2023年重慶商務(wù)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第1頁
2023年重慶商務(wù)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第2頁
2023年重慶商務(wù)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第3頁
2023年重慶商務(wù)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第4頁
2023年重慶商務(wù)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第5頁
已閱讀5頁,還剩41頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

長風(fēng)破浪會有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年重慶商務(wù)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.不等式>1–log2x的解是(

A.x≥2

B.x>1

C.1xx>2答案:B2.如圖,若直線l1,l2,l3的斜率分別為k1,k2,k3,則k1,k2,k3三個數(shù)從小到大的順序依次是______.答案:由函數(shù)的圖象可知直線l1,l2,l3的斜率滿足k1<0<k3<k2所以k1,k2,k3三個數(shù)從小到大的順序依次是k1,k3,k2故為:k1,k3,k2.3.已知三個數(shù)a=60.7,b=0.76,c=log0.76,則a,b,c從小到大的順序?yàn)開_____.答案:因?yàn)閍=60.7>60=1,b=0.76<0.70=1,且b>0,c=log0.76<0,所以c<b<a.故為c<b<a.4.用數(shù)學(xué)歸納法證明:12+22+32+…+n2=n(n+1)(2n+1)6.答案:證明:(1)當(dāng)n=1時(shí),左邊=12=1,右邊=1×2×36=1,等式成立.(4分)(2)假設(shè)當(dāng)n=k時(shí),等式成立,即12+22+32+…+k2=k(k+1)(2k+1)6(6分)那么,當(dāng)n=k+1時(shí),12+22+32+…+k2+(k+1)2=k(k+1)(2k+1)6+(k+1)2=k(k+1)(2k+1)+6(k+1)26=(k+1)(2k2+7k+6)6=(k+1)(k+2)(2k+3)6=(k+1)[(k+1)+1][2(k+1)+1]6這就是說,當(dāng)n=k+1時(shí)等式也成立.(10分)根據(jù)(1)和(2),可知等式對任何n∈N*都成立.(12分)5.以A(1,5)、B(5,1)、C(-9,-9)為頂點(diǎn)的三角形是()

A.等邊三角形

B.等腰三角形

C.不等邊三角形

D.直角三角形答案:B6.若平面α,β的法向量分別為(-1,2,4),(x,-1,-2),并且α⊥β,則x的值為()A.10B.-10C.12D.-12答案:∵α⊥β,∴平面α,β的法向量互相垂直∴(-1,2,4)?(x,-1,-2)=0即-1×x+(-1)×2+4×(-2)=0解得x=-10故選B.7.若E,F(xiàn),G,H分別為空間四邊形ABCD四邊AB,BC,CD,DA的中點(diǎn),證明:四邊形EFGH是平行四邊形.答案:證明:∵E,F(xiàn),G,H分別為空間四邊形ABCD四邊AB,BC,CD,DA的中點(diǎn),∴EF是△ABC的中位線,∴EF∥AC,且EF=12AC.同理可證,GH∥AC,且GH=12AC,故有

EF∥GH,且EF=GH,∴四邊形EFGH是平行四邊形.8.已知變量a,b已被賦值,要交換a、b的值,應(yīng)采用的算法是()

A.a(chǎn)=b,b=a

B.a(chǎn)=c,b=a,c=b

C.a(chǎn)=c,b=a,c=a

D.c=a,a=b,b=c答案:D9.如圖程序輸出的結(jié)果是()

A.3,4

B.4,4

C.3,3

D.4,3

答案:B10.如圖所示,已知PA切圓O于A,割線PBC交圓O于B、C,PD⊥AB于D,PD與AO的延長線相交于點(diǎn)E,連接CE并延長交圓O于點(diǎn)F,連接AF.

(1)求證:B,C,E,D四點(diǎn)共圓;

(2)當(dāng)AB=12,tan∠EAF=23時(shí),求圓O的半徑.答案:(1)由切割線定理PA2=PB?PC由已知易得Rt△PAD∽Rt△PEA,∴PA2=PD?PE,∴PA2=PB?PC=PA2=PD?PE,又∠BPD為公共角,∴△PBD∽△PEC,∴∠BDP=∠C∴B,C,E,D四點(diǎn)共圓

(2)作OG⊥AB于G,由(1)知∠PBD=∠PEC,∵∠PBD=∠F,∴∠F=∠PEC,∴PE∥AF.∵AB=12,∴AG=6.∵PD⊥AB,∴PD∥OG.∴PE∥OG∥AF,∴∠AOG=∠EAF.在Rt△AOG中,tan∠AOG=tan∠EAF=23=6OG,∴OG=9∴R=AO=AG2+OG2=313∴圓O的半徑313.11.設(shè)全集U={1,2,3,4,5},A∩C∪B={1,2},則集合C∪A∩B的所有子集個數(shù)最多為()A.3B.4C.7D.8答案:∵全集U={1,2,3,4,5},A∩C∪B={1,2},∴當(dāng)集合C∪A∩B的所有子集個數(shù)最多時(shí),集合B中最多有三個元素:3,4,5,且A∩B=?,作出文氏圖∴CUA∩B={3,4,5},∴集合C∪A∩B的所有子集個數(shù)為:23=8.故選D.12.設(shè)矩陣M=.32-121232.的逆矩陣是M-1=.abcd.,則a+c的值為______.答案:由題意,矩陣M的行列式為.32-121232.=32×32+12×12=1∴矩陣M=.32-121232.的逆矩陣是M-1=.3212-1232.∴a+c=3-12故為3-1213.已知實(shí)數(shù)x、y、z滿足x+2y+3z=1,則x2+y2+z2的最小值為______.答案:由柯西不等式可知:(x+2y+3z)2≤(x2+y2+z2+)(12+22+32)故x2+y2+z2≥114,當(dāng)且僅當(dāng)x1=y2=z3,即:x2+y2+z2的最小值為114.故為:11414.已知球的表面積等于16π,圓臺上、下底面圓周都在球面上,且下底面過球心,圓臺的軸截面的底角為π3,則圓臺的軸截面的面積是()A.9πB.332C.33D.6答案:設(shè)球的半徑為R,由題意4πR2=16,R=2,圓臺的軸截面的底角為π3,可得圓臺母線長為2,上底面半徑為1,圓臺的高為3,所以圓臺的軸截面的面積S=12(2+4)×3=33故選C15.已知鐳經(jīng)過100年,質(zhì)量便比原來減少4.24%,設(shè)質(zhì)量為1的鐳經(jīng)過x年后的剩留量為y,則y=f(x)的函數(shù)解析式為(x≥0)()A.0.0424x100B.0.9576x100C.0.0424100xD.0.9576100x答案:由題意可得,對于函數(shù),當(dāng)x=100時(shí),y=95.76%=0.9576,結(jié)合選項(xiàng)檢驗(yàn)選項(xiàng)A:x=100,y=0.0424,故排除A選項(xiàng)B:x=100,y=0.9576,故B正確故選:B解析:已知鐳經(jīng)過100年,質(zhì)量便比原來減少4.24%,設(shè)質(zhì)量為1的鐳經(jīng)過x年后的剩留量為y,則y=f(x)的函數(shù)解析式為(x≥0)()A.0.0424x100B.0.9576x100C.0.0424100x16.如圖,在扇形OAB中,∠AOB=60°,C為弧AB上且與A,B不重合的一個動點(diǎn),OC=xOA+yOB,若u=x+λy,(λ>0)存在最大值,則λ的取值范圍為()A.(12,1)B.(1,3)C.(12,2)D.(13,3)答案:設(shè)射線OB上存在為B',使OB′=1λOB,AB'交OC于C',由于OC=xOA+yOB=xOA+λy?1λOB=xOA+λy?OB′,設(shè)OC=tOC′,OC′=x′OA+λy′OB′,由A,B',C'三點(diǎn)共線可知x'+λy'=1,所以u=x+2y=tx'+t?2y'=t,則u=|OC||OC′|存在最大值,即在弧AB(不包括端點(diǎn))上存在與AB'平行的切線,所以λ∈(12,2).故選C.17.如果圓x2+y2+Gx+Ey+F=0與x軸相切于原點(diǎn),那么()A.F=0,G≠0,E≠0B.E=0,F(xiàn)=0,G≠0C.G=0,F(xiàn)=0,E≠0D.G=0,E=0,F(xiàn)≠0答案:圓與x軸相切于原點(diǎn),則圓心在y軸上,G=0,圓心的縱坐標(biāo)的絕對值等于半徑,F(xiàn)=0,E≠0.故選C.18.函數(shù)f(x)=ex(e為自然對數(shù)的底數(shù))對任意實(shí)數(shù)x、y,都有()

A.f(x+y)=f(x)f(y)

B.f(x+y)=f(x)+f(y)

C.f(xy)=f(x)f(y)

D.f(xy)=f(x)+f(y)答案:A19.如圖所示,已知P是平行四邊形ABCD所在平面外一點(diǎn),連結(jié)PA、PB、PC、PD,點(diǎn)E、F、G、H分別為△PAB、△PBC、△PCD、△PDA的重心,求證:E、F、G、H四點(diǎn)共面答案:證明:分別延長P、PF、PG、PH交對邊于M、N、Q、R.∵E、F、G、H分別是所在三角形的重心,∴M、N、Q、R為所在邊的中點(diǎn),順次連結(jié)MNQR所得四邊形為平行四邊形,且有∵M(jìn)NQR為平行四邊形,∴由共面向量定理得E、F、G、H四點(diǎn)共面.20.在我市新一輪農(nóng)村電網(wǎng)改造升級過程中,需要選一個電阻調(diào)試某村某設(shè)備的線路,但調(diào)試者手中必有阻值分別為0.5KΩ,1KΩ,1.3KΩ,2KΩ,3KΩ,5KΩ,5.5KΩ等七種阻值不等的定值電阻,他用分?jǐn)?shù)法進(jìn)行優(yōu)選試驗(yàn)時(shí),依次將電阻從小到大安排序號,如果第1個試點(diǎn)與第2個試點(diǎn)比較,第1個試點(diǎn)是一個好點(diǎn),則第3個試點(diǎn)值的阻值為[

]A、1KΩ

B、1.3KΩ

C、5KΩ

D、1KΩ或5KΩ答案:C21.已知圓臺的上下底面半徑分別是2cm、5cm,高為3cm,求圓臺的體積.答案:∵圓臺的上下底面半徑分別是2cm、5cm,高為3cm,∴圓臺的體積V=13×3×(4π+4π?25π+25π)=39πcm3.22.若隨機(jī)變量ξ~N(2,9),則隨機(jī)變量ξ的數(shù)學(xué)期望c=()

A.4

B.3

C.2

D.1答案:C23.將n2個正整數(shù)1,2,3,…,n2填入n×n方格中,使得每行、每列、每條對角線上的數(shù)的和相等,這個正方形就叫做n階幻方.記f(n)為n階幻方對角線的和,如右表就是一個3階幻方,可知f(3)=15,則f(4)=()

816357492A.32B.33C.34D.35答案:由等差數(shù)列得前n項(xiàng)和公式可得,所有數(shù)之和S=1+2+3+…+42=16?(1+16)2=136,所以,f(4)=1364=34,故選C.24.國旗上的正五角星的每一個頂角是多少度?答案:由圖可知:∠AFG=∠C+∠E=2∠C,∠AGF=∠B+∠D=2∠B,∴∠A+∠AFG+∠AGF=∠A+2∠C+2∠B=5∠A∴5∠A=180°,∴∠A=36°.25.設(shè)雙曲線的焦點(diǎn)在x軸上,兩條漸近線為y=±x,則雙曲線的離心率e=()

A.5

B.

C.

D.答案:C26.不等式的解集是(

A.

B.

C.

D.答案:D27.已知P(4,-9),Q(-2,3)且Y軸與線段PQ交于M,則Q分的比為()

A.-2

B.-

C.

D.3答案:B28.O、A、B、C為空間四個點(diǎn),又為空間的一個基底,則()

A.O、A、B、C四點(diǎn)共線

B.O、A、B、C四點(diǎn)共面,但不共線

C.O、A、B、C四點(diǎn)中任意三點(diǎn)不共線

D.O、A、B、C四點(diǎn)不共面答案:D29.下列幾何體各自的三視圖中,有且僅有兩個視圖相同的是()

A.①②B.①③C.①④D.②④答案:正方體的三視圖都相同,而三棱臺的三視圖各不相同,圓錐和正四棱錐的,正視圖和側(cè)視圖相同,所以,正確為D.故選D30.已知點(diǎn)M在z軸上,A(1,0,2),B(1,-3,1),且|MA|=|MB|,則點(diǎn)M的坐標(biāo)是

______.答案:∵點(diǎn)M在z軸上,∴設(shè)點(diǎn)M的坐標(biāo)為(0,0,z)又|MA|=|MB|,由空間兩點(diǎn)間的距離公式得:12+02+(z-2)2=12+32+(z-1)2解得:z=-3.故點(diǎn)M的坐標(biāo)是(0,0,-3).故為:(0,0,-3).31.已知向量OC=(2,2),CA=(2cosa,2sina),則向量.OA的模的最大值是()A.3B.32C.2D.18答案:∵OA=OC+CA=(2+2cosa,2+2sina)|OA|=(2+2cosa)2+(2+2sina)2=10+8sin(a+π4)∴|OA|≤18=32故選B.32.如圖所示,正四面體V—ABC的高VD的中點(diǎn)為O,VC的中點(diǎn)為M.

(1)求證:AO、BO、CO兩兩垂直;

(2)求〈,〉.答案:(1)證明略(2)45°解析:(1)

設(shè)=a,=b,=c,正四面體的棱長為1,則=(a+b+c),=(b+c-5a),=(a+c-5b),=(a+b-5c)∴·=(b+c-5a)·(a+c-5b)=(18a·b-9|a|2)=(18×1×1·cos60°-9)=0.∴⊥,∴AO⊥BO,同理⊥,BO⊥CO,∴AO、BO、CO兩兩垂直.(2)

=+=-(a+b+c)+=(-2a-2b+c).∴||==,||==,·=(-2a-2b+c)·(b+c-5a)=,∴cos〈,〉==,∵〈,〉∈(0,),∴〈,〉=45°.33.如圖,曲線C1、C2、C3分別是函數(shù)y=ax、y=bx、y=cx的圖象,則()

A.a(chǎn)<b<c

B.a(chǎn)<c<B

C.c<b<a

D.b<c<a

答案:C34.若函數(shù)f(x)=x+1的值域?yàn)椋?,3],則函數(shù)f(x)的定義域?yàn)開_____.答案:∵f(x)=x+1的值域?yàn)椋?,3],∴2<x+1≤3∴1<x≤2故為:(1,2]35.如圖,正六邊形ABCDEF中,=()

A.

B.

C.

D.

答案:D36.設(shè)a,b,c為正數(shù),利用排序不等式證明a3+b3+c3≥3abc.答案:證明:不妨設(shè)a≥b≥c>0,∴a2≥b2≥c2,由排序原理:順序和≥反序和,得:a3+b3≥a2b+b2a,b3+c3≥b2c+c2b,c3+a3≥a2c+c2a三式相加得2(a3+b3+c3)≥a(b2+c2)+b(c2+a2)+c(a2+b2).又a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca.所以2(a3+b3+c3)≥6abc,∴a3+b3+c3≥3abc.當(dāng)且僅當(dāng)a=b=c時(shí),等號成立.37.向量化簡后等于()

A.

B.

C.

D.答案:C38.已知f(x)=,求不等式x+(x+2)·f(x+2)≤5的解集。答案:解:原不等式等價(jià)于或解得或即故不等式的解集為。39.已知ABCD是平行四邊形,P點(diǎn)是ABCD所在平面外的一點(diǎn),連接PA、PB、PC、PD.設(shè)點(diǎn)E、F、G、H分別為△PAB、△PBC、△PCD、△PDA的重心.

(1)試用向量方法證明E、F、G、H四點(diǎn)共面;

(2)試判斷平面EFGH與平面ABCD的位置關(guān)系,并用向量方法證明你的判斷.答案:(1)證明略(2)平面EFGH∥平面ABCD解析:(1)

分別延長PE、PF、PG、PH交對邊于M、N、Q、R點(diǎn),因?yàn)镋、F、G、H分別是所在三角形的重心,所以M、N、Q、R為所在邊的中點(diǎn),順次連接M、N、Q、R得到的四邊形為平行四邊形,且有=,=,=,

=∴=+=(-)+(-)=(-)+(-)=(+)又∵=-=-=∴=(+),∴=+由共面向量定理知:E、F、G、H四點(diǎn)共面.(2)

由(1)得=,故∥.又∵平面ABC,EG平面ABC.∴EG∥平面ABC.又∵=-=-=∴MN∥EF,又∵M(jìn)N平面ABC,EF平面ABC,EF∥平面ABC.∵EG與EF交于E點(diǎn),∴平面EFGH∥平面ABCD.40.某商場舉行購物抽獎促銷活動,規(guī)定每位顧客從裝有編號為0,1,2,3四個相同小球的抽獎箱中,每次取出一球記下編號后放回,連續(xù)取兩次,若取出的兩個小球號碼相加之和等于6則中一等獎,等于5中二等獎,等于4或3中三等獎.

(1)求中三等獎的概率;

(2)求中獎的概率.答案:(1)設(shè)“中三等獎”為事件A,“中獎”為事件B,從四個小球中有放回的取兩個共有(0,0),(0,1),(0,2),(0,3),(1,0),(1,1)(1,2),(1,3),(2,0),(2,1),(2,2),(2,3),(3,0),(3,1),(3,2),(3,3)16種不同的結(jié)果兩個小球號碼相加之和等于4的取法有3種:(1,3),(2,2),(3,1)兩個小球號相加之和等于3的取法有4種:(0,3),(1,2),(2,1),(3,0)由互斥事件的加法公式得:P(A)=316+416=716,即中三等獎的概率為716;(2)兩個小球號碼相加之和等于3的取法有4種;(0,3),(1,2),(2,1),(3,0)兩個小球相加之和等于4的取法有3種;(1,3),(2,2),(3,1)兩個小球號碼相加之和等于5的取法有2種:(2,3),(3,2)兩個小球號碼相加之和等于6的取法有1種:(3,3)由互斥事件的加法公式得:P(B)=116+216+316+416=58.即中獎的概率為:58.41.已知隨機(jī)變量X的分布列為:P(X=k)=,k=1,2,…,則P(2<X≤4)等于()

A.

B.

C.

D.答案:A42.若圓x2+y2=9上每個點(diǎn)的橫坐標(biāo)不變,縱坐標(biāo)縮短為原來的,則所得到的曲線的方程是()

A.

B.

C.

D.答案:C43.關(guān)于x的方程ax+b=0,當(dāng)a,b滿足條件______

時(shí),方程的解集是有限集;滿足條件______

時(shí),方程的解集是無限集;滿足條件______

時(shí),方程的解集是空集.答案:關(guān)于x的方程ax+b=0,有一個解時(shí),為有限集,所以a,b滿足條件是:a≠0,b∈R;滿足條件a=0,b=0時(shí),方程有無數(shù)組解,方程的解集是無限集;滿足條件

a=0,b≠0

時(shí),方程無解,方程的解集是空集.故為:a≠0,b∈R;a=0,b=0;

a=0,b≠0.44.運(yùn)用三段論推理:

復(fù)數(shù)不可以比較大小,(大前提)

2010和2011都是復(fù)數(shù),(小前提)

2010和2011不可以比較大?。ńY(jié)

論)

該推理是錯誤的,產(chǎn)生錯誤的原因是______錯誤.(填“大前提”或“小前提”)答案:根據(jù)三段論推理,是由兩個前提和一個結(jié)論組成,大前提:復(fù)數(shù)不可以比較大小,是錯誤的,該推理是錯誤的,產(chǎn)生錯誤的原因是大前提錯誤.故為:大前提45.求圓心在直線y=-4x上,并且與直線l:x+y-1=0相切于點(diǎn)P(3,-2)的圓的方程.答案:設(shè)圓的方程為(x-a)2+(y-b)2=r2(r>0)由題意有:b=-4a|a+b+1|2=rb+2a-3?(-1)=-1解之得a=1b=-4r=22∴所求圓的方程為(x-1)2+(y+4)2=846.已知集合A={x|x>1},則(CRA)∩N的子集有()A.1個B.2個C.4個D.8個答案:∵集合A={x|x>1},∴CRA={x|x≤1},∴(CRA)∩N={0,1},∴(CRA)∩N的子集有22=4個,故選C.47.已知橢圓C:x2a2+y2b2=1(a>b>0)的離心率為32,過右焦點(diǎn)F且斜率為k(k>0)的直線與C相交于A、B兩點(diǎn),若AF=3FB,則k=______.答案:設(shè)l為橢圓的右準(zhǔn)線,過A、B作AA1,BB1垂直于l,A1,B1為垂足,過B作BE⊥AA1于E,則|AA1|=|AF|e,|BB1|=|BF|e,由AF=3FB知,|AA1|=3|BF|e,∴cos<BAE=|AE||AB|=2|BF|e4|BF|=12e=33,∴sin∠BAE=63,∴tan∠BAE=2.∴k=2.故:2.48.在空間四邊形OABC中,OA+AB-CB等于()A.OAB.ABC.OCD.AC答案:根據(jù)向量的加法、減法法則,得OA+AB-CB=OB-CB=OB+BC=OC.故選C.49.已知a,b,c是空間的一個基底,且實(shí)數(shù)x,y,z使xa+yb+zc=0,則x2+y2+z2=______.答案:∵a,b,c是空間的一個基底∴a,b,c兩兩不共線∵xa+yb+zc=0∴x=y=z=0∴x2+y2+z2=0故為:050.“sinx=siny”是“x=y”的()A.充要條件B.充分不必要條件C.必要不充分條件D.既不充分也不必要條件答案:∵“sinx=siny”不能推出“x=y”,例如sin30°=sin390°,但30°≠390°,即充分性不成立;反過來,若“x=y”,一定有“sinx=siny”,即必要性成立;∴“sinx=siny”是“x=y”的必要不充分條件.故選C.第2卷一.綜合題(共50題)1.國旗上的正五角星的每一個頂角是多少度?答案:由圖可知:∠AFG=∠C+∠E=2∠C,∠AGF=∠B+∠D=2∠B,∴∠A+∠AFG+∠AGF=∠A+2∠C+2∠B=5∠A∴5∠A=180°,∴∠A=36°.2.下列在曲線上的點(diǎn)是()

A.

B.

C.

D.答案:D3.對任意實(shí)數(shù)x,y,定義運(yùn)算x*y=ax+by+cxy,其中a,b,c是常數(shù),等式右邊的運(yùn)算是通常的加法和乘法運(yùn)算。已知1*2=3,2*3=4,并且有一個非零常數(shù)m,使得對任意實(shí)數(shù)x,都有x*m=x,則m的值是(

)。答案:44.從甲、乙兩人手工制作的圓形產(chǎn)品中,各自隨機(jī)抽取6件,測得其直徑如下(單位:cm):

甲:9.00,9.20,9.00,8.50,9.10,9.20

乙:8.90,9.60,9.50,8.54,8.60,8.90

據(jù)以上數(shù)據(jù)估計(jì)兩人的技術(shù)穩(wěn)定性,結(jié)論是()

A.甲優(yōu)于乙

B.乙優(yōu)于甲

C.兩人沒區(qū)別

D.無法判斷答案:A5.已知A(4,1,3),B(2,-5,1),C是線段AB上一點(diǎn),且,則C點(diǎn)的坐標(biāo)為()

A.

B.

C.

D.答案:C6.如圖的矩形,長為5,寬為2,在矩形內(nèi)隨機(jī)地撒300顆黃豆,數(shù)得落在陰影部分的黃豆數(shù)為138顆,則我們可以估計(jì)出陰影部分的面積為

______.答案:根據(jù)題意:黃豆落在陰影部分的概率是138300矩形的面積為10,設(shè)陰影部分的面積為s則有s10=138300∴s=235故為:2357.一個箱子中裝有質(zhì)量均勻的10個白球和9個黑球,一次摸出5個球,在已知它們的顏色相同的情況下,該顏色是白色的概率是______.答案:10個白球中取5個白球有C105種9個黑球中取5個黑球有C95種∴一次摸出5個球,它們的顏色相同的有C105+C95種∴一次摸出5個球,在已知它們的顏色相同的情況下,該顏色是白色的概率=C510C510+C59=23故為:238.設(shè)有三個命題:“①0<12<1.②函數(shù)f(x)=log

12x是減函數(shù).③當(dāng)0<a<1時(shí),函數(shù)f(x)=logax是減函數(shù)”.當(dāng)它們構(gòu)成三段論時(shí),其“小前提”是______(填序號).答案:三段話寫成三段論是:大前提:當(dāng)0<a<1時(shí),函數(shù)f(x)=logax是減函數(shù),小前提:0<12<1,結(jié)論:函數(shù)f(x)=log

12x是減函數(shù).其“小前提”是①.故為:①.9.設(shè)集合A={0,1,3},B={1,3,4},則A∩B=______.答案:∵集合A={0,1,3},B={1,3,4},A∩B={1,3}.故為:{1,3}.10.若復(fù)數(shù)z=a+bi(a、b∈R)是虛數(shù),則a、b應(yīng)滿足的條件是()A.a(chǎn)=0,b≠0B.a(chǎn)≠0,b≠0C.a(chǎn)≠0,b∈RD.b≠0,a∈R答案:∵復(fù)數(shù)z=a+bi(a、b∈R)是虛數(shù),∴根據(jù)虛數(shù)的定義得b≠0,a∈R,故選D.11.已知平面向量a=(0,1),b=(x,y),若a⊥b,則實(shí)數(shù)y=______.答案:由題意平面向量a=(0,1),b=(x,y),由a⊥b,∴a?b=0∴y=0故為012.已知圓C:x2+y2=12,直線l:4x+3y=25.

(1)圓C的圓心到直線l的距離為______;

(2)圓C上任意一點(diǎn)A到直線l的距離小于2的概率為______.答案:(1)由題意知圓x2+y2=12的圓心是(0,0),圓心到直線的距離是d=2532+42=5,(2)由題意知本題是一個幾何概型,試驗(yàn)發(fā)生包含的事件是從這個圓上隨機(jī)的取一個點(diǎn),對應(yīng)的圓上整個圓周的弧長,滿足條件的事件是到直線l的距離小于2,過圓心做一條直線交直線l與一點(diǎn),根據(jù)上一問可知圓心到直線的距離是5,在這條垂直于直線l的半徑上找到圓心的距離為3的點(diǎn)做半徑的垂線,根據(jù)弦心距,半徑,弦長之間組成的直角三角形得到符合條件的弧長對應(yīng)的圓心角是60°根據(jù)幾何概型的概率公式得到P=60°360°=16故為:5;1613.設(shè)x1、x2、y1、y2是實(shí)數(shù),且滿足x12+x22≤1,

證明不等式(x1y1+x2y2-1)2≥(x12+x22-1)(y12+y22-1).答案:證明略解析:分析:要證原不等式成立,也就是證(x1y1+x2y2-1)2-(x12+x22-1)(y12+y22-1)≥0.(1)當(dāng)x12+x22=1時(shí),原不等式成立.……………3分(2)當(dāng)x12+x22<1時(shí),聯(lián)想根的判別式,可構(gòu)造函數(shù)f(x)=(x12+x22-1)x-2(x1y1+x2y2-1)x+(y12+y22-1)…7分其根的判別式Δ=4(x1y1+x2y2-1)2-4(x12+x22-1)(y12+y22-1).………9分由題意x12+x22<1,函數(shù)f(x)的圖象開口向下.又∵f(1)=x12+x22-2x1y1-2x2y2+y12+y22=(x1-y1)2+(x2-y2)2≥0,………11分因此拋物線與x軸必有公共點(diǎn).∴Δ≥0.∴4(x1y1+x2y2-1)2-4(x12+x22-1)(y12+y22-1)≥0,…………13分即(x1y1+x2y2-1)2≥(x12+x22-1)(y12+y22-1).……………14分14.直線kx-y+1=3k,當(dāng)k變動時(shí),所有直線都通過定點(diǎn)()

A.(0,0)

B.(0,1)

C.(3,1)

D.(2,1)答案:C15.過點(diǎn)P(4,-1)且與直線3x-4y+6=0垂直的直線方程是(

A.4x+3y-13=0

B.4x-3y-19=0

C.3x-4y-16=0

D.3x+4y-8=0答案:A16.集合A={1,2}的子集有幾個()A.2B.4C.3D.1答案:集合A={1,2}的子集有:?,{2},{1},{2,1}共4個.故選B.17.a、b、c∈R,則下列命題為真命題的是______.

①若a>b,則ac2>bc2

②若ac2>bc2,則a>b

③若a<b<0,則a2>ab>b2

④若a<b<0,則1a<1b.答案:當(dāng)c=0時(shí),ac2=bc2,故①不成立;若ac2>bc2,則c2≠0,即c2>0,則a>b,故②成立;若a<b<0,則a2>ab且ab>b2,故a2>ab>b2,故③成立;若a<b<0,則ab>0,故aab<bab,即1a>1b,故④不成立故②③為真命題故為:②③18.已知拋物線y2=4x的焦點(diǎn)為F,準(zhǔn)線與x軸的交點(diǎn)為M,N為拋物線上的一點(diǎn),且|NF|=32|MN|,則∠NMF=()A.π6B.π4C.π3D.5π12答案:設(shè)N到準(zhǔn)線的距離等于d,由拋物線的定義可得d=|NF|,

由題意得cos∠NMF=d|MN|=|NF||MN|=32,∴∠NMF=π6,故選A.19.行駛中的汽車,在剎車時(shí)由于慣性作用,要繼續(xù)往前滑行一段距離才能停下,這段距離叫做剎車距離.在某種路面上,某種型號汽車的剎車距離s(m)與汽車的車速v(km/h)滿足下列關(guān)系:s=(n為常數(shù),且n∈N),做了兩次剎車試驗(yàn),有關(guān)試驗(yàn)數(shù)據(jù)如圖所示,其中,

(1)求n的值;

(2)要使剎車距離不超過12.6m,則行駛的最大速度是多少?答案:解:(1)依題意得,解得,又n∈N,所以n=6;(2)s=,因?yàn)関≥0,所以0≤v≤60,即行駛的最大速度為60km/h。20.經(jīng)過點(diǎn)P(4,-2)的拋物線的標(biāo)準(zhǔn)方程為()

A.y2=-8x

B.x2=-8y

C.y2=x或x2=-8y

D.y2=x或y2=8x答案:C21.圖為一個幾何體的三視國科,尺寸如圖所示,則該幾何體的體積為()A.23+π6B.23+4πC.33+π6D.33+4π3答案:由圖中數(shù)據(jù),下部的正三棱柱的高是3,底面是一個正三角形,其邊長為2,高為3,故其體積為3×12×2×3=33上部的球體直徑為1,故其半徑為12,其體積為4π3×(12)3=π6故組合體的體積是33+π6故選C22.甲、乙兩人對一批圓形零件毛坯進(jìn)行成品加工.根據(jù)需求,成品的直徑標(biāo)準(zhǔn)為100mm.現(xiàn)從他們兩人的產(chǎn)品中各隨機(jī)抽取5件,測得直徑(單位:mm)如下:

甲:105

102

97

96

100

乙:100

101

102

97

100

(I)分別求甲、乙的樣本平均數(shù)與方差,并由此估計(jì)誰加工的零件較好?

(Ⅱ)若從乙樣本的5件產(chǎn)品中再次隨機(jī)抽取2件,試求這2件產(chǎn)品中至少有一件產(chǎn)品直徑為100mm的概率.答案:(Ⅰ).x甲=15(105+102+97+96+100)=100,.x乙=15(100+101+102+97+100)=100S甲=15(25+4+3+16+0)=545=10.8,S乙=15(0+1+4+9+0)=145=2.8.∵S甲>S乙,據(jù)此估計(jì)乙加工的零件好;(Ⅱ)從乙樣本的5件產(chǎn)品中再次隨機(jī)抽取2件的全部結(jié)果有如下10種:(100,101),(100,102),(100,97),(100,100),(101,102),(101,97),(101,100),(102,97),(102,100),(97,100).設(shè)事件A為“其中至少有一件產(chǎn)品直徑為100”,則時(shí)間A有7種.故P(A)=710.23.“a=18”是“對任意的正數(shù)x,2x+ax≥1的”()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案:當(dāng)“a=18”時(shí),由基本不等式可得:“對任意的正數(shù)x,2x+ax≥1”一定成立,即“a=18”?“對任意的正數(shù)x,2x+ax≥1”為真命題;而“對任意的正數(shù)x,2x+ax≥1的”時(shí),可得“a≥18”即“對任意的正數(shù)x,2x+ax≥1”?“a=18”為假命題;故“a=18”是“對任意的正數(shù)x,2x+ax≥1的”充分不必要條件故選A24.設(shè)=(-2,2,5),=(6,-4,4)分別是平面α,β的法向量,則平面α,β的位置關(guān)系是()

A.平行

B.垂直

C.相交但不垂直

D.不能確定答案:B25.如圖,有兩條相交成π3角的直線EF,MN,交點(diǎn)是O.一開始,甲在OE上距O點(diǎn)2km的A處;乙在OM距O點(diǎn)1km的B處.現(xiàn)在他們同時(shí)以2km/h的速度行走.甲沿EF的方向,乙沿NM的方向.設(shè)與OE同向的單位向量為e1,與OM同向的單位向量為e2.

(1)求e1,e2;

(2)若過2小時(shí)后,甲到達(dá)C點(diǎn),乙到達(dá)D點(diǎn),請用e1,e2表示CD;

(3)若過t小時(shí)后,甲到達(dá)G點(diǎn),乙到達(dá)H點(diǎn),請用e1,e2表示GH;

(4)什么時(shí)間兩人間距最短?答案:(1)由題意可得e1=12OA,e2=OB,(2)若過2小時(shí)后,甲到達(dá)C點(diǎn),乙到達(dá)D點(diǎn),則OC=-2e1,OD=5e2,故CD=OD-OC=2e1+5e2,(3)同(2)可得:經(jīng)過t小時(shí)后,甲到達(dá)G點(diǎn),乙到達(dá)H點(diǎn),則OG=(-2t+2)e1,OH=(2t+1)e2,故GH=OH-OG=(2t-2)e1+(2t+1)e2,(4)由(3)可得GH=(2t-2)e1+(2t+1)e2,故兩人間距離y=|GH|=[(2t-2)e1+(2t+1)e2]2=(2t-2)2+(2t+1)2+2(2t-2)(2t+1)×12=12t2-6t+3,由二次函數(shù)的知識可知,當(dāng)t=--62×12=14時(shí),上式取到最小值32,故14時(shí)兩人間距離最短.26.已知l1、l2是過點(diǎn)P(-2,0)的兩條互相垂直的直線,且l1、l2與雙曲線y2-x2=1各有兩個交點(diǎn),分別為A1、B1和A2、B2.

(1)求l1的斜率k1的取值范圍;

(2)若|A1B1|=5|A2B2|,求l1、l2的方程.答案:(1)顯然l1、l2斜率都存在,否則l1、l2與曲線不相交.設(shè)l1的斜率為k1,則l1的方程為y=k1(x+2).聯(lián)立得y=k1(x+2),y2-x2=1,消去y得(k12-1)x2+22k12x+2k12-1=0.①根據(jù)題意得k12-1≠0,②△1>0,即有12k12-4>0.③完全類似地有1k21-1≠0,④△2>0,即有12?1k21-4>0,⑤從而k1∈(-3,-33)∪(33,3)且k1≠±1.(2)由弦長公式得|A1B1|=1+k2112k21-4(k21-1)2.⑥完全類似地有|A2B2|=1+1k2112-4k21(k21-1)2.⑦∵|A1B1|=5|A2B2|,∴k1=±2,k2=.+22.從而l1:y=2(x+2),l2:y=-22(x+2)或l1:y=-2(x+2),l2:y=22(x+2).27.計(jì)算:x10÷x5=______.答案:根據(jù)有理數(shù)指數(shù)冪的運(yùn)算性質(zhì):x10÷x5=x5故為:x528.已知A(1,2),B(-3,b)兩點(diǎn)的距離等于42,則b=______.答案:∵A(1,2),B(-3,b)∴|AB|=(-3-1)2+(b-2)2=42,解之得b=6或-2故為:6或-229.在平面直角坐標(biāo)系xOy中,設(shè)P(x,y)是橢圓上的一個動點(diǎn),則S=x+y的最大值是()

A.1

B.2

C.3

D.4答案:B30.若點(diǎn)(2,-2)在圓(x-a)2+(y-a)2=16的內(nèi)部,則實(shí)數(shù)a的取值范圍是()

A.-2<a<2

B.0<a<2

C.a(chǎn)<-2或a>2

D.a(chǎn)=±2答案:A31.設(shè)橢圓的左焦點(diǎn)為F,AB為橢圓中過點(diǎn)F的弦,試分析以AB為直徑的圓與橢圓的左準(zhǔn)線的位置關(guān)系.答案:設(shè)M為弦AB的中點(diǎn)(即以AB為直徑的圓的圓心),A1、B1、M1分別是A、B、M在準(zhǔn)線l上的射影(如圖).由圓錐曲線的共同性質(zhì)得|AB|=|AF|+|BF|=e(|AA1|+|BB1|)=2e|MM1|.∵0<e<1,∴|AB|<2|MM1|,即|AB|2<|MM1|.∴以AB為直徑的圓與左準(zhǔn)線相離.32.根據(jù)《中華人民共和國道路交通安全法》規(guī)定:車輛駕駛員血液酒精濃度在20~80mg/100mL(不含80)之間,屬于酒后駕車;血液酒精濃度在80mg/100mL(含80)以上時(shí),屬醉酒駕車.據(jù)有關(guān)報(bào)道,2009年8月15日至8

月28日,某地區(qū)查處酒后駕車和醉酒駕車共500人,如圖是對這500人血液中酒精含量進(jìn)行檢測所得結(jié)果的頻率分布直方圖,則屬于醉酒駕車的人數(shù)約為()A.25B.50C.75D.100答案:∵血液酒精濃度在80mg/100ml(含80)以上時(shí),屬醉酒駕車,通過頻率分步直方圖知道屬于醉駕的頻率是(0.005+0.01)×10=0.15,∵樣本容量是500,∴醉駕的人數(shù)有500×0.15=75故選C.33.已知橢圓C的左右焦點(diǎn)坐標(biāo)分別是(-2,0),(2,0),離心率22,直線y=x-1與橢圓C交于不同的兩點(diǎn)A,B.

(1)求橢圓C的方程;

(2)求弦AB的長度.答案:(本小題滿分13分)(1)依題意可設(shè)橢圓C的方程為x2a2+y2b2=1(a>b>0)…(1分)則c=2e=ca=22,解得a=22c=2…(3分)∴b2=a2-c2=8-4=4…(5分)∴橢圓C的方程為x28+y24=1…(6分)(2)設(shè)A(x1,y1),B(x2,y2)…(7分)聯(lián)立方程x28+y24=1y=x-1,消去y,并整理得:3x2-4x-6=0…(9分)∴x1+x2=43x1?x2=-2…(10分)∴|AB|=1+12|x2-x1|=2[(x1+x2)2-4x1x2]

=2[(43)2-4×(-2)]=4113…(12分)∴|AB|=4113…(13分)34.已知O是正方形ABCD對角線的交點(diǎn),在以O(shè),A,B,C,D這5點(diǎn)中任意一點(diǎn)為起點(diǎn),另一點(diǎn)為終點(diǎn)的所有向量中,

(1)與BC相等的向量有

______;

(2)與OB長度相等的向量有

______;

(3)與DA共線的向量有

______.答案:如圖:(1)與BC相等的向量有AD.(2)與OB長度相等的向量有OA、OC、OD、AO、CO、DO.(3)與DA共線的向量有

CB、BC.35.若命題p:2是偶數(shù);命題q:2是5的約數(shù),則下列命題中為真命題的是()A.p∧qB.(¬p)∧(¬q)C.¬pD.p∨q答案:∵2是偶數(shù),∴命題p為真命題∵2不是5的約數(shù),∴命題q為假命題∴p或q為真命題故選D36.如圖,在⊙O中,AB是弦,AC是⊙O的切線,A是切點(diǎn),過

B作BD⊥AC于D,BD交⊙O于E點(diǎn),若AE平分

∠BAD,則∠BAD=()

A.30°

B.45°

C.50°

D.60°

答案:D37.圓x2+y2=1在矩陣A={}對應(yīng)的變換下,得到的曲線的方程是()

A.=1

B.=1

C.=1

D.=1答案:C38.命題“若ab=0,則a、b中至少有一個為零”的逆否命題是

______.答案:∵ab=0的否命題是ab≠0,a、b中至少有一個為零的否命題是a≠0,且b≠0,∴命題“若ab=0,則a、b中至少有一個為零”的逆否命題是“若a≠0,且b≠0,則ab≠0.”故:若a≠0,且b≠0,則ab≠0.39.如果雙曲線的半實(shí)軸長為2,焦距為6,那么該雙曲線的離心率是()

A.

B.

C.

D.2答案:C40.函數(shù)f(x)為偶函數(shù),其圖象與x軸有四個交點(diǎn),則該函數(shù)的所有零點(diǎn)之和為()A.4B.2C.1D.0答案:因?yàn)楹瘮?shù)f(x)為偶函數(shù),所以函數(shù)圖象關(guān)于y軸對稱.又其圖象與x軸有四個交點(diǎn),所以四個交點(diǎn)關(guān)于y軸對稱,不妨設(shè)四個交點(diǎn)的橫坐標(biāo)為x1,x2,x3,x4,則根據(jù)對稱性可知x1+x2+x3+x4=0.故選D.41.下列給出的輸入語句、輸出語句和賦值語句

(1)輸出語句INPUT

a;b;c

(2)輸入語句INPUT

x=3

(3)賦值語句3=B

(4)賦值語句A=B=2

則其中正確的個數(shù)是()

A.0個

B.1個

C.2個

D.3個答案:A42.

已知向量

=(4,3),=(1,2),若向量

+k

-

垂直,則k的值為(

)A.

233B.7C.-

115D.-

233答案:考點(diǎn):數(shù)量積判斷兩個平面向量的垂直關(guān)系.43.直線l與拋物線y2=2x相交于A、B兩點(diǎn),O為拋物線的頂點(diǎn),若OA⊥OB.證明:直線l過定點(diǎn).答案:證明:設(shè)點(diǎn)A,B的坐標(biāo)分別為(x1,y1),(x2,y2)(I)當(dāng)直線l有存在斜率時(shí),設(shè)直線方程為y=kx+b,顯然k≠0且b≠0.(2分)聯(lián)立方程得:y=kx+by2=2x消去y得k2x2+(2kb-2)x+b2=0由題意:x1x2=b2k2,&

y1y2=(kx1+b)(kx2+b)=2bk(5分)又由OA⊥OB得x1x2+y1y2=0,(7分)即b2k2+2bk=0,解得b=0(舍去)或b=-2k(9分)故直線l的方程為:y=kx-2k=k(x-2),故直線過定點(diǎn)(2,0)(11分)(II)當(dāng)直線l不存在斜率時(shí),設(shè)它的方程為x=m,顯然m>0聯(lián)立方程得:x=my2=2x解得y=±2m,即y1y2=-2m又由OA⊥OB得x1x2+y1y2=0,即m2-2m=0,解得m=0(舍去)或m=2可知直線l方程為:x=2,故直線過定點(diǎn)(2,0)綜合(1)(2)可知,滿足條件的直線過定點(diǎn)(2,0).44.若向量且與的夾角余弦為則λ等于()

A.4

B.-4

C.

D.答案:C45.有一段“三段論”推理是這樣的:對于可導(dǎo)函數(shù)f(x),如果f'(x0)=0,那么x=x0是函數(shù)f(x)的極值點(diǎn),因?yàn)楹瘮?shù)f(x)=x3在x=0處的導(dǎo)數(shù)值f'(0)=0,所以,x=0是函數(shù)f(x)=x3的極值點(diǎn).以上推理中()

A.大前提錯誤

B.小前提錯誤

C.推理形式錯誤

D.結(jié)論正確答案:A46.(理)在極坐標(biāo)系中,半徑為1,且圓心在(1,0)的圓的方程為()

A.ρ=sinθ

B.ρ=cosθ

C.ρ=2sinθ

D.ρ=2cosθ答案:D47.設(shè)全集U={1,2,3,4,5},A∩C∪B={1,2},則集合C∪A∩B的所有子集個數(shù)最多為()A.3B.4C.7D.8答案:∵全集U={1,2,3,4,5},A∩C∪B={1,2},∴當(dāng)集合C∪A∩B的所有子集個數(shù)最多時(shí),集合B中最多有三個元素:3,4,5,且A∩B=?,作出文氏圖∴CUA∩B={3,4,5},∴集合C∪A∩B的所有子集個數(shù)為:23=8.故選D.48.已知橢圓C的中心在原點(diǎn),焦點(diǎn)F1,F(xiàn)2在軸上,離心率e=22,且經(jīng)過點(diǎn)M(0,2),求橢圓c的方程答案:若焦點(diǎn)在x軸很明顯,過點(diǎn)M(0,2)點(diǎn)M即橢圓的上端點(diǎn),所以b=2ca=22c2=12a2∵a2=b2+c2所以b2=c2=2a2=4橢圓:x24+y22=1若焦點(diǎn)在y軸,則a=2,ca=22,c=1∴b=1橢圓方程:x22+y2=1.49.各項(xiàng)都為正數(shù)的數(shù)列{an},滿足a1=1,an+12-an2=2.

(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;

(Ⅱ)證明1a1+1a2+…+1an≤2n-1對一切n∈N+恒成立.答案:(Ⅰ)∵an+12-an2=2,∴an2為首項(xiàng)為1,公差為2的等差數(shù)列,∴an2=1+(n-1)×2=2n-1,又an>0,則an=2n-1(Ⅱ)只需證:1+13+…+12n-1≤

2n-1.1當(dāng)n=1時(shí),左邊=1,右邊=1,所以命題成立.當(dāng)n=2時(shí),左邊<右邊,所以命題成立②假設(shè)n=k時(shí)命題成立,即1+13+…+12k-1≤2k-1,當(dāng)n=k+1時(shí),左邊=1+13+…+12K-1+12K+1≤2K-1+12K+1.<2K-1+22K+1+2K-1=2K-1+2(2K+1-2K-1)

2=2(K+1)-1.命題成立由①②可知,1a1+1a2+…+1an≤2n-1對一切n∈N+恒成立.50.已知拋物線y=14x2,則過其焦點(diǎn)垂直于其對稱軸的直線方程為______.答案:拋物線y=14x2的標(biāo)準(zhǔn)方程為x2=4y的焦點(diǎn)F(0,1),對稱軸為y軸所以拋物線y=14x2,則過其焦點(diǎn)垂直于其對稱軸的直線方程為y=1故為y=1.第3卷一.綜合題(共50題)1.某公司為慶祝元旦舉辦了一個抽獎活動,現(xiàn)場準(zhǔn)備的抽獎箱里放置了分別標(biāo)有數(shù)字1000、800﹑600、0的四個球(球的大小相同).參與者隨機(jī)從抽獎箱里摸取一球(取后即放回),公司即贈送與此球上所標(biāo)數(shù)字等額的獎金(元),并規(guī)定摸到標(biāo)有數(shù)字0的球時(shí)可以再摸一次﹐但是所得獎金減半(若再摸到標(biāo)有數(shù)字0的球就沒有第三次摸球機(jī)會),求一個參與抽獎活動的人可得獎金的期望值是多少元.答案:設(shè)ξ表示摸球后所得的獎金數(shù),由于參與者摸取的球上標(biāo)有數(shù)字1000,800,600,0,當(dāng)摸到球上標(biāo)有數(shù)字0時(shí),可以再摸一次,但獎金數(shù)減半,即分別為500,400,300,0.則ξ的所有可能取值為1000,800,600,500,400,300,0.依題意得P(ξ=1000)=P(ξ=800)=P(ξ=600)=14,P(ξ=500)=P(ξ=400)=P(ξ=300)=P(ξ=0)=116,則ξ的分布列為∴所求期望值為Eξ=14(1000+800+600)+116(500+400+300+0)=675元.2.若兩圓x2+y2=m和x2+y2+6x-8y-11=0有公共點(diǎn),則實(shí)數(shù)m的取值范圍是(

A.(-∞,1)

B.(121,+∞)

C.[1,121]

D.(1,121)答案:C3.圓心在x軸上,且過兩點(diǎn)A(1,4),B(3,2)的圓的方程為______.答案:設(shè)圓心坐標(biāo)為(m,0),半徑為r,則圓的方程為(x-m)2+y2=r2,∵圓經(jīng)過兩點(diǎn)A(1,4)、B(3,2)∴(1-m)2+42=r2(3-m)2+22=r2解得:m=-1,r2=20∴圓的方程為(x+1)2+y2=20故為:(x+1)2+y2=204.三棱錐P-ABC中,M為BC的中點(diǎn),以為基底,則可表示為()

A.

B.

C.

D.答案:D5.在平行四邊形ABCD中,等于()

A.

B.

C.

D.答案:C6.若向量n與直線l垂直,則稱向量n為直線l的法向量.直線x+2y+3=0的一個法向量為()

A.(2,-1)

B.(1,-2)

C.(2,1)

D.(1,2)答案:D7.已知x+5y+3z=1,則x2+y2+z2的最小值為______.答案:證明:35(x2+y2+z2)×(1+25+9)≥(x+5y+3z)2=1∴x2+y2+z2≥135,則x2+y2+z2的最小值為135,故為:135.8.某次我市高三教學(xué)質(zhì)量檢測中,甲、乙、丙三科考試成績的直方圖如如圖所示(由于人數(shù)眾多,成績分布的直方圖可視為正態(tài)分布),則由如圖曲線可得下列說法中正確的一項(xiàng)是()

A.甲科總體的標(biāo)準(zhǔn)差最小

B.丙科總體的平均數(shù)最小

C.乙科總體的標(biāo)準(zhǔn)差及平均數(shù)都居中

D.甲、乙、丙的總體的平均數(shù)不相同

答案:A9.已知曲線C上的動點(diǎn)P(x,y)滿足到點(diǎn)F(0,1)的距離比到直線l:y=-2的距離小1.

(Ⅰ)求曲線C的方程;

(Ⅱ)動點(diǎn)E在直線l上,過點(diǎn)E分別作曲線C的切線EA,EB,切點(diǎn)為A、B.

(?。┣笞C:直線AB恒過一定點(diǎn),并求出該定點(diǎn)的坐標(biāo);

(ⅱ)在直線l上是否存在一點(diǎn)E,使得△ABM為等邊三角形(M點(diǎn)也在直線l上)?若存在,求出點(diǎn)E坐標(biāo),若不存在,請說明理由.答案:(Ⅰ)曲線C的方程x2=4y(5分)(Ⅱ)(?。┰O(shè)E(a,-2),A(x1,x214),B(x2,x224),∵y=x24∴y′=12x過點(diǎn)A的拋物線切線方程為y-x214=12x1(x-x1),∵切線過E點(diǎn),∴-2-x214=12x1(a-x1),整理得:x12-2ax1-8=0同理可得:x22-2ax2-8=0,∴x1,x2是方程x2-2ax-8=0的兩根,∴x1+x2=2a,x1?x2=-8可得AB中點(diǎn)為(a,a2+42)又kAB=y1-y2x1-x2=x214-x224x1-x2=x1+x24=a2,∴直線AB的方程為y-(a22+2)=a2(x-a)即y=a2x+2,∴AB過定點(diǎn)(0,2)(10分)(ⅱ)由(?。┲狝B中點(diǎn)N(a,a2+42),直線AB的方程為y=a2x+2當(dāng)a≠0時(shí),則AB的中垂線方程為y-a2+42=-2a(x-a),∴AB的中垂線與直線y=-2的交點(diǎn)M(a3+12a4,-2)∴|MN|2=(a3+12a4-a)2+(-2-a2+42)2=116(a2+8)2(a2+4)∵|AB|=1+a24(x1+x2)2-4x1x2=(a2+4)(a2+8)若△ABM為等邊三角形,則|MN|=32|AB|,∴116(a2+8)2(a2+4)=34(a2+4)(a2+8),解得a2=4,∴a=±2,此時(shí)E(±2,-2),當(dāng)a=0時(shí),經(jīng)檢驗(yàn)不存在滿足條件的點(diǎn)E綜上可得:滿足條件的點(diǎn)E存在,坐標(biāo)為E(±2,-2).(15分)10.參數(shù)方程(θ為參數(shù))表示的曲線是()

A.直線

B.圓

C.橢圓

D.拋物線答案:C11.與直線3x+4y-3=0平行,并且距離為3的直線方程為______.答案:設(shè)所求直線上任意一點(diǎn)P(x,y),由題意可得點(diǎn)P到所給直線的距離等于3,即|3x+4y-3|5=3,∴|3x+4y-3|=15,∴3x+4y-3=±15,即3x+4y-18=0或3x+4y+12=0.故為3x+4y-18=0或3x+4y+12=0.12.長方體的長、寬、高之比是1:2:3,對角線長是214,則長方體的體積是

______.答案:長方體的長、寬、高之比是1:2:3,所以長方體的長、寬、高是x:2x:3x,對角線長是214,所以,x2+(2x)2+(3x)2=(214)2,x=2,長方體的長、寬、高是2,4,6;長方體的體積是:2×4×6=48故為:4813.參數(shù)方程,(θ為參數(shù))表示的曲線是()

A.直線

B.圓

C.橢圓

D.拋物線答案:C14.已知雙曲線的焦點(diǎn)在y軸,實(shí)軸長為8,離心率e=2,過雙曲線的弦AB被點(diǎn)P(4,2)平分;

(1)求雙曲線的標(biāo)準(zhǔn)方程;

(2)求弦AB所在直線方程;

(3)求直線AB與漸近線所圍成三角形的面積.答案:(1)∵雙曲線的焦點(diǎn)在y軸,∴設(shè)雙曲線的標(biāo)準(zhǔn)方程為y2a2-x2b2=1;∵實(shí)軸長為8,離心率e=2,∴a=4,c=42,∴b2=c2-a2=16.或∵實(shí)軸長為8,離心率e=2,∴雙曲線為等軸雙曲線,a=b=4.∴雙曲線的標(biāo)準(zhǔn)方程為y216-x216=1.(2)設(shè)弦AB所在直線方程為y-2=k(x-4),A,B的坐標(biāo)為A(x1,y1),B(x2,y2).∴k=y1-y2x1-x2,x1+x22=4,y1+y22=2;∴y1216-x1216=1

y2216-x2216=1?y12-y2216-x12-x2216=0?(y1-y2)(y1+y2)16-(x1-x2)(x1+x2)16=0代入x1+x2=8,y1+y2=4,得(y1-y2)×416-(x1-x2)×816=0,∴y1-y2x1-x2×14-12=0,∴14k-12=0,∴k=2;所以弦AB所在直線方程為y-2=2(x-4),即2x-y-6=0.(3)等軸雙曲線y216-x216=1的漸近線方程為y=±x.∴直線AB與漸近線所圍成三角形為直角三角形.又漸近線與弦AB所在直線的交點(diǎn)坐標(biāo)分別為(6,6),(2,-2),∴直角三角形兩條直角邊的長度分別為62、22;∴直線AB與漸近線所圍成三角形的面積S=12×62×22=12.15.已知二項(xiàng)分布ξ~B(4,12),則該分布列的方差Dξ值為______.答案:∵二項(xiàng)分布ξ~B(4,12),∴該分布列的方差Dξ=npq=4×12×(1-12)=1故為:116.由1,2,3這三個數(shù)字抽出一部分或全部數(shù)字(沒有重復(fù))所組成的自然數(shù)有______.答案:由題意,一位數(shù)有:1,2,3;兩位數(shù)有:12,21,23,32,13,31;三位數(shù)有:123,132,213,231,321,312故為:1,2,3,12,13,23,21,31,32,123,132,213,231,321,312.17.如圖,在△OAB中,P為線段AB上的一點(diǎn),,且,則()

A.

B.

C.

D.

答案:A18.若圓x2+y2=9上每個點(diǎn)的橫坐標(biāo)不變,縱坐標(biāo)縮短為原來的,則所得到的曲線的方程是()

A.

B.

C.

D.答案:C19.如圖所示,已知P是平行四邊形ABCD所在平面外一點(diǎn),連結(jié)PA、PB、PC、PD,點(diǎn)E、F、G、H分別為△PAB、△PBC、△PCD、△PDA的重心,求證:E、F、G、H四點(diǎn)共面答案:證明:分別延長P、PF、PG、PH交對邊于M、N、Q、R.∵E、F、G、H分別是所在三角形的重心,∴M、N、Q、R為所在邊的中點(diǎn),順次連結(jié)MNQR所得四邊形為平行四邊形,且有∵M(jìn)NQR為平行四邊形,∴由共面向量定理得E、F、G、H四點(diǎn)共面.20.一個盒子裝有10個紅、白兩色同一型號的乒乓球,已知紅色乒乓球有3個,若從盒子里隨機(jī)取出3個乒乓球,則其中含有紅色乒乓球個數(shù)的數(shù)學(xué)期望是______.答案:由題設(shè)知含有紅色乒乓球個數(shù)ξ的可能取值是0,1,2,3,P(ξ=0)=C37C310=724,P(ξ=1)=C27C13C310=2140,P(ξ=2)=C17C23C310=740,P(ξ=3)=C33C310=1120.∴Eξ=0×724+1×

2140+2×740+3×1120=910.故為:910.21.點(diǎn)P1,P2是線段AB的2個三等分點(diǎn),若P∈{P1,P2},則P分有線段AB的比λ的最大值和最小值分別為()

A.3,

B.3,

C.2,

D.2,1答案:C22.(本小題滿分10分)數(shù)學(xué)的美是令人驚異的!如三位數(shù)153,它滿足153=13+53+33,即這個整數(shù)等于它各位上的數(shù)字的立方的和,我們稱這樣的數(shù)為“水仙花數(shù)”.請您設(shè)計(jì)一個算法,找出大于100,小于1000的所有“水仙花數(shù)”.

(1)用自然語言寫出算法;

(2)畫出流程圖.答案:(1)算法如下:第一步,i=101.第二步,如果i不大于999,則執(zhí)行第三步,否則算法結(jié)束.第三步,若這個數(shù)i等于它各位上的數(shù)字的立方的和,則輸出這個數(shù).第四步,i=i+1,返回第二步.(2)程序框圖,如右圖所示.23.已知復(fù)數(shù)z0=1-mi(m>0),z=x+yi和,其中x,y,x',y'均為實(shí)數(shù),i為虛數(shù)單位,且對于任意復(fù)數(shù)z,有w=.z0?.z,|w|=2|z|.

(Ⅰ)試求m的值,并分別寫出x'和y'用x、y表示的關(guān)系式:

(Ⅱ)將(x、y)用為點(diǎn)P的坐標(biāo),(x'、y')作為點(diǎn)Q的坐標(biāo),上述關(guān)系式可以看作是坐標(biāo)平面上點(diǎn)的一個變換:它將平面上的點(diǎn)P變到這一平面上的點(diǎn)Q.已知點(diǎn)P經(jīng)該變換后得到的點(diǎn)Q的坐標(biāo)為(3,2),試求點(diǎn)P的坐標(biāo);

(Ⅲ)若直線y=kx上的任一點(diǎn)經(jīng)上述變換后得到的點(diǎn)仍在該直線上,試求k的值.答案:(I)由題設(shè)得,|w|=|.z0?.z|=|z0||z|=2|z|,∴|z0|=2,由1+m2=4,且m>0,得m=3,∴z0=1-3i,∵w=.z0?.z,∴x′+y′i=.(1-3i)?.(x+yi))=(1+3i)(x-yi)=x+3y+(3x-y)i,由復(fù)數(shù)相等得,x′=x+3yy′=3x-y,(Ⅱ)由(I)和題意得,x+3y=33x-y=2,解得x=343y=14

,即P點(diǎn)的坐標(biāo)為(343,14).

(Ⅲ)∵直線y=kx上的任意點(diǎn)P(x,y),其經(jīng)變換后的點(diǎn)Q(x+3y,3x-y)仍在該直線上,∴3x-y=k(x+3y),即(3k+1)y=(3-k)x∵當(dāng)k=0時(shí),y=0,y=3x不是同一條直線,∴k≠0,于是3k+11=3-kk,即3k2+2k-3=0,解得k=33或k=-324.在對兩個變量x,y進(jìn)行線性回歸分析時(shí),有下列步驟:

①對所求出的回歸直線方程作出解釋;

②收集數(shù)據(jù)(xi,yi),i=1,2,…,n;

③求線性回歸方程;

④求相關(guān)系數(shù);

⑤根據(jù)所搜集的數(shù)據(jù)繪制散點(diǎn)圖.

如果根據(jù)可形性要求能夠作出變量x,y具有線性相關(guān)結(jié)論,則在下列操作順序中正確的是()

A.①②⑤③④

B.③②④⑤①

C.②④③①⑤

D.②⑤④③①答案:D25.雙曲線的漸近線方程是3x±2y=0,則該雙曲線的離心率等于______.答案:∵雙曲線的漸近線方程是3x±2y=0,∴ba=32,設(shè)a=2k,b=3k,則c=13k,∴e=ca=132.:132.26.(選做題)方程ρ=cosθ與(t為參數(shù))分別表示何種曲線(

)。答案:圓,雙曲線27.設(shè)全集U={1,2,3,4,5,6,7,8},集合S={1,3,5},T={3,6},則CU(S∪T)等于()A.φB.{2,4,7,8}C.{1,3,5,6}D.{2,4,6,8}答案:∵S∪T={1,3,5,6},∴CU(S∪T)={2,4,7,8}.故選B.28.設(shè)x,y,z∈R,且滿足:x2+y2+z2=1,x+2y+3z=14,則x+y+z=______.答案:根據(jù)柯西不等式,得(x+2y+3z)2≤(12+22+32)(x2+y2+z2)=14(x2+y2+z2)當(dāng)且僅當(dāng)x1=y2=z3時(shí),上式的等號成立∵x2+y2+z2=1,∴(x+2y+3z)2≤14,結(jié)合x+2y+3z=14,可得x+2y+3z恰好取到最大值14∴x1=y2=z3=1414,可得x=1414,y=147,z=31414因此,x+y+z=1414+147+31414=3147故為:314729.如圖所示,正方體的棱長為1,點(diǎn)A是其一棱的中點(diǎn),則點(diǎn)A在空間直角坐標(biāo)系中的坐標(biāo)是()

A.(,,1)

B.(1,1,)

C.(,1,)

D.(1,,1)

答案:B30.已知向量a=(-2,1),b=(-3,-1),若單位向量c滿足c⊥(a+b),則c=______.答案:設(shè)c=(x,y),∵向量a=(-2,1),b=(-3,-1),單位向量c滿足c⊥(a+b),∴c?a+c?b=0,∴-2x+y-3x-y=0,解得x=0,∴c=(0,y),∵c是單位向量,∴0+y2=1,∴y=±1.故c=(0,1),或c=(0,-1).故為:(0,1)或(0,-1).31.一個總體中有100個個體,隨機(jī)編號為0,1,2,3,…,99,依編號順序平均分成10個小組,組號依次為1,2,3,…10.現(xiàn)用系統(tǒng)抽樣方法抽取一個容量為10的樣本,規(guī)定如果在第1組隨機(jī)抽取的號碼為m,那么在第k組中抽取的號碼個位數(shù)字與m+k號碼的個位數(shù)字相同,若m=6,則在第7組中抽取的號碼是()

A.66

B.76

C.63

D.73答案:C32.若A、B兩點(diǎn)的極坐標(biāo)為A(4

,

π3),B(6,0),則AB中點(diǎn)的極坐標(biāo)是

______(極角用反三角函數(shù)值表示)答案:A的直角坐標(biāo)為:(2,23),所以AB的中點(diǎn)坐標(biāo)為:(4,3)所以極徑為:19;極角為:α,tanα=34所以

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論