D.不能確定答案:C4.設(shè)雙曲線的焦點(diǎn)在x軸上,兩條漸近線為y=±x,則雙曲線的離心率e=()
A.5
B.
C.
D.答案:C5.已知函數(shù)y=f(n),滿足f(1)=2,且f(n+1)=3f(n),n∈N+,則
f(3)的值為______.答案:∵f(1)=2,且f(n+1)=3f(n),n∈N+,∴f(2)=3f(1)=6,f(3)=f(2+1)=3f(2)=18,故為18.6.設(shè)a=(4,3),a在b上的投影為522,b在x軸上的投影為2,且|b|≤14,則b為()A.(2,14)B.(2,-27)C.(-2,27)D.(2,8)答案:∵b在x軸上的投影為2,∴設(shè)b=(2,y)∵a在b上的投影為522,∴8+3y4+y2=522∴7y2-96y-28=0,解可得y=-27或14,∵|b|≤14,即4+y2≤144,∴y=-27,b=(2,-27)故選B7.如圖所示,CD為Rt△ABC斜邊AB邊上的中線,CE⊥CD,CE=103,連接DE交BC于點(diǎn)F,AC=4,BC=3.
求證:(1)△ABC∽△EDC;
(2)DF=EF.答案:證明:(1)∵CD為Rt△ABC斜邊AB邊上的中線∴CD=12AB=12AC2+BC2=52.∴CECD=10352=43=ACBC,∠ACB=∠DCE=90°.∴△ABC∽△EDC.(2)因?yàn)椤鰽BC∽△EDC∴∠B=∠CDE,∠E=∠A.由CD為Rt△ABC斜邊AB邊上的中線得:CD=AD=DB?∠B=∠DCB,∠A=∠DCA∴∠DCB=∠CDE?DF=CF;又因?yàn)椋骸螪CA+∠DCB=∠DCB+∠BCE=90°;∴∠DCA=∠BCE=∠A=∠E∴CF=EF.∴DF=EF.8.若O(0,0),A(1,2)且OA′=2OA.則A′點(diǎn)坐標(biāo)為()A.(1,4)B.(2,2)C.(2,4)D.(4,2)答案:設(shè)A′(x,y),OA′=(x,y),OA=(1,2),∴(x,y)=2(1,2),故選C.9.已知橢圓的焦點(diǎn)是F1、F2,P是橢圓上的一個(gè)動(dòng)點(diǎn),如果延長F1P到Q,使得|PQ|=|PF2|,那么動(dòng)點(diǎn)Q的軌跡是()
A.圓
B.橢圓
C.雙曲線的一支
D.拋物線答案:A10.設(shè)集合A={0,1,3},B={1,3,4},則A∩B=______.答案:∵集合A={0,1,3},B={1,3,4},A∩B={1,3}.故為:{1,3}.11.某飲料公司招聘了一名員工,現(xiàn)對其進(jìn)行一項(xiàng)測試,以便確定工資級別.公司準(zhǔn)備了兩種不同的飲料共8杯,其顏色完全相同,并且其中4杯為A飲料,另外4杯為B飲料,公司要求此員工一一品嘗后,從8杯飲料中選出4杯A飲料.若4杯都選對,則月工資定位3500元;若4杯選對3杯,則月工資定為2800元,否則月工資定為2100元,今X表示此人選對A飲料的杯數(shù),假設(shè)此人對A和B兩種飲料沒有鑒別能力.
(1)求X的分布列;
(2)求此員工月工資的期望.答案:(1)X的所有可能取值為0,1,2,3,4,P(X=0)=1C48=170P(X=1)=C14C34C48=1670P(X=2)=C24C24C48=3670P(X=3)=C14C34C48=1670P(X=4)=1C48=170(2)此員工月工資Y的所有可能取值有3500、2800、2100,P(Y=3500)=P(X=4)=1C48=170P(Y=2800)=P(X=3)=C14C34C48=1670P(Y=2100)=P(X=0)+P(X=1)+P(X=2)=5370EY=3500×170+2800×1670+2100×5370=228012.復(fù)數(shù),且A+B=0,則m的值是()
A.
B.
C.-
D.2答案:C13.已知非零向量,若與互相垂直,則=(
)
A.
B.4
C.
D.2答案:D14.用數(shù)學(xué)歸納法證明不等式成立,起始值至少應(yīng)取為()
A.7
B.8
C.9
D.10答案:B15.已知P(B|A)=,P(A)=,則P(AB)等于()
A.
B.
C.
D.答案:C16.下列各式中錯(cuò)誤的是()
A.||2=2
B.||=||
C.0?=0
D.m(n)=mn(m,n∈R)答案:C17.下列點(diǎn)在x軸上的是()
A.(0.1,0.2,0.3)
B.(0,0,0.001)
C.(5,0,0)
D.(0,0.01,0)答案:C18.如圖,△PAB所在的平面α和梯形ABCD所在的平面β互相垂直,且AD⊥α,AD=4,BC=8,AB=6,若tan∠ADP+2tan∠BCP=10,則點(diǎn)P在平面α內(nèi)的軌跡是()A.圓的一部分B.橢圓的一部分C.雙曲線的一部分D.拋物線的一部分答案:由AD⊥α,可得AD⊥AP,tan∠ADP=APAD,四邊形ABCD是梯形,則AD∥BC,可得BC⊥α,BC⊥BP,則tan∠BCP=BPBC,又由tan∠ADP+2tan∠BCP=10,且AD=4,BC=8,可得AP+BP=40,又由AB=6,則AP+BP>AB,故P在平面α內(nèi)的軌跡是橢圓的一部分,故選B.19.為了考察兩個(gè)變量x和y之間的線性相關(guān)性,甲、乙兩位同學(xué)各自獨(dú)立地做10次和15次試驗(yàn),并且利用線性回歸方法,求得回歸直線分別為l1和l2,已知兩個(gè)人在試驗(yàn)中發(fā)現(xiàn)對變量x的觀測數(shù)據(jù)的平均值都是s,對變量y的觀測數(shù)據(jù)的平均值都是t,那么下列說法正確的是()
A.l1和l2必定平行
B.l1與l2必定重合
C.l1和l2有交點(diǎn)(s,t)
D.l1與l2相交,但交點(diǎn)不一定是(s,t)答案:C20.圓x2+y2=1在矩陣A={}對應(yīng)的變換下,得到的曲線的方程是()
A.=1
B.=1
C.=1
D.=1答案:C21.三個(gè)數(shù)a=0.52,b=log20.5,c=20.5之間的大小關(guān)系是()A.a(chǎn)<c<bB.b<c<aC.a(chǎn)<b<cD.b<a<c答案:∵0<a=0.52<1,b=log20.5<log21=0,c=20.5>20=1,∴b<a<c故選D.22.在z軸上與點(diǎn)A(-4,1,7)和點(diǎn)B(3,5,-2)等距離的點(diǎn)C的坐標(biāo)為
______.答案:由題意設(shè)C(0,0,z),∵C與點(diǎn)A(-4,1,7)和點(diǎn)B(3,5,-2)等距離,∴|AC|=|BC|,∴16+1+(7-z)2=9+25+(z+2)2,∴18z=28,∴z=149,∴C點(diǎn)的坐標(biāo)是(0,0,149)故為:(0,0,149)23.(文)橢圓的一個(gè)焦點(diǎn)與短軸的兩端點(diǎn)構(gòu)成一個(gè)正三角形,則該橢圓的離心率為()
A.
B.
C.
D.不確定答案:C24.已知α、β均為銳角,若p:sinα<sin(α+β),q:α+β<π2,則p是q的()A.充分而不必要條件B.必要而不充分條件C.充要條件D.既不充分也不必要條件答案:當(dāng)sinα<sin(α+β)時(shí),α+β<π2不一定成立故sinα<sin(α+β)?α+β<π2,為假命題;而若α+β<π2,則由正弦函數(shù)在(0,π2)單調(diào)遞增,易得sinα<sin(α+β)成立即α+β<π2?sinα<sin(α+β)為真命題故p是q的必要而不充分條件故選B.25.設(shè)F為拋物線y2=ax(a>0)的焦點(diǎn),點(diǎn)P在拋物線上,且其到y(tǒng)軸的距離與到點(diǎn)F的距離之比為1:2,則|PF|等于()
A.
B.a(chǎn)
C.
D.答案:D26.某次乒乓球比賽的決賽在甲乙兩名選手之間舉行,比賽采用五局三勝制,按以往比賽經(jīng)驗(yàn),甲勝乙的概率為23.
(1)求比賽三局甲獲勝的概率;
(2)求甲獲勝的概率;
(3)設(shè)甲比賽的次數(shù)為X,求X的數(shù)學(xué)期望.答案:記甲n局獲勝的概率為Pn,n=3,4,5,(1)比賽三局甲獲勝的概率是:P3=C33(23)3=827;(2)比賽四局甲獲勝的概率是:P4=C23(23)3
(13)=827;比賽五局甲獲勝的概率是:P5=C24(13)2(23)3=1681;甲獲勝的概率是:P3+P4+P5=6481.(3)記乙n局獲勝的概率為Pn′,n=3,4,5.P3′=C33(13)3=127,P4′=C23(13)3
(23)=227;P5′=C24(13)3(23)2=881;故甲比賽次數(shù)的分布列為:X345P(X)P3+P3′P4+P4′P5+P5′所以甲比賽次數(shù)的數(shù)學(xué)期望是:EX=3(127+827)+4(827+227)+5(1681+881
)=10727.27.設(shè)b是a的相反向量,則下列說法錯(cuò)誤的是()
A.a(chǎn)與b的長度必相等
B.a(chǎn)與b的模一定相等
C.a(chǎn)與b一定不相等
D.a(chǎn)是b的相反向量答案:C28.棱長為1的正方體ABCD-A1B1C1D1的8個(gè)頂點(diǎn)都在球O的表面上,E,F(xiàn)分別是棱AA1,DD1的中點(diǎn),則直線EF被球O截得的線段長為()
A.
B.1
C.1+
D.答案:D29.已知(2x+1)3的展開式中,二項(xiàng)式系數(shù)和為a,各項(xiàng)系數(shù)和為b,則a+b=______.(用數(shù)字表示)答案:由題意可得(2x+1)3的展開式中,二項(xiàng)式系數(shù)和為a=23=8令x=1可得各項(xiàng)系數(shù)和為b=(2+1)3=27∴a+b=35故為:3530.如圖放置的等腰直角三角形ABC薄片(∠ACB=90°,AC=2)沿x軸滾動(dòng),設(shè)頂點(diǎn)A(x,y)的軌跡方程是y=f(x),則f(x)在其相鄰兩個(gè)零點(diǎn)間的圖象與x軸所圍區(qū)域的面積為______.答案:作出點(diǎn)A的軌跡中相鄰兩個(gè)零點(diǎn)間的圖象,如圖所示.其軌跡為兩段圓弧,一段是以C為圓心,CA為半徑的四分之一圓??;一段是以B為圓心,BA為半徑,圓心角為3π4的圓?。渑cx軸圍成的圖形的面積為12×22×π2+12×2×2+12×(22)2×3π4=2+4π.故為:2+4π.31.下列有關(guān)相關(guān)指數(shù)R2的說法正確的有()
A.R2的值越大,說明殘差平方和越小
B.R2越接近1,表示回歸效果越差
C.R2的值越小,說明殘差平方和越小
D.如果某數(shù)據(jù)可能采取幾種不同回歸方程進(jìn)行回歸分析,一般選擇R2小的模型作為這組數(shù)據(jù)的模型答案:A32.為了檢測某種產(chǎn)品的直徑(單位mm),抽取了一個(gè)容量為100的樣本,其頻率分布表(不完整)如下:
分組頻數(shù)累計(jì)頻數(shù)頻率[10.75,10.85)660.06[10.85,10.95)1590.09[10.95,11.05)30150.15[11.05,11.15)48180.18[11.15,11.25)
(Ⅰ)完成頻率分布表;
(Ⅱ)畫出頻率分布直方圖;
(Ⅲ)據(jù)上述圖表,估計(jì)產(chǎn)品直徑落在[10.95,11.35)范圍內(nèi)的可能性是百分之幾?答案:解(Ⅰ)分組頻數(shù)累計(jì)頻數(shù)頻率[10.75,10.85)660.06[10.85,10.95
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 焊接課程設(shè)計(jì)計(jì)算
- 美術(shù)單元課程設(shè)計(jì)幼兒園
- 有關(guān)于幼兒課程設(shè)計(jì)
- 中考英語作文范文共50篇
- 《經(jīng)濟(jì)危機(jī)與》課件
- 軟件開發(fā)管理制度
- 智能創(chuàng)業(yè)課程設(shè)計(jì)
- 金融行業(yè)保安工作的總結(jié)與優(yōu)化計(jì)劃
- 流利閱讀課程設(shè)計(jì)
- 水上樂園前臺接待總結(jié)
- 廣東省廣州市2023-2024高二上學(xué)期期末語文試題
- 新疆大學(xué)答辯模板課件模板
- 2024年土石方工程合同模板(三篇)
- 云南2025年中國工商銀行云南分行秋季校園招聘650人筆試歷年參考題庫解題思路附帶答案詳解
- 中級水工閘門運(yùn)行工技能鑒定理論考試題及答案
- 2024年蘭州市城關(guān)區(qū)四年級數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題含解析
- 奮躍而上 飛速奔跑(2023年黑龍江牡丹江中考語文試卷議論文閱讀題及答案)
- 記賬實(shí)操-足浴店賬務(wù)處理分錄
- 九一八《勿忘國恥吾輩當(dāng)自強(qiáng)》教案
- 2024年離婚協(xié)議書簡單離婚協(xié)議書
- 2024年新北師大版一年級上冊數(shù)學(xué)教學(xué)課件 總復(fù)習(xí)(1) 數(shù)與代數(shù)
評論
0/150
提交評論