2023屆北京市部分區(qū)中考數(shù)學(xué)全真模擬試題含解析_第1頁
2023屆北京市部分區(qū)中考數(shù)學(xué)全真模擬試題含解析_第2頁
2023屆北京市部分區(qū)中考數(shù)學(xué)全真模擬試題含解析_第3頁
2023屆北京市部分區(qū)中考數(shù)學(xué)全真模擬試題含解析_第4頁
2023屆北京市部分區(qū)中考數(shù)學(xué)全真模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2023年中考數(shù)學(xué)模擬試卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.在一個口袋中有4個完全相同的小球,把它們分別標(biāo)號為1,2,3,4,隨機地摸出一個小球然后放回,再隨機地摸出一個小球.則兩次摸出的小球的標(biāo)號的和等于6的概率為()A. B. C. D.2.如圖,以AD為直徑的半圓O經(jīng)過Rt△ABC斜邊AB的兩個端點,交直角邊AC于點E;B、E是半圓弧的三等分點,的長為,則圖中陰影部分的面積為()A. B. C. D.3.cos30°的相反數(shù)是()A. B. C. D.4.某中學(xué)籃球隊12名隊員的年齡如下表:年齡:(歲)13141516人數(shù)1542關(guān)于這12名隊員的年齡,下列說法錯誤的是()A.眾數(shù)是14歲 B.極差是3歲 C.中位數(shù)是14.5歲 D.平均數(shù)是14.8歲5.等腰三角形一邊長等于5,一邊長等于10,它的周長是()A.20 B.25 C.20或25 D.156.如圖,AB∥CD,AD與BC相交于點O,若∠A=50°10′,∠COD=100°,則∠C等于()A.30°10′ B.29°10′ C.29°50′ D.50°10′7.如圖,在平面直角坐標(biāo)系中,點A在第一象限,點P在x軸上,若以P,O,A為頂點的三角形是等腰三角形,則滿足條件的點P共有()A.2個 B.3個 C.4個 D.5個8.如圖分別是某班全體學(xué)生上學(xué)時乘車、步行、騎車人數(shù)的分布直方圖和扇形統(tǒng)計圖(兩圖都不完整),下列結(jié)論錯誤的是()A.該班總?cè)藬?shù)為50 B.步行人數(shù)為30C.乘車人數(shù)是騎車人數(shù)的2.5倍 D.騎車人數(shù)占20%9.下列說法正確的是()A.對角線相等且互相垂直的四邊形是菱形B.對角線互相平分的四邊形是正方形C.對角線互相垂直的四邊形是平行四邊形D.對角線相等且互相平分的四邊形是矩形10.如圖,在?ABCD中,∠DAB的平分線交CD于點E,交BC的延長線于點G,∠ABC的平分線交CD于點F,交AD的延長線于點H,AG與BH交于點O,連接BE,下列結(jié)論錯誤的是()A.BO=OHB.DF=CEC.DH=CGD.AB=AE11.在平面直角坐標(biāo)系xOy中,將點N(–1,–2)繞點O旋轉(zhuǎn)180°,得到的對應(yīng)點的坐標(biāo)是()A.(1,2) B.(–1,2)C.(–1,–2) D.(1,–2)12.長城、故宮等是我國第一批成功入選世界遺產(chǎn)的文化古跡,長城總長約6700000米,將6700000用科學(xué)記數(shù)法表示應(yīng)為()A.6.7×106B.6.7×10﹣6C.6.7×105D.0.67×107二、填空題:(本大題共6個小題,每小題4分,共24分.)13.分解因式:_________.14.如圖,直線l1∥l2∥l3,直線AC分別交l1,l2,l3于點A,B,C;直線DF分別交l1,l2,l3于點D,E,F(xiàn).AC與DF相交于點H,且AH=2,HB=1,BC=5,則DEEF的值為15.如圖,正方形ABCD中,E是BC邊上一點,以E為圓心,EC為半徑的半圓與以A為圓心,AB為半徑的圓弧外切,則sin∠EAB的值為.16.若a是方程的根,則=_____.17.如圖,點G是△ABC的重心,CG的延長線交AB于D,GA=5cm,GC=4cm,GB=3cm,將△ADG繞點D旋轉(zhuǎn)180°得到△BDE,△ABC的面積=_____cm1.18.如圖,一束光線從點A(3,3)出發(fā),經(jīng)過y軸上點C反射后經(jīng)過點B(1,0),則光線從點A到點B經(jīng)過的路徑長為_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)投資1萬元圍一個矩形菜園(如圖),其中一邊靠墻,另外三邊選用不同材料建造.墻長24m,平行于墻的邊的費用為200元/m,垂直于墻的邊的費用為150元/m,設(shè)平行于墻的邊長為xm設(shè)垂直于墻的一邊長為ym,直接寫出y與x之間的函數(shù)關(guān)系式;若菜園面積為384m2,求x的值;求菜園的最大面積.20.(6分)已知關(guān)于x的方程x2-(m+2)x+(2m-1)=0。求證:方程恒有兩個不相等的實數(shù)根;若此方程的一個根是1,請求出方程的另一個根,并求以此兩根為邊長的直角三角形的周長。21.(6分)一輛汽車行駛時的耗油量為0.1升/千米,如圖是油箱剩余油量(升)關(guān)于加滿油后已行駛的路程(千米)的函數(shù)圖象.根據(jù)圖象,直接寫出汽車行駛400千米時,油箱內(nèi)的剩余油量,并計算加滿油時油箱的油量;求關(guān)于的函數(shù)關(guān)系式,并計算該汽車在剩余油量5升時,已行駛的路程.22.(8分)如圖,已知,請用尺規(guī)過點作一條直線,使其將分成面積比為兩部分.(保留作圖痕跡,不寫作法)23.(8分)綜合與探究如圖1,平面直角坐標(biāo)系中,拋物線y=ax2+bx+3與x軸分別交于點A(﹣2,0),B(4,0),與y軸交于點C,點D是y軸負半軸上一點,直線BD與拋物線y=ax2+bx+3在第三象限交于點E(﹣4,y)點F是拋物線y=ax2+bx+3上的一點,且點F在直線BE上方,將點F沿平行于x軸的直線向右平移m個單位長度后恰好落在直線BE上的點G處.(1)求拋物線y=ax2+bx+3的表達式,并求點E的坐標(biāo);(2)設(shè)點F的橫坐標(biāo)為x(﹣4<x<4),解決下列問題:①當(dāng)點G與點D重合時,求平移距離m的值;②用含x的式子表示平移距離m,并求m的最大值;(3)如圖2,過點F作x軸的垂線FP,交直線BE于點P,垂足為F,連接FD.是否存在點F,使△FDP與△FDG的面積比為1:2?若存在,直接寫出點F的坐標(biāo);若不存在,說明理由.24.(10分)如圖,某校教學(xué)樓AB的后面有一建筑物CD,當(dāng)光線與地面的夾角是22o時,教學(xué)樓在建筑物的墻上留下高2m的影子CE;而當(dāng)光線與地面的夾角是45o時,教學(xué)樓頂A在地面上的影子F與墻角C有13m的距離(B、F、C在一條直線上).求教學(xué)樓AB的高度;學(xué)校要在A、E之間掛一些彩旗,請你求出A、E之間的距離(結(jié)果保留整數(shù)).25.(10分)已知:如圖,在△OAB中,OA=OB,⊙O經(jīng)過AB的中點C,與OB交于點D,且與BO的延長線交于點E,連接EC,CD.(1)試判斷AB與⊙O的位置關(guān)系,并加以證明;(2)若tanE=,⊙O的半徑為3,求OA的長.26.(12分)我們把兩條中線互相垂直的三角形稱為“中垂三角形”.例如圖1,圖2,圖1中,AF,BE是△ABC的中線,AF⊥BE,垂足為P,像△ABC這樣的三角形均為“中垂三角形”.設(shè)BC=a,AC=b,AB=c.特例探索(1)如圖1,當(dāng)∠ABE=45°,c=時,a=,b=;如圖2,當(dāng)∠ABE=10°,c=4時,a=,b=;歸納證明(2)請你觀察(1)中的計算結(jié)果,猜想a2,b2,c2三者之間的關(guān)系,用等式表示出來,請利用圖1證明你發(fā)現(xiàn)的關(guān)系式;拓展應(yīng)用(1)如圖4,在□ABCD中,點E,F(xiàn),G分別是AD,BC,CD的中點,BE⊥EG,AD=,AB=1.求AF的長.27.(12分)觀察下列等式:第1個等式:;第2個等式:;第3個等式:;第4個等式:;…請解答下列問題:按以上規(guī)律列出第5個等式:a5==;用含有n的代數(shù)式表示第n個等式:an==(n為正整數(shù));求a1+a2+a3+a4+…+a100的值.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】列舉出所有情況,看兩次摸出的小球的標(biāo)號的和等于6的情況數(shù)占總情況數(shù)的多少即可.解:共16種情況,和為6的情況數(shù)有3種,所以概率為.故選C.2、D【解析】

連接BD,BE,BO,EO,先根據(jù)B、E是半圓弧的三等分點求出圓心角∠BOD的度數(shù),再利用弧長公式求出半圓的半徑R,再利用圓周角定理求出各邊長,通過轉(zhuǎn)化將陰影部分的面積轉(zhuǎn)化為S△ABC﹣S扇形BOE,然后分別求出面積相減即可得出答案.【詳解】解:連接BD,BE,BO,EO,∵B,E是半圓弧的三等分點,∴∠EOA=∠EOB=∠BOD=60°,∴∠BAD=∠EBA=30°,∴BE∥AD,∵的長為,∴解得:R=4,∴AB=ADcos30°=,∴BC=AB=,∴AC=BC=6,∴S△ABC=×BC×AC=××6=,∵△BOE和△ABE同底等高,∴△BOE和△ABE面積相等,∴圖中陰影部分的面積為:S△ABC﹣S扇形BOE=故選:D.【點睛】本題主要考查弧長公式,扇形面積公式,圓周角定理等,掌握圓的相關(guān)性質(zhì)是解題的關(guān)鍵.3、C【解析】

先將特殊角的三角函數(shù)值代入求解,再求出其相反數(shù).【詳解】∵cos30°=,∴cos30°的相反數(shù)是,故選C.【點睛】本題考查了特殊角的三角函數(shù)值,解答本題的關(guān)鍵是掌握幾個特殊角的三角函數(shù)值以及相反數(shù)的概念.4、D【解析】分別利用極差以及中位數(shù)和眾數(shù)以及平均數(shù)的求法分別分析得出答案.解:由圖表可得:14歲的有5人,故眾數(shù)是14,故選項A正確,不合題意;極差是:16﹣13=3,故選項B正確,不合題意;中位數(shù)是:14.5,故選項C正確,不合題意;平均數(shù)是:(13+14×5+15×4+16×2)÷12≈14.5,故選項D錯誤,符合題意.故選D.“點睛”此題主要考查了極差以及中位數(shù)和眾數(shù)以及平均數(shù)的求法,正確把握相關(guān)定義是解題關(guān)鍵.5、B【解析】

題目中沒有明確腰和底,故要分情況討論,再結(jié)合三角形的三邊關(guān)系分析即可.【詳解】當(dāng)5為腰時,三邊長為5、5、10,而,此時無法構(gòu)成三角形;當(dāng)5為底時,三邊長為5、10、10,此時可以構(gòu)成三角形,它的周長故選B.6、C【解析】

根據(jù)平行線性質(zhì)求出∠D,根據(jù)三角形的內(nèi)角和定理得出∠C=180°-∠D-∠COD,代入求出即可.【詳解】∵AB∥CD,∴∠D=∠A=50°10′,∵∠COD=100°,∴∠C=180°-∠D-∠COD=29°50′.故選C.【點睛】本題考查了三角形的內(nèi)角和定理和平行線的性質(zhì)的應(yīng)用,關(guān)鍵是求出∠D的度數(shù)和得出∠C=180°-∠D-∠COD.應(yīng)該掌握的是三角形的內(nèi)角和為180°.7、C【解析】

分為三種情況:①AP=OP,②AP=OA,③OA=OP,分別畫出即可.【詳解】如圖,分OP=AP(1點),OA=AP(1點),OA=OP(2點)三種情況討論.∴以P,O,A為頂點的三角形是等腰三角形,則滿足條件的點P共有4個.故選C.【點睛】本題考查了等腰三角形的判定和坐標(biāo)與圖形的性質(zhì),主要考查學(xué)生的動手操作能力和理解能力,注意不要漏解.8、B【解析】

根據(jù)乘車人數(shù)是25人,而乘車人數(shù)所占的比例是50%,即可求得總?cè)藬?shù),然后根據(jù)百分比的含義即可求得步行的人數(shù),以及騎車人數(shù)所占的比例.【詳解】A、總?cè)藬?shù)是:25÷50%=50(人),故A正確;B、步行的人數(shù)是:50×30%=15(人),故B錯誤;C、乘車人數(shù)是騎車人數(shù)倍數(shù)是:50%÷20%=2.5,故C正確;D、騎車人數(shù)所占的比例是:1-50%-30%=20%,故D正確.由于該題選擇錯誤的,故選B.【點睛】本題考查讀頻數(shù)分布直方圖的能力和利用統(tǒng)計圖獲取信息的能力;利用統(tǒng)計圖獲取信息時,必須認(rèn)真觀察、分析、研究統(tǒng)計圖,才能作出正確的判斷和解決問題.9、D【解析】分析:根據(jù)菱形,正方形,平行四邊形,矩形的判定定理,進行判定,即可解答.詳解:A、對角線互相平分且垂直的四邊形是菱形,故錯誤;

B、四條邊相等的四邊形是菱形,故錯誤;

C、對角線相互平分的四邊形是平行四邊形,故錯誤;

D、對角線相等且相互平分的四邊形是矩形,正確;

故選D.點睛:本題考查了菱形,正方形,平行四邊形,矩形的判定定理,解決本題的關(guān)鍵是熟記四邊形的判定定理.10、D【解析】解:∵四邊形ABCD是平行四邊形,∴AH∥BG,AD=BC,∴∠H=∠HBG.∵∠HBG=∠HBA,∴∠H=∠HBA,∴AH=AB.同理可證BG=AB,∴AH=BG.∵AD=BC,∴DH=CG,故C正確.∵AH=AB,∠OAH=∠OAB,∴OH=OB,故A正確.∵DF∥AB,∴∠DFH=∠ABH.∵∠H=∠ABH,∴∠H=∠DFH,∴DF=DH.同理可證EC=CG.∵DH=CG,∴DF=CE,故B正確.無法證明AE=AB,故選D.11、A【解析】

根據(jù)點N(–1,–2)繞點O旋轉(zhuǎn)180°,所得到的對應(yīng)點與點N關(guān)于原點中心對稱求解即可.【詳解】∵將點N(–1,–2)繞點O旋轉(zhuǎn)180°,∴得到的對應(yīng)點與點N關(guān)于原點中心對稱,∵點N(–1,–2),∴得到的對應(yīng)點的坐標(biāo)是(1,2).故選A.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),由旋轉(zhuǎn)的性質(zhì)得到的對應(yīng)點與點N關(guān)于原點中心對稱是解答本題的關(guān)鍵.12、A【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負數(shù).【詳解】解:6700000=6.7×106,故選:A【點睛】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】先提取公因式b,再利用完全平方公式進行二次分解.解答:解:a1b-1ab+b,=b(a1-1a+1),…(提取公因式)=b(a-1)1.…(完全平方公式)14、3【解析】試題解析:∵AH=2,HB=1,∴AB=AH+BH=3,∵l1∥l2∥l3,∴DE考點:平行線分線段成比例.15、.【解析】試題分析:設(shè)正方形的邊長為y,EC=x,由題意知,AE2=AB2+BE2,即(x+y)2=y2+(y-x)2,由于y≠0,化簡得y=4x,∴sin∠EAB=.考點:1.相切兩圓的性質(zhì);2.勾股定理;3.銳角三角函數(shù)的定義16、1【解析】

利用一元二次方程解的定義得到3a2-a=2,再把變形為,然后利用整體代入的方法計算.【詳解】∵a是方程的根,

∴3a2-a-2=0,

∴3a2-a=2,

∴==5-2×2=1.

故答案為:1.【點睛】此題考查一元二次方程的解,解題關(guān)鍵在于掌握能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.17、18【解析】

三角形的重心是三條中線的交點,根據(jù)中線的性質(zhì),S△ACD=S△BCD;再利用勾股定理逆定理證明BG⊥CE,從而得出△BCD的高,可求△BCD的面積.【詳解】∵點G是△ABC的重心,∴∵GB=3,EG=GC=4,BE=GA=5,∴,即BG⊥CE,∵CD為△ABC的中線,∴∴故答案為:18.【點睛】考查三角形重心的性質(zhì),中線的性質(zhì),旋轉(zhuǎn)的性質(zhì),勾股定理逆定理等,綜合性比較強,對學(xué)生要求較高.18、2【解析】

延長AC交x軸于B′.根據(jù)光的反射原理,點B、B′關(guān)于y軸對稱,CB=CB′.路徑長就是AB′的長度.結(jié)合A點坐標(biāo),運用勾股定理求解.【詳解】解:如圖所示,延長AC交x軸于B′.則點B、B′關(guān)于y軸對稱,CB=CB′.作AD⊥x軸于D點.則AD=3,DB′=3+1=1.由勾股定理AB′=2∴AC+CB=AC+CB′=AB′=2.即光線從點A到點B經(jīng)過的路徑長為2.考點:解直角三角形的應(yīng)用點評:本題考查了直角三角形的有關(guān)知識,同時滲透光學(xué)中反射原理,構(gòu)造直角三角形是解決本題關(guān)鍵三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)見詳解;(2)x=18;(3)416m2.【解析】

(1)根據(jù)“垂直于墻的長度=可得函數(shù)解析式;(2)根據(jù)矩形的面積公式列方程求解可得;(3)根據(jù)矩形的面積公式列出總面積關(guān)于x的函數(shù)解析式,配方成頂點式后利用二次函數(shù)的性質(zhì)求解可得.【詳解】(1)根據(jù)題意知,y==-x+;(2)根據(jù)題意,得(-x+)x=384,解得x=18或x=32.∵墻的長度為24m,∴x=18.(3)設(shè)菜園的面積是S,則S=(-x+)x=-x2+x=-(x-25)2+.∵-<0,∴當(dāng)x<25時,S隨x的增大而增大.∵x≤24,∴當(dāng)x=24時,S取得最大值,最大值為416.答:菜園的最大面積為416m2.【點睛】本題主要考查二次函數(shù)和一元二次方程的應(yīng)用,解題的關(guān)鍵是將實際問題轉(zhuǎn)化為一元二次方程和二次函數(shù)的問題.20、(1)見詳解;(2)4+或4+.【解析】

(1)根據(jù)關(guān)于x的方程x2-(m+2)x+(2m-1)=0的根的判別式的符號來證明結(jié)論.(2)根據(jù)一元二次方程的解的定義求得m值,然后由根與系數(shù)的關(guān)系求得方程的另一根.分類討論:①當(dāng)該直角三角形的兩直角邊是2、3時,②當(dāng)該直角三角形的直角邊和斜邊分別是2、3時,由勾股定理求出得該直角三角形的另一邊,再根據(jù)三角形的周長公式進行計算.【詳解】解:(1)證明:∵△=(m+2)2-4(2m-1)=(m-2)2+4,∴在實數(shù)范圍內(nèi),m無論取何值,(m-2)2+4≥4>0,即△>0.∴關(guān)于x的方程x2-(m+2)x+(2m-1)=0恒有兩個不相等的實數(shù)根.(2)∵此方程的一個根是1,∴12-1×(m+2)+(2m-1)=0,解得,m=2,則方程的另一根為:m+2-1=2+1=3.①當(dāng)該直角三角形的兩直角邊是1、3時,由勾股定理得斜邊的長度為,該直角三角形的周長為1+3+=4+.②當(dāng)該直角三角形的直角邊和斜邊分別是1、3時,由勾股定理得該直角三角形的另一直角邊為;則該直角三角形的周長為1+3+=4+.21、(1)汽車行駛400千米,剩余油量30升,加滿油時,油量為70升;(2)已行駛的路程為650千米.【解析】

(1)觀察圖象,即可得到油箱內(nèi)的剩余油量,根據(jù)耗油量計算出加滿油時油箱的油量;用待定系數(shù)法求出一次函數(shù)解析式,再代入進行運算即可.【詳解】(1)汽車行駛400千米,剩余油量30升,即加滿油時,油量為70升.(2)設(shè),把點,坐標(biāo)分別代入得,,∴,當(dāng)時,,即已行駛的路程為650千米.【點睛】本題主要考查了待定系數(shù)法求一次函數(shù)解析式,一次函數(shù)圖象上點的坐標(biāo)特征等,關(guān)鍵是掌握待定系數(shù)法求函數(shù)解析式.22、詳見解析【解析】

先作出AB的垂直平分線,而AB的垂直平分線交AB于D,再作出AD的垂直平分線,而AD的垂直平分線交AD于E,即可得到答案.【詳解】如圖作出AB的垂直平分線,而AB的垂直平分線交AB于D,再作出AD的垂直平分線,而AD的垂直平分線交AD于E,故AE=AD,AD=BD,故AE=AB,而BE=AB,而△AEC與△CEB在AB邊上的高相同,所以△CEB的面積是△AEC的面積的3倍,即S△AEC∶S△CEB=1∶3.【點睛】本題主要考查了三角形的基本概念和尺規(guī)作圖,解本題的要點在于找到AB的四分之一點,即可得到答案.23、(3)(﹣4,﹣6);(3)①-3;②4;(2)F的坐標(biāo)為(﹣3,0)或(﹣3,).【解析】

(3)先將A(﹣3,0),B(4,0),代入y=ax3+bx+2求出a,b的值即可求出拋物線的表達式,再將E點坐標(biāo)代入表達式求出y的值即可;(3)①設(shè)直線BD的表達式為y=kx+b,將B(4,0),E(﹣4,﹣6)代入求出k,b的值,再將x=0代入表達式求出D點坐標(biāo),當(dāng)點G與點D重合時,可得G點坐標(biāo),GF∥x軸,故可得F的縱坐標(biāo),再將y=﹣2代入拋物線的解析式求解可得點F的坐標(biāo),再根據(jù)m=FG即可得m的值;②設(shè)點F與點G的坐標(biāo),根據(jù)m=FG列出方程化簡可得出m的二次函數(shù)關(guān)系式,再根據(jù)二次函數(shù)的圖象可得m的取值范圍;(2)分別分析當(dāng)點F在x軸的左側(cè)時與右側(cè)時的兩種情況,根據(jù)△FDP與△FDG的面積比為3:3,故PD:DG=3:3.已知FP∥HD,則FH:HG=3:3.再分別設(shè)出F,G點的坐標(biāo),再根據(jù)兩點關(guān)系列出等式化簡求解即可得F的坐標(biāo).【詳解】解:(3)將A(﹣3,0),B(4,0),代入y=ax3+bx+2得:,解得:,∴拋物線的表達式為y=﹣x3+x+2,把E(﹣4,y)代入得:y=﹣6,∴點E的坐標(biāo)為(﹣4,﹣6).(3)①設(shè)直線BD的表達式為y=kx+b,將B(4,0),E(﹣4,﹣6)代入得:,解得:,∴直線BD的表達式為y=x﹣2.把x=0代入y=x﹣2得:y=﹣2,∴D(0,﹣2).當(dāng)點G與點D重合時,G的坐標(biāo)為(0,﹣2).∵GF∥x軸,∴F的縱坐標(biāo)為﹣2.將y=﹣2代入拋物線的解析式得:﹣x3+x+2=﹣2,解得:x=+3或x=﹣+3.∵﹣4<x<4,∴點F的坐標(biāo)為(﹣+3,﹣2).∴m=FG=﹣3.②設(shè)點F的坐標(biāo)為(x,﹣x3+x+2),則點G的坐標(biāo)為(x+m,(x+m)﹣2),∴﹣x3+x+2=(x+m)﹣2,化簡得,m=﹣x3+4,∵﹣<0,∴m有最大值,當(dāng)x=0時,m的最大值為4.(2)當(dāng)點F在x軸的左側(cè)時,如下圖所示:∵△FDP與△FDG的面積比為3:3,∴PD:DG=3:3.∵FP∥HD,∴FH:HG=3:3.設(shè)F的坐標(biāo)為(x,﹣x3+x+2),則點G的坐標(biāo)為(﹣3x,﹣x﹣2),∴﹣x3+x+2=﹣x﹣2,整理得:x3﹣6x﹣36=0,解得:x=﹣3或x=4(舍去),∴點F的坐標(biāo)為(﹣3,0).當(dāng)點F在x軸的右側(cè)時,如下圖所示:∵△FDP與△FDG的面積比為3:3,∴PD:DG=3:3.∵FP∥HD,∴FH:HG=3:3.設(shè)F的坐標(biāo)為(x,﹣x3+x+2),則點G的坐標(biāo)為(3x,x﹣2),∴﹣x3+x+2=x﹣2,整理得:x3+3x﹣36=0,解得:x=﹣3或x=﹣﹣3(舍去),∴點F的坐標(biāo)為(﹣3,).綜上所述,點F的坐標(biāo)為(﹣3,0)或(﹣3,).【點睛】本題考查了二次函數(shù)的應(yīng)用,解題的關(guān)鍵是熟練的掌握二次函數(shù)的應(yīng)用.24、(1)2m(2)27m【解析】

(1)首先構(gòu)造直角三角形△AEM,利用,求出即可.(2)利用Rt△AME中,,求出AE即可.【詳解】解:(1)過點E作EM⊥AB,垂足為M.設(shè)AB為x.在Rt△ABF中,∠AFB=45°,∴BF=AB=x,∴BC=BF+FC=x+1.在Rt△AEM中,∠AEM=22°,AM=AB-BM=AB-CE=x-2,又∵,∴,解得:x≈2.∴教學(xué)樓的高2m.(2)由(1)可得ME=BC=x+1≈2+1=3.在Rt△AME中,,∴AE=MEcos22°≈.∴A、E之間的距離約為27m.25、(1)AB與⊙O的位置關(guān)系是相切,證明見解析;(2)OA=1.【解析】

(1)先判斷AB與⊙O的位置關(guān)系,然后根據(jù)等腰三角形的性質(zhì)即可解答本題;(2)根據(jù)題三角形的相似可以求得BD的長,從而可以得到OA的長.【詳解】解:(1)AB與⊙O的位置關(guān)系是相切,證明:如圖,連接OC.∵OA=OB,C為AB的中點,∴OC⊥AB.∴AB是⊙O的切線;(2)∵ED是直徑,∴∠ECD=90°.∴∠E+∠ODC=90°.又∵∠BCD+∠OCD=90°,∠OCD=∠ODC,∴∠BCD=∠E.又∵∠CBD=∠EBC,∴△BCD∽△BEC.∴.∴B

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論