2023年上海電影藝術(shù)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第1頁(yè)
2023年上海電影藝術(shù)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第2頁(yè)
2023年上海電影藝術(shù)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第3頁(yè)
2023年上海電影藝術(shù)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第4頁(yè)
2023年上海電影藝術(shù)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第5頁(yè)
已閱讀5頁(yè),還剩41頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

長(zhǎng)風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年上海電影藝術(shù)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購(gòu)買!第1卷一.綜合題(共50題)1.已知M和N分別是四面體OABC的邊OA,BC的中點(diǎn),且,若=a,=b,=c,則用a,b,c表示為()

A.

B.

C.

D.

答案:B2.

若向量,滿足||=||=2,與的夾角為60°,則|+|=()

A.

B.2

C.4

D.12答案:B3.平面ABCD中,點(diǎn)A坐標(biāo)為(0,1,1),點(diǎn)B坐標(biāo)為(1,2,1),點(diǎn)C坐標(biāo)為(-1,0,-1).若向量a=(-2,y,z),且a為平面ABC的法向量,則yz=()A.2B.0C.1D.-1答案:AB=(1,1,0),AC=(-1,-1,-2),與平面ABC垂直的向量應(yīng)與上面的向量的數(shù)量積為零,向量a=(-2,y,z),且a為平面ABC的法向量,則a⊥AB且a⊥AC,即a?AB=0,且a?AC=0,即-2+y+0=0且2-y-2z=0,即y=2z=0,∴則yz=20=1,故選C.4.已知平行直線l1:x-y+1=0與l2:x-y+3=0,求l1與l2間的距離.答案:∵已知平行直線l1:x-y+1=0與l2:x-y+3=0,則l1與l2間的距離d=|3-1|2=2.5.若直線ax+by+1=0與圓x2+y2=1相離,則點(diǎn)P(a,b)的位置是()

A.在圓上

B.在圓外

C.在圓內(nèi)

D.以上都有可能答案:C6.如圖是一個(gè)空間幾何體的三視圖,試用斜二測(cè)畫法畫出它的直觀圖.(尺寸不作嚴(yán)格要求,但是凡是未用鉛筆作圖不得分,隨手畫圖也不得分)答案:由題可知題目所述幾何體是正六棱臺(tái),畫法如下:畫法:(1)、畫軸畫x軸、y軸、z軸,使∠x(chóng)′O′y′=45°,∠x(chóng)′O′z′=90°

(圖1)(2)、畫底面以O(shè)′為中心,在XOY坐標(biāo)系內(nèi)畫正六棱臺(tái)下底面正方形的直觀圖ABCDEF.在z′軸上取線段O′O1等于正六棱臺(tái)的高;過(guò)O1

畫O1M、O1N分別平行O’x′、O′y′,再以O(shè)1為中心,畫正六棱臺(tái)上底面正方形的直觀圖A′B′C′E′F′(3)、成圖連接AA′、BB′、CC′、DD′、EE′、FF′,并且加以整理,就得到正六棱臺(tái)的直觀圖

(如圖2).7.對(duì)于5年可成材的樹(shù)木,從栽種到5年成材的木材年生長(zhǎng)率為18%,以后木材的年生長(zhǎng)率為10%.樹(shù)木成材后,既可以出售樹(shù)木,重栽新樹(shù)苗;也可以讓其繼續(xù)生長(zhǎng).問(wèn):哪一種方案可獲得較大的木材量?(注:只需考慮10年的情形)(參考數(shù)據(jù):lg2=0.3010,lg1.1=0.0414)答案:由題意,第一種得到的木材為(1+18%)5×2第二種得到的木材為(1+18%)5×(1+10%)5第一種除以第二種的結(jié)果為2(1+10%)5=21.61>1所以第一種方案可獲得較大的木材量.8.已知復(fù)數(shù)z0=1-mi(m>0),z=x+yi和,其中x,y,x',y'均為實(shí)數(shù),i為虛數(shù)單位,且對(duì)于任意復(fù)數(shù)z,有w=.z0?.z,|w|=2|z|.

(Ⅰ)試求m的值,并分別寫出x'和y'用x、y表示的關(guān)系式:

(Ⅱ)將(x、y)用為點(diǎn)P的坐標(biāo),(x'、y')作為點(diǎn)Q的坐標(biāo),上述關(guān)系式可以看作是坐標(biāo)平面上點(diǎn)的一個(gè)變換:它將平面上的點(diǎn)P變到這一平面上的點(diǎn)Q.已知點(diǎn)P經(jīng)該變換后得到的點(diǎn)Q的坐標(biāo)為(3,2),試求點(diǎn)P的坐標(biāo);

(Ⅲ)若直線y=kx上的任一點(diǎn)經(jīng)上述變換后得到的點(diǎn)仍在該直線上,試求k的值.答案:(I)由題設(shè)得,|w|=|.z0?.z|=|z0||z|=2|z|,∴|z0|=2,由1+m2=4,且m>0,得m=3,∴z0=1-3i,∵w=.z0?.z,∴x′+y′i=.(1-3i)?.(x+yi))=(1+3i)(x-yi)=x+3y+(3x-y)i,由復(fù)數(shù)相等得,x′=x+3yy′=3x-y,(Ⅱ)由(I)和題意得,x+3y=33x-y=2,解得x=343y=14

,即P點(diǎn)的坐標(biāo)為(343,14).

(Ⅲ)∵直線y=kx上的任意點(diǎn)P(x,y),其經(jīng)變換后的點(diǎn)Q(x+3y,3x-y)仍在該直線上,∴3x-y=k(x+3y),即(3k+1)y=(3-k)x∵當(dāng)k=0時(shí),y=0,y=3x不是同一條直線,∴k≠0,于是3k+11=3-kk,即3k2+2k-3=0,解得k=33或k=-39.從集合{0,1,2,3,4,5,6}中任取兩個(gè)互不相等的數(shù)a,b,組成復(fù)數(shù)a+bi,其中虛數(shù)有()

A.36個(gè)

B.42個(gè)

C.30個(gè)

D.35個(gè)答案:A10.定義xn+1yn+1=1011xnyn,n∈N*為向量OPn=(xn,yn)到向量OPn+1=(xn+1,yn+1)的一個(gè)矩陣變換,其中O是坐標(biāo)原點(diǎn).已知OP1=(1,0),則OP2010的坐標(biāo)為_(kāi)_____.答案:由題意,xn+1=xnyn+1=xn+yn∴向量的橫坐標(biāo)不變,縱坐標(biāo)構(gòu)成以0為首項(xiàng),1為公差的等差數(shù)列∴OP2010的坐標(biāo)為(1,2009)故為(1,2009)11.設(shè)函數(shù)f(x)是定義在[a,b]上的奇函數(shù),則f(a+b)=______.答案:因?yàn)楹瘮?shù)f(x)是定義在[a,b]上的奇函數(shù),所以定義域關(guān)于原點(diǎn)對(duì)稱,所以a+b=0,且f(0)=0.所以f(a+b)=f(0)=0.故為:0.12.用反證法證明命題:“若a,b∈N,ab能被3整除,那么a,b中至少有一個(gè)能被3整除”時(shí),假設(shè)應(yīng)為()

A.b都能被3整除

B.b都不能被3整除

C.b不都能被3整除

D.a(chǎn)不能被3整除答案:B13.函數(shù)f(x)=2|log2x|的圖象大致是()

A.

B.

C.

D.

答案:C14.已知橢圓C1:x2a2+y2b2=1(a>b>0)的離心率為33,直線l:y=x+2與以原點(diǎn)為圓心、橢圓C1的短半軸長(zhǎng)為半徑的圓相切.

(1)求橢圓C1的方程;

(2)設(shè)橢圓C1的左焦點(diǎn)為F1,右焦點(diǎn)為F2,直線l1過(guò)點(diǎn)F1且垂直于橢圓的長(zhǎng)軸,動(dòng)直線l2垂直于直線l1,垂足為點(diǎn)P,線段PF2的垂直平分線交l2于點(diǎn)M,求點(diǎn)M的軌跡C2的方程;

(3)設(shè)C2與x軸交于點(diǎn)Q,不同的兩點(diǎn)R,S在C2上,且滿足QR?RS=0,求|QS|的取值范圍.答案:(1)由e=33得2a2=3b2,又由直線l:y=x+2與圓x2+y2=b2相切,得b=2,a=3,∴橢圓C1的方程為:x23+y22=1.(4分)(2)由MP=MF2得動(dòng)點(diǎn)M的軌跡是以l1:x=-1為準(zhǔn)線,F(xiàn)2為焦點(diǎn)的拋物線,∴點(diǎn)M的軌跡C2的方程為y2=4x.(8分)(3)Q(0,0),設(shè)R(y214,y1),S(y224,y2),∴QR=(y214,y1),RS=(y22-y214,y2-y1),由QR?RS=0,得y21(y22-y21)16+y1(y2-y1)=0,∵y1≠y2∴化簡(jiǎn)得y2=-y1-16y1,(10分)∴y22=y21+256y21+32≥2256+32=64(當(dāng)且僅當(dāng)y1=±4時(shí)等號(hào)成立),∵|QS|=(y224)2+y22=14(y22+8)2-64,又∵y22≥64,∴當(dāng)y22=64,即y2=±8時(shí)|QS|min=85,∴|QS|的取值范圍是[85,+∞).(13分)15.如圖所示,CD為Rt△ABC斜邊AB邊上的中線,CE⊥CD,CE=103,連接DE交BC于點(diǎn)F,AC=4,BC=3.

求證:(1)△ABC∽△EDC;

(2)DF=EF.答案:證明:(1)∵CD為Rt△ABC斜邊AB邊上的中線∴CD=12AB=12AC2+BC2=52.∴CECD=10352=43=ACBC,∠ACB=∠DCE=90°.∴△ABC∽△EDC.(2)因?yàn)椤鰽BC∽△EDC∴∠B=∠CDE,∠E=∠A.由CD為Rt△ABC斜邊AB邊上的中線得:CD=AD=DB?∠B=∠DCB,∠A=∠DCA∴∠DCB=∠CDE?DF=CF;又因?yàn)椋骸螪CA+∠DCB=∠DCB+∠BCE=90°;∴∠DCA=∠BCE=∠A=∠E∴CF=EF.∴DF=EF.16.如圖,一個(gè)正方體內(nèi)接于一個(gè)球,過(guò)球心作一個(gè)截面,則截面的可能圖形為(

A.①③

B.②④

C.①②③

D.②③④答案:C17.已知雙曲線C:x2a2-y2b2=1(a>0,b>0)的一個(gè)焦點(diǎn)是F2(2,0),且b=3a.

(1)求雙曲線C的方程;

(2)設(shè)經(jīng)過(guò)焦點(diǎn)F2的直線l的一個(gè)法向量為(m,1),當(dāng)直線l與雙曲線C的右支相交于A,B不同的兩點(diǎn)時(shí),求實(shí)數(shù)m的取值范圍;并證明AB中點(diǎn)M在曲線3(x-1)2-y2=3上.

(3)設(shè)(2)中直線l與雙曲線C的右支相交于A,B兩點(diǎn),問(wèn)是否存在實(shí)數(shù)m,使得∠AOB為銳角?若存在,請(qǐng)求出m的范圍;若不存在,請(qǐng)說(shuō)明理由.答案:(1)c=2c2=a2+b2∴4=a2+3a2∴a2=1,b2=3,∴雙曲線為x2-y23=1.(2)l:m(x-2)+y=0由y=-mx+2mx2-y23=1得(3-m2)x2+4m2x-4m2-3=0由△>0得4m4+(3-m2)(4m2+3)>012m2+9-3m2>0即m2+1>0恒成立又x1+x2>0x1?x2>04m2m2-3>04m2+3m2-3>0∴m2>3∴m∈(-∞,-3)∪(3,+∞)設(shè)A(x1,y1),B(x2,y2),則x1+x22=2m2m2-3y1+y22=-2m3m2-3+2m=-6mm2-3∴AB中點(diǎn)M(2m2m2-3,-6mm2-3)∵3(2m2m2-3-1)2-36m2(m2-3)2=3×(m2+3)2(m2-3)2-36m2(m2-3)2=3?m4+6m2+9-12m2(m2-3)2=3∴M在曲線3(x-1)2-y2=3上.(3)A(x1,y1),B(x2,y2),設(shè)存在實(shí)數(shù)m,使∠AOB為銳角,則OA?OB>0∴x1x2+y1y2>0因?yàn)閥1y2=(-mx1+2m)(-mx2+2m)=m2x1x2-2m2(x1+x2)+4m2∴(1+m2)x1x2-2m2(x1+x2)+4m2>0∴(1+m2)(4m2+3)-8m4+4m2(m2-3)>0即7m2+3-12m2>0∴m2<35,與m2>3矛盾∴不存在18.正方形ABCD中,AB=1,分別以A、C為圓心作兩個(gè)半徑為R、r(R>r)的圓,當(dāng)R、r滿足條件______時(shí),⊙A與⊙C有2個(gè)交點(diǎn)(

A.R+r>

B.R-r<<R+r

C.R-r>

D.0<R-r<答案:B19.電子手表廠生產(chǎn)某批電子手表正品率為,次品率為,現(xiàn)對(duì)該批電子手表進(jìn)行測(cè)試,設(shè)第X次首次測(cè)到正品,則P(1≤X≤2013)等于()

A.1-()2012

B.1-()2013

C.1-()2012

D.1-()2013答案:B20.(1)用紅、黃、藍(lán)、白四種不同顏色的鮮花布置如圖一所示的花圃,要求同一區(qū)域上用同一種顏色鮮花,相鄰區(qū)域用不同顏色鮮花,問(wèn)共有多少種不同的擺放方案?

(2)用紅、黃、藍(lán)、白、橙五種不同顏色的鮮花布置如圖二所示的花圃,要求同一區(qū)域上用同一種顏色鮮花,相鄰區(qū)域使用不同顏色鮮花.

①求恰有兩個(gè)區(qū)域用紅色鮮花的概率;

②記花圃中紅色鮮花區(qū)域的塊數(shù)為S,求它的分布列及其數(shù)學(xué)期望E(S).

答案:(1)根據(jù)分步計(jì)數(shù)原理,擺放鮮花的不同方案有:4×3×2×2=48種(2)①設(shè)M表示事件“恰有兩個(gè)區(qū)域用紅色鮮花”,如圖二,當(dāng)區(qū)域A、D同色時(shí),共有5×4×3×1×3=180種;當(dāng)區(qū)域A、D不同色時(shí),共有5×4×3×2×2=240種;因此,所有基本事件總數(shù)為:180+240=420種.(由于只有A、D,B、E可能同色,故可按選用3色、4色、5色分類計(jì)算,求出基本事件總數(shù)為A53+2A51+A55=420種)它們是等可能的.又因?yàn)锳、D為紅色時(shí),共有4×3×3=36種;B、E為紅色時(shí),共有4×3×3=36種;因此,事件M包含的基本事件有:36+36=72種.所以,P(M)=72420=635②隨機(jī)變量ξ的分布列為:ξ012P6352335635所以,E(ξ)=0×635+1×2335+2×635=121.若向量a=(3,0),b=(2,2),則a與b夾角的大小是()

A.0

B.

C.

D.答案:B22.若a=(1,2,-2),b=(1,0,2),則(a-b)?(a+2b)=______.答案:∵a=(1,2,-2),b=(1,0,2),∴a-b=(0,2,-4),a+2b=(3,2,2).∴(a-b)?(a+2b)=0×3+2×2-4×2=-4.故為-4.23.滿足條件|2z+1|=|z+i|的復(fù)數(shù)z在復(fù)平面上對(duì)應(yīng)點(diǎn)的軌跡是______.答案:設(shè)復(fù)數(shù)z在復(fù)平面上對(duì)應(yīng)點(diǎn)的坐標(biāo)為(x,y),由|2z+1|=|z+i|可得(2x+1)2+(2y)2=(x)2+(y+1)2,化簡(jiǎn)可得x2+

y2+43x

=

0,表示一個(gè)圓,故為圓.24.在平面直角坐標(biāo)系xOy中,若拋物線C:x2=2py(p>0)的焦點(diǎn)為F(q,1),則p+q=______.答案:拋物線C:x2=2py(p>0)的焦點(diǎn)坐標(biāo)為(0,p2),又已知焦點(diǎn)為為F(q,1),∴q=0,p2=1,故p+q=2,故為2.25.已知向量,滿足:||=3,||=5,且=λ,則實(shí)數(shù)λ=()

A.

B.

C.±

D.±答案:C26.若點(diǎn)A的坐標(biāo)為(3,2),F(xiàn)是拋物線y2=2x的焦點(diǎn),點(diǎn)M在拋物線上移動(dòng)時(shí),使|MF|+|MA|取得最小值的M的坐標(biāo)為()A.(0,0)B.(12,1)C.(1,2)D.(2,2)答案:由題意得F(12,0),準(zhǔn)線方程為x=-12,設(shè)點(diǎn)M到準(zhǔn)線的距離為d=|PM|,則由拋物線的定義得|MA|+|MF|=|MA|+|PM|,故當(dāng)P、A、M三點(diǎn)共線時(shí),|MF|+|MA|取得最小值為|AP|=3-(-12)=72.把y=2代入拋物線y2=2x得x=2,故點(diǎn)M的坐標(biāo)是(2,2),故選D.27.根據(jù)一組數(shù)據(jù)判斷是否線性相關(guān)時(shí),應(yīng)選用()

A.散點(diǎn)圖

B.莖葉圖

C.頻率分布直方圖

D.頻率分布折線圖答案:A28.已知θ是三角形內(nèi)角且sinθ+cosθ=,則表示答案:C29.在平面幾何中,四邊形的分類關(guān)系可用以下框圖描述:

則在①中應(yīng)填入______;在②中應(yīng)填入______.答案:由題意知①對(duì)應(yīng)的四邊形是一個(gè)有一組鄰邊相等的平行四邊形,∴這里是一個(gè)菱形,②處的圖形是一個(gè)有一條腰和底邊垂直的梯形,∴②處是一個(gè)直角梯形,故為:菱形;直角梯形.30.(本小題滿分10分)數(shù)學(xué)的美是令人驚異的!如三位數(shù)153,它滿足153=13+53+33,即這個(gè)整數(shù)等于它各位上的數(shù)字的立方的和,我們稱這樣的數(shù)為“水仙花數(shù)”.請(qǐng)您設(shè)計(jì)一個(gè)算法,找出大于100,小于1000的所有“水仙花數(shù)”.

(1)用自然語(yǔ)言寫出算法;

(2)畫出流程圖.答案:(1)算法如下:第一步,i=101.第二步,如果i不大于999,則執(zhí)行第三步,否則算法結(jié)束.第三步,若這個(gè)數(shù)i等于它各位上的數(shù)字的立方的和,則輸出這個(gè)數(shù).第四步,i=i+1,返回第二步.(2)程序框圖,如右圖所示.31.已知正三角形的外接圓半徑為63cm,求它的邊長(zhǎng).答案:設(shè)正三角形的邊長(zhǎng)為a,則12a=Rcos30°=63?32=9(cm)∴a=18(cm).它的邊長(zhǎng)為18cm.32.請(qǐng)輸入一個(gè)奇數(shù)n的BASIC語(yǔ)句為_(kāi)_____.答案:INPUT表示輸入語(yǔ)句,輸入一個(gè)奇數(shù)n的BASIC語(yǔ)句為:INPUT“輸入一個(gè)奇數(shù)n”;n.故為:INPUT“輸入一個(gè)奇數(shù)n”;n.33.b1是[0,1]上的均勻隨機(jī)數(shù),b=3(b1-2),則b是區(qū)間______上的均勻隨機(jī)數(shù).答案:∵b1是[0,1]上的均勻隨機(jī)數(shù),b=3(b1-2)∵b1-2是[-2,-1]上的均勻隨機(jī)數(shù),∴b=3(b1-2)是[-6,-3]上的均勻隨機(jī)數(shù),故為:[-6,-3]34.用反證法證明命題“若a2+b2=0,則a、b全為0(a、b∈R)”,其反設(shè)正確的是()

A.a(chǎn)、b至少有一個(gè)不為0

B.a(chǎn)、b至少有一個(gè)為0

C.a(chǎn)、b全不為0

D.a(chǎn)、b中只有一個(gè)為0答案:A35.已知圓錐的母線長(zhǎng)與底面半徑長(zhǎng)之比為3:1,一個(gè)正方體有四個(gè)頂點(diǎn)在圓錐的底面內(nèi),另外的四個(gè)頂點(diǎn)在圓錐的側(cè)面上(如圖),則圓錐與正方體的表面積之比為(

A.π:1

B.3π:1

C.3π:2

D.3π:4

答案:D36.等于()

A.a(chǎn)16

B.a(chǎn)8

C.a(chǎn)4

D.a(chǎn)2答案:C37.過(guò)拋物線y2=4x的焦點(diǎn)作直線l交拋物線于A、B兩點(diǎn),若線段AB中點(diǎn)的橫坐標(biāo)為3,則|AB|等于()A.2B.4C.6D.8答案:由題設(shè)知知線段AB的中點(diǎn)到準(zhǔn)線的距離為4,設(shè)A,B兩點(diǎn)到準(zhǔn)線的距離分別為d1,d2,由拋物線的定義知:|AB|=|AF|+|BF|=d1+d2=2×4=8.故選D.38.在平行六面體ABCD-A′B′C′D′中,向量是()

A.有相同起點(diǎn)的向量

B.等長(zhǎng)的向量

C.共面向量

D.不共面向量答案:C39.如圖,△PAB所在的平面α和梯形ABCD所在的平面β互相垂直,且AD⊥α,AD=4,BC=8,AB=6,若tan∠ADP+2tan∠BCP=10,則點(diǎn)P在平面α內(nèi)的軌跡是()A.圓的一部分B.橢圓的一部分C.雙曲線的一部分D.拋物線的一部分答案:由AD⊥α,可得AD⊥AP,tan∠ADP=APAD,四邊形ABCD是梯形,則AD∥BC,可得BC⊥α,BC⊥BP,則tan∠BCP=BPBC,又由tan∠ADP+2tan∠BCP=10,且AD=4,BC=8,可得AP+BP=40,又由AB=6,則AP+BP>AB,故P在平面α內(nèi)的軌跡是橢圓的一部分,故選B.40.若函數(shù)f(x)對(duì)任意實(shí)數(shù)x都有f(x)<f(x+1),那么()A.f(x)是增函數(shù)B.f(x)沒(méi)有單調(diào)遞增區(qū)間C.f(x)沒(méi)有單調(diào)遞減區(qū)間D.f(x)可能存在單調(diào)遞增區(qū)間,也可能存在單調(diào)遞減區(qū)間答案:根據(jù)函數(shù)f(x)對(duì)任意實(shí)數(shù)x都有f(x)<f(x+1),畫出一個(gè)滿足條件的函數(shù)圖象如右圖所示;根據(jù)圖象可知f(x)可能存在單調(diào)遞增區(qū)間,也可能存在單調(diào)遞減區(qū)間故選D.41.若雙曲線與橢圓x216+y225=1有相同的焦點(diǎn),與雙曲線x22-y2=1有相同漸近線,求雙曲線方程.答案:依題意可設(shè)所求的雙曲線的方程為y2-x22=λ(λ>0)…(3分)即y2λ-x22λ=1…(5分)又∵雙曲線與橢圓x216+y225=1有相同的焦點(diǎn)∴λ+2λ=25-16=9…(9分)解得λ=3…(11分)∴雙曲線的方程為y23-x26=1…(13分)42.兩個(gè)樣本甲和乙,其中=10,=10,=0.055,=0.015,那么樣本甲比樣本乙波動(dòng)()

A.大

B.相等

C.小

D.無(wú)法確定答案:A43.一個(gè)四棱錐和一個(gè)三棱錐恰好可以拼接成一個(gè)三棱柱.這個(gè)四棱錐的底面為正方形,且底面邊長(zhǎng)與各側(cè)棱長(zhǎng)相等,這個(gè)三棱錐的底面邊長(zhǎng)與各側(cè)棱長(zhǎng)也都相等.設(shè)四棱錐、三棱錐、三棱柱的高分別為h1,h2,h,則h1:h2:h3=()

A.:1:1

B.:2:2

C.:2:

D.:2:答案:B44.參數(shù)方程x=sin2θy=cosθ+sinθ(θ為參數(shù))的普通方程為_(kāi)_____.答案:把參數(shù)方程x=sin2θy=cosθ+sinθ(θ為參數(shù))利用同角三角函數(shù)的基本關(guān)系消去參數(shù)化為普通方程為y2=1+x,故為y2=1+x.45.當(dāng)太陽(yáng)光線與水平面的傾斜角為60°時(shí),要使一根長(zhǎng)為2m的細(xì)桿的影子最長(zhǎng),則細(xì)桿與水平地面所成的角為()

A.15°

B.30°

C.45°

D.60°答案:B46.若a,b∈R,求證:≤+.答案:證明略解析:證明

當(dāng)|a+b|=0時(shí),不等式顯然成立.當(dāng)|a+b|≠0時(shí),由0<|a+b|≤|a|+|b|≥,所以=≤=≤+.47.已知曲線C的參數(shù)方程為x=4t2y=t(t為參數(shù)),若點(diǎn)P(m,2)在曲線C上,則m=______.答案:因?yàn)榍€C的參數(shù)方程為x=4t2y=t(t為參數(shù)),消去參數(shù)t得:x=4y2;∵點(diǎn)P(m,2)在曲線C上,所以m=4×4=16.故為:16.48.已知x∈R,i為虛數(shù)單位,若(x-2)i-1-i為純虛數(shù),則x的值為()A.1B.-1C.2D.-2答案:(x-2)i-1-i=[(x-2)i-1]?i-i?i=(x-2)i2-i=(2-x)-i由純虛數(shù)的定義可得2-x=0,故x=2故選C49.下面玩擲骰子放球游戲,若擲出1點(diǎn)或6點(diǎn),甲盒放一球;若擲出2點(diǎn),3點(diǎn),4點(diǎn)或5點(diǎn),乙盒放一球,設(shè)擲n次后,甲、乙盒內(nèi)的球數(shù)分別為x、y.

(1)當(dāng)n=3時(shí),設(shè)x=3,y=0的概率;

(2)當(dāng)n=4時(shí),求|x-y|=2的概率.答案:由題意知,在甲盒中放一球概率為13,在乙盒放一球的概率為23(3分)(1)當(dāng)n=3時(shí),x=3,y=0的概率為C03(13)3(23)0=127(6分)(2)|x-y|=2時(shí),有x=3,y=1或x=1,y=3,它的概率為C14

(13)3(23)1+C34(13)1(23)3=4081(12分).50.若集合A={1,2,3},則集合A的真子集共有()A.3個(gè)B.5個(gè)C.7個(gè)D.8個(gè)答案:由集合A={1,2,3},所以集合A的真子集有?,{1},{2},{3},{1,2},{1,3},{2,3}共7個(gè).故選C.第2卷一.綜合題(共50題)1.請(qǐng)輸入一個(gè)奇數(shù)n的BASIC語(yǔ)句為_(kāi)_____.答案:INPUT表示輸入語(yǔ)句,輸入一個(gè)奇數(shù)n的BASIC語(yǔ)句為:INPUT“輸入一個(gè)奇數(shù)n”;n.故為:INPUT“輸入一個(gè)奇數(shù)n”;n.2.(本小題滿分10分)選修4-1:幾何證明選講

如圖,的角平分線的延長(zhǎng)線交它的外接圓于點(diǎn).

(Ⅰ)證明:;

(Ⅱ)若的面積,求的大小.答案:(Ⅰ)證明見(jiàn)解析(Ⅱ)90°解析:本題主要考查平面幾何中與圓有關(guān)的定理及性質(zhì)的應(yīng)用、三角形相似及性質(zhì)的應(yīng)用.證明:(Ⅰ)由已知條件,可得∠BAE=∠CAD.因?yàn)椤螦EB與∠ACB是同弧上的圓周角,所以∠AEB=∠ACD.故△ABE∽△ADC.(Ⅱ)因?yàn)椤鰽BE∽△ADC,所以,即AB·AC=AD·AE.又S=AB·ACsin∠BAC,且S=AD·AE,故AB·ACsin∠BAC=AD·AE.則sin∠BAC=1,又∠BAC為三角形內(nèi)角,所以∠BAC=90°.【點(diǎn)評(píng)】在圓的有關(guān)問(wèn)題中經(jīng)常要用到弦切角定理、圓周角定理、相交弦定理等結(jié)論,解題時(shí)要注意根據(jù)已知條件進(jìn)行靈活的選擇,同時(shí)三角形相似是證明一些與比例有關(guān)問(wèn)題的的最好的方法.3.若直線l經(jīng)過(guò)點(diǎn)A(-1,1),且一個(gè)法向量為n=(3,3),則直線方程是______.答案:設(shè)直線的方向向量m=(1,k)∵直線l一個(gè)法向量為n=(3,3)∴m?n=0∴k=-1∵直線l經(jīng)過(guò)點(diǎn)A(-1,1)∴直線l的方程為y-1=(-1)×(x+1)即x+y=0故為x+y=04.若方程Ax2+By2=1表示焦點(diǎn)在y軸上的雙曲線,則A、B滿足的條件是()

A.A>0,且B>0

B.A>0,且B<0

C.A<0,且B>0

D.A<0,且B<0答案:C5.命題“存在x∈Z使x2+2x+m≤0”的否定是()

A.存在x∈Z使x2+2x+m>0

B.不存在x∈Z使x2+2x+m>0

C.對(duì)任意x∈Z使x2+2x+m≤0

D.對(duì)任意x∈Z使x2+2x+m>0答案:D6.如圖,PT是⊙O的切線,切點(diǎn)為T,直線PA與⊙O交于A、B兩點(diǎn),∠TPA的平分線分別交直線TA、TB于D、E兩點(diǎn),已知PT=2,PB=3,則PA=______,TEAD=______.答案:由題意,如圖可得PT2=PB×PA又由已知PT=2,PB=3,故可得PA=433又TPA的平分線分別交直線TA、TB于D、E兩點(diǎn),可得∠TPE=∠APD又由弦切角定理知∠PTE=∠PAD故有△PET≈△PDA故有TE:AD=PT:PA=3:2故為433,327.如果方程(1+i)x2-2(a+i)x+5-3i=0(a∈R)有實(shí)數(shù)解,求a的值.答案:設(shè)方程的實(shí)根為x0,則方程(1+i)x2-2(a+i)x+5-3i=0可化為(x20-2ax0+5)+(x20-2x0-3)i=0由復(fù)數(shù)相等的充要條件可得x20-2ax0+5=0①x20-2x0-3=0

②由②得x0=3或-1,代入①得a=73或-3∴a=73或-38.正方體的內(nèi)切球和外接球的半徑之比為

A.:1

B.:2

C.2:

D.:3答案:D9.若a,b∈{2,3,4,5,7},則可以構(gòu)成不同的橢圓的個(gè)數(shù)為()

A.10

B.20

C.5

D.15答案:B10.若隨機(jī)變量X~B(n,0.6),且E(X)=3,則P(X=1)的值是()

A.2×0.44

B.2×0.45

C.3×0.44

D.3×0.64答案:C11.已知正方形的邊長(zhǎng)為2,AB=a,BC=b,AC=c,則|a+b+c|=()A.0B.2C.2D.4答案:由題意可得:AB+BC=AC,所以c=a+b,所以|a+b+c|=2|c|.因?yàn)檎叫蔚倪呴L(zhǎng)為2,所以|AC|=|c|=2,所以|a+b+c|=2|c|=4.故選D.12.若橢圓x2+4(y-a)2=4與拋物線x2=2y有公共點(diǎn),則實(shí)數(shù)a的取值范圍是______.答案:橢圓x2+4(y-a)2=4與拋物線x2=2y聯(lián)立可得2y=4-4(y-a)2,∴2y2-(4a-1)y+2a2-2=0.∵橢圓x2+4(y-a)2=4與拋物線x2=2y有公共點(diǎn),∴方程2y2-(4a-1)y+2a2-2=0至少有一個(gè)非負(fù)根.∴△=(4a-1)2-16(a2-1)=-8a+17≥0,∴a≤178.又∵兩根皆負(fù)時(shí),由韋達(dá)定理可得2a2>2,4a-1<0,∴-1<a<1且a<14,即a<-1.∴方程2y2-(4a-1)y+2a2-2=0至少有一個(gè)非負(fù)根時(shí),-1≤a≤178故為:-1≤a≤17813.參數(shù)方程(0<θ<2π)表示()

A.雙曲線的一支,這支過(guò)點(diǎn)(1,)

B.拋物線的一部分,這部分過(guò)(1,)

C.雙曲線的一支,這支過(guò)點(diǎn)(-1,)

D.拋物線的一部分,這部分過(guò)(-1,)答案:B14.4名學(xué)生參加3項(xiàng)不同的競(jìng)賽,則不同參賽方法有()A.34B.A43C.3!D.43答案:由題意知本題是一個(gè)分步計(jì)數(shù)問(wèn)題,首先第一名學(xué)生從三種不同的競(jìng)賽中選有三種不同的結(jié)果,第二名學(xué)生從三種不同的競(jìng)賽中選有3種結(jié)果,同理第三個(gè)和第四個(gè)同學(xué)從三種競(jìng)賽中選都有3種結(jié)果,∴根據(jù)分步計(jì)數(shù)原理得到共有3×3×3×3=34故選A.15.到兩定點(diǎn)A(0,0),B(3,4)距離之和為5的點(diǎn)的軌跡是()

A.橢圓

B.AB所在直線

C.線段AB

D.無(wú)軌跡答案:C16.已知a,b,c是空間的一個(gè)基底,且實(shí)數(shù)x,y,z使xa+yb+zc=0,則x2+y2+z2=______.答案:∵a,b,c是空間的一個(gè)基底∴a,b,c兩兩不共線∵xa+yb+zc=0∴x=y=z=0∴x2+y2+z2=0故為:017.求證:菱形各邊中點(diǎn)在以對(duì)角線的交點(diǎn)為圓心的同一個(gè)圓上.答案:已知:如圖,菱形ABCD的對(duì)角線AC和BD相交于點(diǎn)O.求證:菱形ABCD各邊中點(diǎn)M、N、P、Q在以O(shè)為圓心的同一個(gè)圓上.證明:∵四邊形ABCD是菱形,∴AC⊥BD,垂足為O,且AB=BC=CD=DA,而M、N、P、Q分別是邊AB、BC、CD、DA的中點(diǎn),∴OM=ON=OP=OQ=12AB,∴M、N、P、Q四點(diǎn)在以O(shè)為圓心OM為半徑的圓上.所以菱形各邊中點(diǎn)在以對(duì)角線的交點(diǎn)為圓心的同一個(gè)圓上.18.已知點(diǎn)G是△ABC的重心,點(diǎn)P是△GBC內(nèi)一點(diǎn),若,則λ+μ的取值范圍是()

A.

B.

C.

D.(1,2)答案:B19.從數(shù)字1,2,3,4,5中任取兩個(gè)不同的數(shù)字構(gòu)成一個(gè)兩位數(shù),這個(gè)兩位數(shù)大于40的概率()A.15B.25C.35D.45答案:由題意知本題是一個(gè)古典概型,試驗(yàn)發(fā)生包含的事件是從數(shù)字1,2,3,4,5中任取兩個(gè)不同的數(shù)字構(gòu)成一個(gè)兩位數(shù),共有A52=20種結(jié)果,滿足條件的事件可以列舉出有,41,41,43,45,54,53,52,51共有8個(gè),根據(jù)古典概型概率公式得到P=820=25,故選B.20.如圖是一個(gè)實(shí)物圖形,則它的左視圖大致為()A.

B.

C.

D.

答案:∵左視圖是指由物體左邊向右做正投影得到的視圖,并且在左視圖中看到的線用實(shí)線,看不到的線用虛線,∴該幾何體的左視圖應(yīng)當(dāng)是包含一條從左上到右下的對(duì)角線的矩形,并且對(duì)角線在左視圖中為實(shí)線,故選D.21.已知圓的方程是(x-2)2+(y-3)2=4,則點(diǎn)P(3,2)滿足()

A.是圓心

B.在圓上

C.在圓內(nèi)

D.在圓外答案:C22.某程序框圖如圖所示,若a=3,則該程序運(yùn)行后,輸出的x值為_(kāi)_____.答案:由題意,x的初值為1,每次進(jìn)行循環(huán)體則執(zhí)行乘二加一的運(yùn)算,執(zhí)行4次后所得的結(jié)果是:1×2+1=3,3×2+1=7,7×2+1=15,15×2+1=31,故為:31.23.若圖中的直線l1,l2,l3的斜率分別為k1,k2,k3,則()

A.k1<k2<k3

B.k3<k1<k2

C.k3<k2<k1

D.k1<k3<k2

答案:D24.已知△ABC的頂點(diǎn)B、C在橢圓+y2=1上,頂點(diǎn)A是橢圓的一個(gè)焦點(diǎn),且橢圓的另外一個(gè)焦點(diǎn)在BC邊上,則△ABC的周長(zhǎng)是()

A.2

B.6

C.4

D.12答案:C25.與橢圓+y2=1共焦點(diǎn)且過(guò)點(diǎn)P(2,1)的雙曲線方程是()

A.-y2=1

B.-y2=1

C.-=1

D.x2-=1答案:B26.在曲線(t為參數(shù))上的點(diǎn)是()

A.(1,-1)

B.(4,21)

C.(7,89)

D.答案:A27.(難線性運(yùn)算、坐標(biāo)運(yùn)算)已知0<x<1,0<y<1,求M=x2+y2+x2+(1-y)2+(1-x)2+y2+(1-x)2+(1-y)2的最小值.答案:設(shè)A(0,0),B(1,0),C(1,1),D(0,1),P(x,y),則M=|PA|+|PD|+|PB|+|PC|=(|PA|+|PC|)+(|PB|+|PD|)=(|AP|+|PC|)+(|BP|+|PD|)≥|AP+PC|+|BP+PD|=|AC|+|BD|.而AC=(1,1),BD=(-1,1),得|AC|+|BD|=2+2=22.∴M≥22,當(dāng)AP與PC同向,BP與PD同向時(shí)取等號(hào),設(shè)PC=λAP,PD=μBP,則1-x=λx,1-y=λy,-x=μx-μ,1-y=μy,解得λ=μ=1,x=y=12.所以,當(dāng)x=y=12時(shí),M的最小值為22.28.若log

23(x-2)≥0,則x的范圍是______.答案:由log

23(x-2)≥0=log231,可得0<x-2≤1,解得2<x≤3,故為(2,3].29.想要檢驗(yàn)是否喜歡參加體育活動(dòng)是不是與性別有關(guān),應(yīng)該檢驗(yàn)()

A.H0:男性喜歡參加體育活動(dòng)

B.H0:女性不喜歡參加體育活動(dòng)

C.H0:喜歡參加體育活動(dòng)與性別有關(guān)

D.H0:喜歡參加體育活動(dòng)與性別無(wú)關(guān)答案:D30.設(shè)k>1,則關(guān)于x,y的方程(1-k)x2+y2=k2-1所表示的曲線是()

A.長(zhǎng)軸在x軸上的橢圓

B.長(zhǎng)軸在y軸上的橢圓

C.實(shí)軸在x軸上的雙曲線

D.實(shí)軸在y軸上的雙曲線答案:D31.隋機(jī)變量X~B(6,),則P(X=3)=()

A.

B.

C.

D.答案:C32.某種肥皂原零售價(jià)每塊2元,凡購(gòu)買2塊以上(包括2塊),商場(chǎng)推出兩種優(yōu)惠銷售辦法。第一種:一塊肥皂按原價(jià),其余按原價(jià)的七折銷售;第二種:全部按原價(jià)的八折銷售。你在購(gòu)買相同數(shù)量肥皂的情況下,要使第一種方法比第二種方法得到的優(yōu)惠多,最少需要買(

)塊肥皂。

A.5

B.2

C.3

D.4答案:D33.b=ac(a,b,c∈R)是a、b、c成等比數(shù)列的()A.必要非充分條件B.充分非必要條件C.充要條件D.既非充分又非必要條件答案:當(dāng)b=a=0時(shí),b=ac推不出a,x,b成等比數(shù)列成立,故不充分;當(dāng)a,b,c成等比數(shù)列且a<0,b<0,c<0時(shí),得不到b=ac故不必要.故選:D34.已知A、B、M三點(diǎn)不共線,對(duì)于平面ABM外的任意一點(diǎn)O,確定在下列條件下,點(diǎn)P是否與A、B、M一定共面,答案:解:為共面向量,∴P與A、B、M共面,,根據(jù)空間向量共面的推論,P位于平面ABM內(nèi)的充要條件是,∴P與A、B、M不共面.35.已知f(x)是定義域?yàn)檎麛?shù)集的函數(shù),對(duì)于定義域內(nèi)任意的k,若f(k)≥k2成立,則f(k+1)≥(k+1)2成立,下列命題成立的是()A.若f(3)≥9成立,則對(duì)于任意k≥1,均有f(k)≥k2成立;B.若f(4)≥16成立,則對(duì)于任意的k≥4,均有f(k)<k2成立;C.若f(7)≥49成立,則對(duì)于任意的k<7,均有f(k)<k2成立;D.若f(4)=25成立,則對(duì)于任意的k≥4,均有f(k)≥k2成立答案:對(duì)A,當(dāng)k=1或2時(shí),不一定有f(k)≥k2成立;對(duì)B,應(yīng)有f(k)≥k2成立;對(duì)C,只能得出:對(duì)于任意的k≥7,均有f(k)≥k2成立,不能得出:任意的k<7,均有f(k)<k2成立;對(duì)D,∵f(4)=25≥16,∴對(duì)于任意的k≥4,均有f(k)≥k2成立.故選D36.如圖所示,已知P是平行四邊形ABCD所在平面外一點(diǎn),連結(jié)PA、PB、PC、PD,點(diǎn)E、F、G、H分別為△PAB、△PBC、△PCD、△PDA的重心,求證:E、F、G、H四點(diǎn)共面答案:證明:分別延長(zhǎng)P、PF、PG、PH交對(duì)邊于M、N、Q、R.∵E、F、G、H分別是所在三角形的重心,∴M、N、Q、R為所在邊的中點(diǎn),順次連結(jié)MNQR所得四邊形為平行四邊形,且有∵M(jìn)NQR為平行四邊形,∴由共面向量定理得E、F、G、H四點(diǎn)共面.37.若關(guān)于x的不等式(1+k2)x≤k4+4的解集是M,則對(duì)任意實(shí)常數(shù)k,總有(

A.

B.

C.

D.,0∈M答案:A38.隋機(jī)變量X~B(6,),則P(X=3)=()

A.

B.

C.

D.答案:C39.已知|a|=3,|b|=2,a與b的夾角為300,則|a+b|等于()A.13B.15C.17D.19答案:∵|a|=3,|b|=2,a與b的夾角為300,∴a?b=|a||b|cos30°=2×3×32=3則|a+b|=a2+2a?b+b2=13故選A40.在我市新一輪農(nóng)村電網(wǎng)改造升級(jí)過(guò)程中,需要選一個(gè)電阻調(diào)試某村某設(shè)備的線路,但調(diào)試者手中必有阻值分別為0.5KΩ,1KΩ,1.3KΩ,2KΩ,3KΩ,5KΩ,5.5KΩ等七種阻值不等的定值電阻,他用分?jǐn)?shù)法進(jìn)行優(yōu)選試驗(yàn)時(shí),依次將電阻從小到大安排序號(hào),如果第1個(gè)試點(diǎn)與第2個(gè)試點(diǎn)比較,第1個(gè)試點(diǎn)是一個(gè)好點(diǎn),則第3個(gè)試點(diǎn)值的阻值為[

]A、1KΩ

B、1.3KΩ

C、5KΩ

D、1KΩ或5KΩ答案:C41.將兩個(gè)數(shù)a=8,b=17交換,使a=17,b=8,下面語(yǔ)句正確一組是()

A.

B.

C.

D.

答案:B42.a、b、c∈R,則下列命題為真命題的是______.

①若a>b,則ac2>bc2

②若ac2>bc2,則a>b

③若a<b<0,則a2>ab>b2

④若a<b<0,則1a<1b.答案:當(dāng)c=0時(shí),ac2=bc2,故①不成立;若ac2>bc2,則c2≠0,即c2>0,則a>b,故②成立;若a<b<0,則a2>ab且ab>b2,故a2>ab>b2,故③成立;若a<b<0,則ab>0,故aab<bab,即1a>1b,故④不成立故②③為真命題故為:②③43.一個(gè)正三棱錐的底面邊長(zhǎng)等于一個(gè)球的半徑,該正三棱錐的高等于這個(gè)球的直徑,則球的體積與正三棱錐體積的比值為()

A.

B.

C.

D.答案:A44.不等式:>0的解集為A.(-2,1)B.(2,+∞)C.(-2,1)∪(2,+∞)D.(-∞,-2)∪(1,+∞)答案:C解析:不等式:>0,∴,原不等式的解集為(-2,1)∪(2,+∞),選C。45.以下關(guān)于排序的說(shuō)法中,正確的是(

)A.排序就是將數(shù)按從小到大的順序排序B.排序只有兩種方法,即直接插入排序和冒泡排序C.用冒泡排序把一列數(shù)從小到大排序時(shí),最小的數(shù)逐趟向上漂浮D.用冒泡排序把一列數(shù)從小到大排序時(shí),最大的數(shù)逐趟向上漂浮答案:C解析:由冒泡排序的特點(diǎn)知C正確.46.過(guò)P(-1,1),Q(3,9)兩點(diǎn)的直線的斜率為(

A.2

B.

C.4

D.答案:A47.已知A(1,0,0)、B(0,1,0)、C(0,0,1)三點(diǎn),n=(1,1,1),則以n為方向向量的直線l與平面ABC的關(guān)系是()A.垂直B.不垂直C.平行D.以上都有可能答案:由題意,AB=(-1,1,0),BC=(0,-1,1)∵n?AB=0,n?BC=0∴以n為方向向量的直線l與平面ABC垂直故選A.48.有一段“三段論”推理是這樣的:對(duì)于可導(dǎo)函數(shù)f(x),如果f'(x0)=0,那么x=x0是函數(shù)f(x)的極值點(diǎn),因?yàn)楹瘮?shù)f(x)=x3在x=0處的導(dǎo)數(shù)值f'(0)=0,所以,x=0是函數(shù)f(x)=x3的極值點(diǎn).以上推理中()

A.大前提錯(cuò)誤

B.小前提錯(cuò)誤

C.推理形式錯(cuò)誤

D.結(jié)論正確答案:A49.根據(jù)學(xué)過(guò)的知識(shí),試把“推理與證明”這一章的知識(shí)結(jié)構(gòu)圖畫出來(lái).答案:根據(jù)“推理與證明”這一章的知識(shí)可得結(jié)構(gòu)圖,如圖所示.50.如圖所示,CD為Rt△ABC斜邊AB邊上的中線,CE⊥CD,CE=103,連接DE交BC于點(diǎn)F,AC=4,BC=3.

求證:(1)△ABC∽△EDC;

(2)DF=EF.答案:證明:(1)∵CD為Rt△ABC斜邊AB邊上的中線∴CD=12AB=12AC2+BC2=52.∴CECD=10352=43=ACBC,∠ACB=∠DCE=90°.∴△ABC∽△EDC.(2)因?yàn)椤鰽BC∽△EDC∴∠B=∠CDE,∠E=∠A.由CD為Rt△ABC斜邊AB邊上的中線得:CD=AD=DB?∠B=∠DCB,∠A=∠DCA∴∠DCB=∠CDE?DF=CF;又因?yàn)椋骸螪CA+∠DCB=∠DCB+∠BCE=90°;∴∠DCA=∠BCE=∠A=∠E∴CF=EF.∴DF=EF.第3卷一.綜合題(共50題)1.72的正約數(shù)(包括1和72)共有______個(gè).答案:72=23×32.∴2m?3n(0≤m≤3,0≤n≤2,m,n∈N)都是72的正約數(shù).m的取法有4種,n的取法有3種,由分步計(jì)數(shù)原理共3×4個(gè).故為:12.2.O為△ABC平面上一定點(diǎn),該平面上一動(dòng)點(diǎn)p滿足M={P|OP=OA+λ(AB|AB|sinC+AC|AC|sinB)

,λ>0},則△ABC的()一定屬于集合M.A.重心B.垂心C.外心D.內(nèi)心答案:如圖:D是BC的中點(diǎn),在△ABC中,由正弦定理得,|AB|sinC=|AC|sinB即sinc|AB|=sinB||AC|,設(shè)t=sinc|AB|=sinB||AC|,代入OP=OA+λ(AB|AB|sinC+AC|AC|sinB)得,OP=OA+λt(AB+AC)①,∵D是BC的中點(diǎn),∴AB+AC=2AD,代入①得,OP=OA+2λtAD,∴AP=2λtAD且λ、t都是常數(shù),則AP∥AD,∴點(diǎn)P得軌跡是直線AD,△ABC的重心一定屬于集合M,故選A.3.(選做題)參數(shù)方程中當(dāng)t為參數(shù)時(shí),化為普通方程為(

)。答案:x2-y2=14.已知圓柱與圓錐的底面積相等,高也相等,它們的體積分別為V1和V2,則V1:V2=()A.1:3B.1:1C.2:1D.3:1答案:設(shè)圓柱,圓錐的底面積為S,高為h,則由柱體,錐體的體積公式得:V1:V2=(Sh):(13Sh)=3:1故選D.5.一個(gè)樣本a,99,b,101,c中五個(gè)數(shù)恰成等差數(shù)列,則這個(gè)樣本的極差與標(biāo)準(zhǔn)差分別為(

)。答案:4;6.已知圓C:x2+y2-4x-6y+12=0的圓心在點(diǎn)C,點(diǎn)A(3,5),求:

(1)過(guò)點(diǎn)A的圓的切線方程;

(2)O點(diǎn)是坐標(biāo)原點(diǎn),連接OA,OC,求△AOC的面積S.答案:(1)⊙C:(x-2)2+(y-3)2=1.當(dāng)切線的斜率不存在時(shí),對(duì)直線x=3,C(2,3)到直線的距離為1,滿足條件;當(dāng)k存在時(shí),設(shè)直線y-5=k(x-3),即y=kx+5-3k,∴|-k+2|k2+1=1,得k=34.∴得直線方程x=3或y=34x+114.(2)|AO|=9+25=34,l:5x-3y=0,d=134,S=12d|AO|=12.7.拋物線y=-12x2上一點(diǎn)N到其焦點(diǎn)F的距離是3,則點(diǎn)N到直線y=1的距離等于______.答案:∵拋物線y=-12x2化成標(biāo)準(zhǔn)方程為x2=-2y∴拋物線的焦點(diǎn)為F(0,-12),準(zhǔn)線方程為y=12∵點(diǎn)N在拋物線上,到焦點(diǎn)F的距離是3,∴點(diǎn)N到準(zhǔn)線y=12的距離也是3因此,點(diǎn)N到直線y=1的距離等于3+(1-12)=72故為:728.函數(shù)數(shù)列{fn(x)}滿足:f1(x)=x1+x2(x>0),fn+1(x)=f1[fn(x)]

(1)求f2(x),f3(x);

(2)猜想fn(x)的表達(dá)式,并證明你的結(jié)論.答案:(1)f2(x)=f1(f1(x))=f1(x)1+f21(x)=x1+2x2f3(x)=f1(f2(x))=f2(x)1+f22(x)=x1+3x2(2)猜想:fn(x)=x1+nx2(n∈N*)下面用數(shù)學(xué)歸納法證明:①當(dāng)n=1時(shí),f1(x)=x1+x22,已知,顯然成立②假設(shè)當(dāng)n=K(K∈N*)4時(shí),猜想成立,即fk(x)=x1+kx2則當(dāng)n=K+1時(shí),fk+1(x)=f1(fk(x))=fk(x)1+f2k(x)=x1+kx21+(x1+kx2)2=x1+(k+1)x2即對(duì)n=K+1時(shí),猜想也成立.結(jié)合①②可知:猜想fn(x)=x1+nx2對(duì)一切n∈N*都成立.9.若向量a,b,c滿足a∥b且a⊥c,則c(a+2b)=______.答案:∵a∥b∴存在λ使b=λa∵a⊥c∴a?c=0∴c?(a+2b)=c?a+2c?b=2c?λa=0故為:0.10.若直線x-y-1=0與直線x-ay=0的夾角為,則實(shí)數(shù)a等于()

A.

B.0

C.

D.0或答案:D11.有一個(gè)質(zhì)地均勻的正四面體,它的四個(gè)面上分別標(biāo)有1,2,3,4這四個(gè)數(shù)字.現(xiàn)將它連續(xù)拋擲3次,其底面落于桌面,記三次在正四面體底面的數(shù)字和為S,則“S恰好為4”的概率為_(kāi)_____.答案:由題意知本題是一個(gè)古典概型,試驗(yàn)發(fā)生包含的事件是拋擲這顆正四面體骰子兩次,共有4×4×4=64種結(jié)果,滿足條件的事件是三次在正四面體底面的數(shù)字和為S,S恰好為4,可以列舉出這種事件,(1,1,2),(1,2,1),(2,1,1)共有3種結(jié)果,根據(jù)古典概型概率公式得到P=364,故為:364.12.若向量a=(2,-3,1),b=(2,0,3),c=(0,2,2),則a?(b+c)=33.答案:∵b+c=(2,0,3)+(0,2,2)=(2,2,5),∴a?(b+c)=(2,-3,1)?(2,2,5)=4-6+5=3.故為:3.13.一條直線的傾斜角的余弦值為32,則此直線的斜率為()A.3B.±3C.33D.±33答案:設(shè)直線的傾斜角為α,∵α∈[0,π),cosα=32∴α=π6因此,直線的斜率k=tanα=33故選:C14.當(dāng)a>0時(shí),不等式組的解集為(

)。答案:當(dāng)a>時(shí)為;當(dāng)a=時(shí)為{};當(dāng)0<a<時(shí)為[a,1-a]15.若a、b是直線,α、β是平面,a⊥α,b⊥β,向量m在a上,向量n在b上,m=(0,3,4),n=(3,4,0),則α、β所成二面角中較小的一個(gè)余弦值為_(kāi)_____.答案:由題意,∵m=(0,3,4),n=(3,4,0),∵cos<m,n>=m?n|m||n|=125?5=1225∵a⊥α,b⊥β,向量m在a上,向量n在b上,∴α、β所成二面角中較小的一個(gè)余弦值為1225故為122516.用樣本估計(jì)總體,下列說(shuō)法正確的是()A.樣本的結(jié)果就是總體的結(jié)果B.樣本容量越大,估計(jì)就越精確C.樣本容量越小,估計(jì)就越精確D.樣本的方差可以近似地反映總體的平均狀態(tài)答案:用樣本估計(jì)總體時(shí),樣本容量越大,估計(jì)就越精確,樣本的平均值可以近似地反映總體的平均狀態(tài),樣本的標(biāo)準(zhǔn)差可以近似地反映總體的波動(dòng)狀態(tài),數(shù)據(jù)的方差越大,說(shuō)明數(shù)據(jù)越不穩(wěn)定,樣本的結(jié)果可以粗略的估計(jì)總體的結(jié)果,但不就是總體的結(jié)果.故選B.17.已知點(diǎn)M在平面ABC內(nèi),并且對(duì)空間任意一點(diǎn)O,有OM=xOA+13OB+13OC,則x的值為()A.1B.0C.3D.13答案:解∵OM=xOA+13OB+13OC,且M,A,B,C四點(diǎn)共面,∴必有x+13+13=1,解之可得x=13,故選D18.等腰三角形兩腰所在的直線方程是l1:7x-y-9=0,l2:x+y-7=0,它的底邊所在直線經(jīng)過(guò)點(diǎn)A(3,-8),求底邊所在直線方程.答案:設(shè)l1,l2,底邊所在直線的斜率分別為k1,k2,k;由l1:7x-y-9=0得y=7x-9,所以k1=7,由l2:x+y-7=0得y=-x+7,所以k2=-1;…(2分)如圖,由等腰三角形性質(zhì),可知:l到l1的角=l2到l的角;由到角公式得:7-k1+7k=k-(-1)1+k(-1)…(4分)解出:k=-3或k=13…(6分)由已知:底邊經(jīng)過(guò)點(diǎn)A(3,-8),代入點(diǎn)斜式,得出直線方程:y-(-8)=(-3)(x-3)或y-(-8)=13(x-3)…(7分)3x+y-1=0或x-3y-27=0.…(8分)19.參數(shù)方程(θ為參數(shù))化為普通方程是()

A.2x-y+4=0

B.2x+y-4=0

C.2x-y+4=0,x∈[2,3]

D.2x+y-4=0,x∈[2,3]答案:D20.三直線ax+2y+8=0,4x+3y=10,2x-y=10相交于一點(diǎn),則a的值是(

A.-2

B.-1

C.0

D.1答案:B21.設(shè)雙曲線的兩條漸近線為y=±x,則該雙曲線的離心率e為()

A.5

B.或

C.或

D.答案:C22.已知拋物線C1:x2=2py(p>0)上縱坐標(biāo)為p的點(diǎn)到其焦點(diǎn)的距離為3.

(Ⅰ)求拋物線C1的方程;

(Ⅱ)過(guò)點(diǎn)P(0,-2)的直線交拋物線C1于A,B兩點(diǎn),設(shè)拋物線C1在點(diǎn)A,B處的切線交于點(diǎn)M,

(?。┣簏c(diǎn)M的軌跡C2的方程;

(ⅱ)若點(diǎn)Q為(?。┲星€C2上的動(dòng)點(diǎn),當(dāng)直線AQ,BQ,PQ的斜率kAQ,kBQ,kPQ均存在時(shí),試判斷kPQkAQ+kPQkBQ是否為常數(shù)?若是,求出這個(gè)常數(shù);若不是,請(qǐng)說(shuō)明理由.答案:(Ⅰ)由題意得p+p2=3,則p=2,…(3分)所以拋物線C1的方程為x2=4y.

…(5分)(Ⅱ)(?。┰O(shè)過(guò)點(diǎn)P(0,-2)的直線方程為y=kx-2,A(x1,y1),B(x2,y2),由y=kx-2x2=4y得x2-4kx+8=0.由△>0,得k<-2或k>2,x1+x2=4k,x1x2=8.…(7分)拋物線C1在點(diǎn)A,B處的切線方程分別為y-y1=x12(x-x1),y-y2=x22(x-x2),即y=x12x-x214,y=x22x-x224,由y=x12x-x214y=x22x-x224得x=x1+x22=2ky=x1x24=2.所以點(diǎn)M的軌跡C2的方程為y=2

(x<-22或x>22).…(10分)(ⅱ)設(shè)Q(m,2)(|m|>22),則kPQ=4m,kAQ=y1-2x1-m,kBQ=y2-2x2-m.…(11分)所以kPQkAQ+kPQkBQ=4m(1kAQ+1kBQ)=4m(x1-my1-2+x2-my2-2)…(12分)=4m[(x1-m)(y2-2)+(x2-m)(y1-2)(y1-2)(y2-2)]=4m[2kx1x2-(mk+4)(x1+x2)+8mk2x1x2-4k(x1+x2)+16]=4m[16k-(mk+4)?4k+8m8k2-4k?4k+16]=4m[8m-4mk216-8k2]=4m[4m(2-k2)8(2-k2)]=2,即kPQkAQ+kPQkBQ為常數(shù)2.

…(15分)23.給出下列問(wèn)題:

(1)求面積為1的正三角形的周長(zhǎng);

(2)求鍵盤所輸入的三個(gè)數(shù)的算術(shù)平均數(shù);

(3)求鍵盤所輸入兩個(gè)數(shù)的最小數(shù);

(4)求函數(shù)f(x)=2xx2(x≥3)(x<3)當(dāng)自變量取相應(yīng)值時(shí)的函數(shù)值.

其中不需要用條件語(yǔ)句描述的算法的問(wèn)題有()A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)答案:(1)求面積為1的正三角形的周長(zhǎng)用順序結(jié)構(gòu)即可,故不需要用條件語(yǔ)句描述;(2)求鍵盤所輸入的三個(gè)數(shù)的算術(shù)平均數(shù)用順序結(jié)構(gòu)即可解決問(wèn)題,不需要用條件語(yǔ)句描述;(3)求鍵盤所輸入兩個(gè)數(shù)的最小數(shù),由于要作出判斷,找出最小數(shù),故本問(wèn)題的解決要用到條件語(yǔ)句描述;(4)求函數(shù)f(x)=2xx2(x≥3)(x<3)當(dāng)自變量取相應(yīng)值時(shí)的函數(shù)值,由于此函數(shù)是一個(gè)分段函數(shù),所以要用條件結(jié)構(gòu)選擇相應(yīng)的函數(shù)解析式,需要用條件語(yǔ)句描述.綜上,(3)(4)兩個(gè)問(wèn)題要用到條件語(yǔ)句描述,(1),(2)不需要用條件語(yǔ)句描述故選B24.直三棱柱ABC-A1B1C1中,若CA=a

CB=b

CC1=c

則A1B=()A.a(chǎn)+b-cB.a(chǎn)-b+cC.-a+b+cD.-a+b-c答案:A1B=A1A+AB=-CC1+CB-CA=-a+b-c故選D.25.若命題“p∧q”為假,且“¬p”為假,則()A.p或q為假B.q假C.q真D.不能判斷q的真假答案:因?yàn)椤?p”為假,所以p為真;又因?yàn)椤皃∧q”為假,所以q為假.對(duì)于A,p或q為真,對(duì)于C,D,顯然錯(cuò),故選B.26.已知平面α內(nèi)有一個(gè)點(diǎn)A(2,-1,2),α的一個(gè)法向量為=(3,1,2),則下列點(diǎn)P中,在平面α內(nèi)的是()

A.(1,-1,1)

B.(1,3,)

C.,(1,-3,)

D.(-1,3,-)答案:B27.由9個(gè)正數(shù)組成的矩陣

中,每行中的三個(gè)數(shù)成等差數(shù)列,且a11+a12+a13,a21+a22+a23,a31+a32+a33成等比數(shù)列,給出下列判斷:①第2列a12,a22,a32必成等比數(shù)列;②第1列a11,a21,a31不一定成等比數(shù)列;③a12+a32≥a21+a23;④若9個(gè)數(shù)之和等于9,則a22≥1.其中正確的個(gè)數(shù)有()

A.1個(gè)

B.2個(gè)

C.3個(gè)

D.4個(gè)答案:B28.用秦九韶算法求多項(xiàng)式

在的值.答案:.解析:可根據(jù)秦九韶算法原理,將所給多項(xiàng)式改寫,然后由內(nèi)到外逐次計(jì)算即可.

而,所以有,,,,,.即.【名師指引】利用秦九韶算法計(jì)算多項(xiàng)式值關(guān)鍵是能正確地將所給多項(xiàng)式改寫,然后由內(nèi)到外逐次計(jì)算,由于后項(xiàng)計(jì)算需用到前項(xiàng)的結(jié)果,故應(yīng)認(rèn)真、細(xì)心,確保中間結(jié)果的準(zhǔn)確性.29.已知x,y的取值如下表所示:

x3711y102024從散點(diǎn)圖分析,y與x線性相關(guān),且y=74x+a,則a=______.答案:∵線性回歸方程為y=74x+a,,又∵線性回歸方程過(guò)樣本中心點(diǎn),.x=3+7+113=7,.y=10+20+243=18,∴回歸方程過(guò)點(diǎn)(7,18)∴18=74×7+a,∴a=234.故為:234.30.某公司招聘員工,經(jīng)過(guò)筆試確定面試對(duì)象人數(shù),面試對(duì)象人數(shù)按擬錄用人數(shù)分段計(jì)算,計(jì)算公式為y=4x1≤x≤102x+1010<x≤1001.5xx>100其中x代表擬錄用人數(shù),y代表面試對(duì)象人數(shù).若應(yīng)聘的面試對(duì)象人數(shù)為60人,則該公司擬錄用人數(shù)為()A.15B.40C.25D.130答案:由題意知:當(dāng)10<x≤100時(shí),y=2x+10∈(30,210],又因?yàn)?0∈(30,210],∴2x+10=60,∴x=25.故:該公司擬錄用人數(shù)為25人.故選C.31.已知點(diǎn)P(3,m)在以點(diǎn)F為焦點(diǎn)的拋物線x=4t2y=4t(t為參數(shù))上,則|PF|的長(zhǎng)為_(kāi)_____.答案:∵拋物線x=4t2y=4t(t為參數(shù))上,∴y2=4x,∵點(diǎn)P(3,m)在以點(diǎn)F為焦點(diǎn)的拋物線x=4t2y=4t(t為參數(shù))上,∴m2=4×3=12,∴P(3,23)∵F(1,0),∴|PF|=22+(23)2=4,故為4.32.過(guò)直線x+y-22=0上點(diǎn)P作圓x2+y2=1的兩條切線,若兩條切線的夾角是60°,則點(diǎn)P的坐標(biāo)是______.答案:根據(jù)題意畫出相應(yīng)的圖形,如圖所示:直線PA和PB為過(guò)點(diǎn)P的兩條切線,且∠APB=60°,設(shè)P的坐標(biāo)為(a,b),連接OP,OA,OB,∴OA⊥AP,OB⊥BP,PO平分∠APB,∴∠OAP=∠OBP=90°,∠APO=∠BPO=30°,又圓x2+y2=1,即圓心坐標(biāo)為(0,0),半徑r=1,∴OA=OB=1,∴OP=2AO=2BO=2,∴a2+b2=2,即a2+b2=4①,又P在直線x+y-22=0上,∴a+b-22=0,即a+b=22②,聯(lián)立①②解得:a=b=2,則P的坐標(biāo)為(2,2).故為:(2,2)33.下列四個(gè)命題中,正確的有

個(gè)

①;

②;

③,使;

④,使為29的約數(shù).答案:兩解析::①∵(-3)2-4×2×40,∴①正確;②∵2×(-1)+1=-1x,∴③不正確;④x=1是29的約數(shù),∴④正確;∴正確的有兩個(gè)點(diǎn)評(píng):本題考查全稱命題、特稱命題,容易題34.直線kx-y+1=3k,當(dāng)k變動(dòng)時(shí),所有直線都通過(guò)定點(diǎn)

A.(0,0)

B.(0,1)

C.(3,1)

D.(2,1)答案:C35.已知x1,x2,…,xn都是正數(shù),且x1+x2+…+xn=1,求證:

++…+≥n2.答案:證明略解析:證明

++…+=(x1+x2+…+xn)(

++…+)≥=n2.36.直線y=33x繞原點(diǎn)逆時(shí)針?lè)较蛐D(zhuǎn)30°后,所得直線與圓(x-2)2+y2=3的交點(diǎn)個(gè)數(shù)是______.答案:∵直線y=33x的斜率為33,∴此直線的傾斜角為30°,∴此直線繞原點(diǎn)逆時(shí)針?lè)较蛐D(zhuǎn)30°后傾斜角為60°,∴此直線旋轉(zhuǎn)后的方程為y=3x,由圓(x-2)2+y2=3,得到圓心坐標(biāo)為(2,0),半徑r=3,∵圓心到直線y=3x的距離d=232=3=r,∴該直線與圓相切,則直線與圓(x-2)2+y2=3的交點(diǎn)個(gè)數(shù)是1.故為:137.如圖中的陰影部分用集合表示為_(kāi)_____.答案:由已知中陰影部分所表示的集合元素滿足是A的元素且C的元素,或是B的元素”,故陰影部分所表示的集合是(A∪C)∩(CUB)故為:B∪(A∩C)38.已知向量a與向量b的夾角為120°,若向量c=a+b,且a⊥c,則|a||b|的值為_(kāi)_____.答案:由題意可知,∵a⊥c,∴a?c=a?(a+b)=a2+a?b=0即|a|2+|a||b|cos120°=0,故|a|2=12|a||b|,故|a||b|=12.故為:1239.根據(jù)《中華人民共和國(guó)道路交通安全法》規(guī)定

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論