2023屆廣東省惠州惠陽區(qū)六校聯考中考數學猜題卷含解析_第1頁
2023屆廣東省惠州惠陽區(qū)六校聯考中考數學猜題卷含解析_第2頁
2023屆廣東省惠州惠陽區(qū)六校聯考中考數學猜題卷含解析_第3頁
2023屆廣東省惠州惠陽區(qū)六校聯考中考數學猜題卷含解析_第4頁
2023屆廣東省惠州惠陽區(qū)六校聯考中考數學猜題卷含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖所示,將矩形紙片ABCD折疊,使點D與點B重合,點C落在點C′處,折痕為EF,若∠ABE=20°,那么∠EFC′的度數為()A.115° B.120° C.125° D.130°2.如圖,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于點D,PE⊥OB于點E.如果點M是OP的中點,則DM的長是()A.2 B. C. D.23.如圖,在矩形ABCD中,AB=2,AD=3,點E是BC邊上靠近點B的三等分點,動點P從點A出發(fā),沿路徑A→D→C→E運動,則△APE的面積y與點P經過的路徑長x之間的函數關系用圖象表示大致是()A. B. C. D.4.若a與5互為倒數,則a=()A. B.5 C.-5 D.5.下列運算中,正確的是()A.(ab2)2=a2b4B.a2+a2=2a4C.a2?a3=a6D.a6÷a3=a26.如圖是一個由5個相同的正方體組成的立體圖形,它的三視圖是()A. B.C. D.7.不等式組的解集在數軸上表示正確的是()A. B. C. D.8.下列實數中,在2和3之間的是()A. B. C. D.9.如圖所示的幾何體是一個圓錐,下面有關它的三視圖的結論中,正確的是()A.主視圖是中心對稱圖形B.左視圖是中心對稱圖形C.主視圖既是中心對稱圖形又是軸對稱圖形D.俯視圖既是中心對稱圖形又是軸對稱圖形10.如圖,Rt△AOB中,∠AOB=90°,OA在x軸上,OB在y軸上,點A、B的坐標分別為(,0),(0,1),把Rt△AOB沿著AB對折得到Rt△AO′B,則點O′的坐標為()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.我國倡導的“一帶一路”建設將促進我國與世界各國的互利合作,“一帶一路”地區(qū)覆蓋總人口約為4400000000人,將數據4400000000用科學記數法表示為______.12.如圖,點G是△ABC的重心,CG的延長線交AB于D,GA=5cm,GC=4cm,GB=3cm,將△ADG繞點D旋轉180°得到△BDE,△ABC的面積=_____cm1.13.如圖,在菱形ABCD中,AB=,∠B=120°,點E是AD邊上的一個動點(不與A,D重合),EF∥AB交BC于點F,點G在CD上,DG=DE.若△EFG是等腰三角形,則DE的長為_____.14.如圖,學校環(huán)保社成員想測量斜坡CD旁一棵樹AB的高度,他們先在點C處測得樹頂B的仰角為60°,然后在坡頂D測得樹頂B的仰角為30°,已知DE⊥EA,斜坡CD的長度為30m,DE的長為15m,則樹AB的高度是_____m.15.如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,點D是邊AB上的動點,將△ACD沿CD所在的直線折疊至△CDA的位置,CA'交AB于點E.若△A'ED為直角三角形,則AD的長為_____.16.將一個底面半徑為2,高為4的圓柱形紙筒沿一條母線剪開,所得到的側面展開圖形面積為_____.17.有兩名學員小林和小明練習射擊,第一輪10槍打完后兩人打靶的環(huán)數如圖所示,通常新手的成績不太穩(wěn)定,那么根據圖中的信息,估計小林和小明兩人中新手是_______.三、解答題(共7小題,滿分69分)18.(10分)如圖,矩形ABCD中,點P是線段AD上一動點,O為BD的中點,PO的延長線交BC于Q.(1)求證:OP=OQ;(2)若AD=8厘米,AB=6厘米,P從點A出發(fā),以1厘米/秒的速度向D運動(不與D重合).設點P運動時間為t秒,請用t表示PD的長;并求t為何值時,四邊形PBQD是菱形.19.(5分)已知:如圖,AB為⊙O的直徑,C是BA延長線上一點,CP切⊙O于P,弦PD⊥AB于E,過點B作BQ⊥CP于Q,交⊙O于H,(1)如圖1,求證:PQ=PE;(2)如圖2,G是圓上一點,∠GAB=30°,連接AG交PD于F,連接BF,若tan∠BFE=3,求∠C的度數;(3)如圖3,在(2)的條件下,PD=6,連接QC交BC于點M,求QM的長.20.(8分)某校組織學生去9km外的郊區(qū)游玩,一部分學生騎自行車先走,半小時后,其他學生乘公共汽車出發(fā),結果他們同時到達.己知公共汽車的速度是自行車速度的3倍,求自行車的速度和公共汽車的速度分別是多少?21.(10分)2018年湖南省進入高中學習的學生三年后將面對新高考,高考方案與高校招生政策都將有重大變化.某部門為了了解政策的宣傳情況,對某初級中學學生進行了隨機抽樣調查,根據學生對政策的了解程度由高到低分為A,B,C,D四個等級,并對調查結果分析后繪制了如下兩幅圖不完整的統(tǒng)計圖.請你根據圖中提供的信息完成下列問題:(1)求被調查學生的人數,并將條形統(tǒng)計圖補充完整;(2)求扇形統(tǒng)計圖中的A等對應的扇形圓心角的度數;(3)已知該校有1500名學生,估計該校學生對政策內容了解程度達到A等的學生有多少人?22.(10分)發(fā)現如圖1,在有一個“凹角∠A1A2A3”n邊形A1A2A3A4……An中(n為大于3的整數),∠A1A2A3=∠A1+∠A3+∠A4+∠A5+∠A6+……+∠An﹣(n﹣4)×180°.驗證如圖2,在有一個“凹角∠ABC”的四邊形ABCD中,證明:∠ABC=∠A+∠C+∠D.證明3,在有一個“凹角∠ABC”的六邊形ABCDEF中,證明;∠ABC=∠A+∠C+∠D+∠E+∠F﹣360°.延伸如圖4,在有兩個連續(xù)“凹角A1A2A3和∠A2A3A4”的四邊形A1A2A3A4……An中(n為大于4的整數),∠A1A2A3+∠A2A3A4=∠A1+∠A4+∠A5+∠A6……+∠An﹣(n﹣)×180°.23.(12分)如圖平行四邊形ABCD中,對角線AC,BD交于點O,EF過點O,并與AD,BC分別交于點E,F,已知AE=3,BF=5(1)求BC的長;(2)如果兩條對角線長的和是20,求三角形△AOD的周長.24.(14分)如圖,正方形ABCD中,BD為對角線.(1)尺規(guī)作圖:作CD邊的垂直平分線EF,交CD于點E,交BD于點F(保留作圖痕跡,不要求寫作法);(2)在(1)的條件下,若AB=4,求△DEF的周長.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】分析:由已知條件易得∠AEB=70°,由此可得∠DEB=110°,結合折疊的性質可得∠DEF=55°,則由AD∥BC可得∠EFC=125°,再由折疊的性質即可得到∠EFC′=125°.詳解:∵在△ABE中,∠A=90°,∠ABE=20°,∴∠AEB=70°,∴∠DEB=180°-70°=110°,∵點D沿EF折疊后與點B重合,∴∠DEF=∠BEF=∠DEB=55°,∵在矩形ABCD中,AD∥BC,∴∠DEF+∠EFC=180°,∴∠EFC=180°-55°=125°,∴由折疊的性質可得∠EFC′=∠EFC=125°.故選C.點睛:這是一道有關矩形折疊的問題,熟悉“矩形的四個內角都是直角”和“折疊的性質”是正確解答本題的關鍵.2、C【解析】

由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性質,即可求得PE的值,繼而求得OP的長,然后由直角三角形斜邊上的中線等于斜邊的一半,即可求得DM的長.【詳解】解:∵OP平分∠AOB,∠AOB=60°,∴∠AOP=∠COP=30°,∵CP∥OA,∴∠AOP=∠CPO,∴∠COP=∠CPO,∴OC=CP=2,∵∠PCE=∠AOB=60°,PE⊥OB,∴∠CPE=30°,∴CE=CP=1,∴PE=,∴OP=2PE=2,∵PD⊥OA,點M是OP的中點,∴DM=OP=.故選C.考點:角平分線的性質;含30度角的直角三角形;直角三角形斜邊上的中線;勾股定理.3、B【解析】

由題意可知,當時,;當時,;當時,.∵時,;時,.∴結合函數解析式,可知選項B正確.【點睛】考點:1.動點問題的函數圖象;2.三角形的面積.4、A【解析】分析:當兩數的積為1時,則這兩個數互為倒數,根據定義即可得出答案.詳解:根據題意可得:5a=1,解得:a=,故選A.點睛:本題主要考查的是倒數的定義,屬于基礎題型.理解倒數的定義是解題的關鍵.5、A【解析】

直接利用積的乘方運算法則以及合并同類項法則和同底數冪的乘除運算法則分別分析得出答案.【詳解】解:A、(ab2)2=a2b4,故此選項正確;B、a2+a2=2a2,故此選項錯誤;C、a2?a3=a5,故此選項錯誤;D、a6÷a3=a3,故此選項錯誤;故選:A.【點睛】此題主要考查了積的乘方運算以及合并同類項和同底數冪的乘除運算,正確掌握運算法則是解題關鍵.6、D【解析】

找到從正面、左面、上看所得到的圖形即可,注意所有的看到的棱都應表現在視圖中.【詳解】解:此幾何體的主視圖有兩排,從上往下分別有1,3個正方形;

左視圖有二列,從左往右分別有2,1個正方形;

俯視圖有三列,從上往下分別有3,1個正方形,

故選A.【點睛】本題考查了三視圖的知識,關鍵是掌握三視圖所看的位置.掌握定義是關鍵.此題主要考查了簡單組合體的三視圖,準確把握觀察角度是解題關鍵.7、A【解析】分析:分別求出各不等式的解集,再求出其公共解集并在數軸上表示出來,選出符合條件的選項即可.詳解:由①得,x≤1,由②得,x>-1,故此不等式組的解集為:-1<x≤1.在數軸上表示為:故選A.點睛:本題考查的是在數軸上表示一元一此不等式組的解集,把每個不等式的解集在數軸上表示出來(>,≥向右畫;<,≤向左畫),數軸上的點把數軸分成若干段,如果數軸的某一段上面表示解集的線的條數與不等式的個數一樣,那么這段就是不等式組的解集.有幾個就要幾個.在表示解集時“≥”,“≤”要用實心圓點表示;“<”,“>”要用空心圓點表示.8、C【解析】

分析:先求出每個數的范圍,逐一分析得出選項.詳解:A、3<π<4,故本選項不符合題意;

B、1<π?2<2,故本選項不符合題意;

C、2<<3,故本選項符合題意;

D、3<<4,故本選項不符合題意;故選C.點睛:本題考查了估算無理數的大小,能估算出每個數的范圍是解本題的關鍵.9、D【解析】

先得到圓錐的三視圖,再根據中心對稱圖形和軸對稱圖形的定義求解即可.【詳解】解:A、主視圖不是中心對稱圖形,故A錯誤;

B、左視圖不是中心對稱圖形,故B錯誤;

C、主視圖不是中心對稱圖形,是軸對稱圖形,故C錯誤;

D、俯視圖既是中心對稱圖形又是軸對稱圖形,故D正確.

故選:D.【點睛】本題考查簡單幾何體的三視圖,中心對稱圖形和軸對稱圖形,熟練掌握各自的定義是解題關鍵.10、B【解析】

連接OO′,作O′H⊥OA于H.只要證明△OO′A是等邊三角形即可解決問題.【詳解】連接OO′,作O′H⊥OA于H,在Rt△AOB中,∵tan∠BAO==,∴∠BAO=30°,由翻折可知,∠BAO′=30°,∴∠OAO′=60°,∵AO=AO′,∴△AOO′是等邊三角形,∵O′H⊥OA,∴OH=,∴OH′=OH=,∴O′(,),

故選B.【點睛】本題考查翻折變換、坐標與圖形的性質、等邊三角形的判定和性質、銳角三角函數等知識,解題的關鍵是發(fā)現特殊三角形,利用特殊三角形解決問題.二、填空題(共7小題,每小題3分,滿分21分)11、4.4×1【解析】

科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>10時,n是正數;當原數的絕對值<1時,n是負數.【詳解】4400000000的小數點向左移動9位得到4.4,所以4400000000用科學記數法可表示為:4.4×1,故答案為4.4×1.【點睛】本題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.12、18【解析】

三角形的重心是三條中線的交點,根據中線的性質,S△ACD=S△BCD;再利用勾股定理逆定理證明BG⊥CE,從而得出△BCD的高,可求△BCD的面積.【詳解】∵點G是△ABC的重心,∴∵GB=3,EG=GC=4,BE=GA=5,∴,即BG⊥CE,∵CD為△ABC的中線,∴∴故答案為:18.【點睛】考查三角形重心的性質,中線的性質,旋轉的性質,勾股定理逆定理等,綜合性比較強,對學生要求較高.13、1或【解析】

由四邊形ABCD是菱形,得到BC∥AD,由于EF∥AB,得到四邊形ABFE是平行四邊形,根據平行四邊形的性質得到EF∥AB,于是得到EF=AB=,當△EFG為等腰三角形時,①EF=GE=時,于是得到DE=DG=AD÷=1,②GE=GF時,根據勾股定理得到DE=.【詳解】解:∵四邊形ABCD是菱形,∠B=120°,∴∠D=∠B=120°,∠A=180°-120°=60°,BC∥AD,∵EF∥AB,∴四邊形ABFE是平行四邊形,∴EF∥AB,∴EF=AB=,∠DEF=∠A=60°,∠EFC=∠B=120°,∵DE=DG,∴∠DEG=∠DGE=30°,∴∠FEG=30°,當△EFG為等腰三角形時,當EF=EG時,EG=,如圖1,過點D作DH⊥EG于H,∴EH=EG=,在Rt△DEH中,DE==1,GE=GF時,如圖2,過點G作GQ⊥EF,∴EQ=EF=,在Rt△EQG中,∠QEG=30°,∴EG=1,過點D作DP⊥EG于P,∴PE=EG=,同①的方法得,DE=,當EF=FG時,由∠EFG=180°-2×30°=120°=∠CFE,此時,點C和點G重合,點F和點B重合,不符合題意,故答案為1或.【點睛】本題考查了菱形的性質,平行四邊形的性質,等腰三角形的性質以及勾股定理,熟練掌握各性質是解題的關鍵.14、1【解析】

先根據CD=20米,DE=10m得出∠DCE=30°,故可得出∠DCB=90°,再由∠BDF=30°可知∠DBE=60°,由DF∥AE可得出∠BGF=∠BCA=60°,故∠GBF=30°,所以∠DBC=30°,再由銳角三角函數的定義即可得出結論.【詳解】解:作DF⊥AB于F,交BC于G.則四邊形DEAF是矩形,∴DE=AF=15m,∵DF∥AE,∴∠BGF=∠BCA=60°,∵∠BGF=∠GDB+∠GBD=60°,∠GDB=30°,∴∠GDB=∠GBD=30°,∴GD=GB,在Rt△DCE中,∵CD=2DE,∴∠DCE=30°,∴∠DCB=90°,∵∠DGC=∠BGF,∠DCG=∠BFG=90°∴△DGC≌△BGF,∴BF=DC=30m,∴AB=30+15=1(m),故答案為1.【點睛】本題考查的是解直角三角形的應用-仰角俯角問題,熟記銳角三角函數的定義是解答此題的關鍵.15、3﹣或1【解析】

分兩種情況:情況一:如圖一所示,當∠A'DE=90°時;情況二:如圖二所示,當∠A'ED=90°時.【詳解】解:如圖,當∠A'DE=90°時,△A'ED為直角三角形,∵∠A'=∠A=30°,∴∠A'ED=60°=∠BEC=∠B,∴△BEC是等邊三角形,∴BE=BC=1,又∵Rt△ABC中,AB=1BC=4,∴AE=1,設AD=A'D=x,則DE=1﹣x,∵Rt△A'DE中,A'D=DE,∴x=(1﹣x),解得x=3﹣,即AD的長為3﹣;如圖,當∠A'ED=90°時,△A'ED為直角三角形,此時∠BEC=90°,∠B=60°,∴∠BCE=30°,∴BE=BC=1,又∵Rt△ABC中,AB=1BC=4,∴AE=4﹣1=3,∴DE=3﹣x,設AD=A'D=x,則Rt△A'DE中,A'D=1DE,即x=1(3﹣x),解得x=1,即AD的長為1;綜上所述,即AD的長為3﹣或1.故答案為3﹣或1.【點睛】本題考查了翻折變換,勾股定理,等腰直角三角形的判定和性質等知識,添加輔助線,構造直角三角形,學會運用分類討論是解題的關鍵.16、【解析】試題分析:先根據勾股定理求得圓錐的母線長,再根據圓錐的側面積公式求解即可.由題意得圓錐的母線長則所得到的側面展開圖形面積.考點:勾股定理,圓錐的側面積公式點評:解題的關鍵是熟記圓錐的側面積公式:圓錐的側面積底面半徑母線.17、小林【解析】

觀察圖形可知,小林的成績波動比較大,故小林是新手.

故答案是:小林.三、解答題(共7小題,滿分69分)18、(1)證明見解析(2)74【解析】試題分析:(1)先根據四邊形ABCD是矩形,得出AD∥BC,∠PDO=∠QBO,再根據O為BD的中點得出△POD≌△QOB,即可證得OP=OQ;(2)根據已知條件得出∠A的度數,再根據AD=8cm,AB=6cm,得出BD和OD的長,再根據四邊形PBQD是菱形時,利用勾股定理即可求出t的值,判斷出四邊形PBQD是菱形.試題解析:(1)證明:因為四邊形ABCD是矩形,所以AD∥BC,所以∠PDO=∠QBO,又因為O為BD的中點,所以OB=OD,在△POD與△QOB中,∠PDO=∠QBO,OB=OD,∠POD=∠QOB,所以△POD≌△QOB,所以OP=OQ.(2)解:PD=8-t,因為四邊形PBQD是菱形,所以PD=BP=8-t,因為四邊形ABCD是矩形,所以∠A=90°,在Rt△ABP中,由勾股定理得:AB即62解得:t=74即運動時間為74考點:矩形的性質;菱形的性質;全等三角形的判斷和性質勾股定理.19、(1)證明見解析(2)30°(3)QM=【解析】試題分析:(1)連接OP,PB,由已知易證∠OBP=∠OPB=∠QBP,從而可得BP平分∠OBQ,結合BQ⊥CP于點Q,PE⊥AB于點E即可由角平分線的性質得到PQ=PE;(2)如下圖2,連接OP,則由已知易得∠CPO=∠PEC=90°,由此可得∠C=∠OPE,設EF=x,則由∠GAB=30°,∠AEF=90°可得AE=,在Rt△BEF中,由tan∠BFE=可得BE=,從而可得AB=,則OP=OA=,結合AE=可得OE=,這樣即可得到sin∠OPE=,由此可得∠OPE=30°,則∠C=30°;(3)如下圖3,連接BG,過點O作OK⊥HB于點K,結合BQ⊥CP,∠OPQ=90°,可得四邊形POKQ為矩形.由此可得QK=PO,OK∥CQ從而可得∠KOB=∠C=30°;由已知易證PE=,在Rt△EPO中結合(2)可解得PO=6,由此可得OB=QK=6;在Rt△KOB中可解得KB=3,由此可得QB=9;在△ABG中由已知條件可得BG=6,∠ABG=60°;過點G作GN⊥QB交QB的延長線于點N,由∠ABG=∠CBQ=60°,可得∠GBN=60°,從而可得解得GN=,BN=3,由此可得QN=12,則在Rt△BGN中可解得QG=,由∠ABG=∠CBQ=60°可知△BQG中BM是角平分線,由此可得QM:GM=QB:GB=9:6由此即可求得QM的長了.試題解析:(1)如下圖1,連接OP,PB,∵CP切⊙O于P,∴OP⊥CP于點P,又∵BQ⊥CP于點Q,∴OP∥BQ,∴∠OPB=∠QBP,∵OP=OB,∴∠OPB=∠OBP,∴∠QBP=∠OBP,又∵PE⊥AB于點E,∴PQ=PE;(2)如下圖2,連接,∵CP切⊙O于P,∴∴∵PD⊥AB∴∴∴在Rt中,∠GAB=30°∴設EF=x,則在Rt中,tan∠BFE=3∴∴∴∴∴在RtPEO中,∴30°;(3)如下圖3,連接BG,過點O作于K,又BQ⊥CP,∴,∴四邊形POKQ為矩形,∴QK=PO,OK//CQ,∴30°,∵⊙O中PD⊥AB于E,PD=6,AB為⊙O的直徑,∴PE=PD=3,根據(2)得,在RtEPO中,,∴,∴OB=QK=PO=6,∴在Rt中,,∴,∴QB=9,在△ABG中,AB為⊙O的直徑,∴AGB=90°,∵BAG=30°,∴BG=6,ABG=60°,過點G作GN⊥QB交QB的延長線于點N,則∠N=90°,∠GBN=180°-∠CBQ-∠ABG=60°,∴BN=BQ·cos∠GBQ=3,GN=BQ·sin∠GBQ=,∴QN=QB+BN=12,∴在Rt△QGN中,QG=,∵∠ABG=∠CBQ=60°,∴BM是△BQG的角平分線,∴QM:GM=QB:GB=9:6,∴QM=.點睛:解本題第3小題的要點是:(1)作出如圖所示的輔助線,結合已知條件和(2)先求得BQ、BG的長及∠CBQ=∠ABG=60°;(2)再過點G作GN⊥QB并交QB的延長線于點N,解出BN和GN的長,這樣即可在Rt△QGN中求得QG的長,最后在△BQG中“由角平分線分線段成比例定理”即可列出比例式求得QM的長了.20、自行車的速度是12km/h,公共汽車的速度是1km/h.【解析】

設自行車的速度為xkm/h,則公共汽車的速度為3xkm/h,根據題意得:,解分式方程即可.【詳解】解:設自行車的速度為xkm/h,則公共汽車的速度為3xkm/h,根據題意得:,解得:x=12,經檢驗,x=12是原分式方程的解,∴3x=1.答:自行車的速度是12km/h,公共汽車的速度是1km/h.【點睛】本題考核知識點:列分式方程解應用題.解題關鍵點:找出相等關系,列出方程.21、(1)圖見解析;(2)126°;(3)1.【解析】

(1)利用被調查學生的人數=了解程度達到B等的學生數÷所占比例,即可得出被調查學生的人數,由了解程度達到C等占到的比例可求出了解程度達到C等的學生數,再利用了解程度達到A等的學生數=被調查學生的人數-了解程度達到B等的學生數-了解程度達到C等的學生數-了解程度達到D等的學生數可求出了解程度達到A等的學生數,依此數據即可將條形統(tǒng)計圖補充完整;(2)根據A等對應的扇形圓心角的度數=了解程度達到A等的學生數÷被調查學生的人數×360°,即可求出結論;(3)利用該校現有學生數×了解程度達到A等的學生所占比例,即可得出結論.【詳解】(1)48÷40%=120(人),120×15%=18(人),120-48-18-12=42(人).將條形統(tǒng)計圖補充完整,如圖所示.(2)42÷120×100%×360°=126°.答:扇形統(tǒng)計圖中的A等對應的扇形圓心角為126°.(3)1500×=1(人).答:該校學生對政策內容了解程度達到A等的學生有1人.【點睛】本題考查了條形統(tǒng)計圖、扇形統(tǒng)計圖以及用樣本估計總體,觀察條形統(tǒng)計圖及扇形統(tǒng)計圖,找出各數據,再利用各數量間的關系列式計算是解題的關鍵.22、(1)見解析;(2)見解析;(3)1.【解析】

(1)如圖2,延長AB交CD于E,可知∠ABC=∠BEC+∠C,∠BEC=∠A+∠D,即可解答(2)如圖3,延長AB交CD于G,可知∠ABC=∠BGC+∠C,即可解答(3)如圖4,延長A2A3交A5A4于C,延長A3A2交A1An于B,可知∠A1A2A3+∠A2A3A4=∠A

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論