2023屆廣西北海市合浦縣教育局教研室中考二模數(shù)學試題含解析_第1頁
2023屆廣西北海市合浦縣教育局教研室中考二模數(shù)學試題含解析_第2頁
2023屆廣西北海市合浦縣教育局教研室中考二模數(shù)學試題含解析_第3頁
2023屆廣西北海市合浦縣教育局教研室中考二模數(shù)學試題含解析_第4頁
2023屆廣西北海市合浦縣教育局教研室中考二模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數(shù)學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.將拋物線y=x2﹣6x+21向左平移2個單位后,得到新拋物線的解析式為()A.y=(x﹣8)2+5 B.y=(x﹣4)2+5 C.y=(x﹣8)2+3 D.y=(x﹣4)2+32.《九章算術》是我國古代數(shù)學的經典著作,書中有一個問題:“今有黃金九枚,白銀一十一枚,稱之重適等.交易其一,金輕十三兩.問金、銀一枚各重幾何?”.意思是:甲袋中裝有黃金9枚(每枚黃金重量相同),乙袋中裝有白銀11枚(每枚白銀重量相同),稱重兩袋相等.兩袋互相交換1枚后,甲袋比乙袋輕了13兩(袋子重量忽略不計).問黃金、白銀每枚各重多少兩?設每枚黃金重x兩,每枚白銀重y兩,根據(jù)題意得()A.B.C.D.3.下列圖形中,線段MN的長度表示點M到直線l的距離的是()A. B. C. D.4.如圖,△ABC是等腰直角三角形,∠A=90°,BC=4,點P是△ABC邊上一動點,沿B→A→C的路徑移動,過點P作PD⊥BC于點D,設BD=x,△BDP的面積為y,則下列能大致反映y與x函數(shù)關系的圖象是()A.B.C.D.5.點A、C為半徑是4的圓周上兩點,點B為的中點,以線段BA、BC為鄰邊作菱形ABCD,頂點D恰在該圓半徑的中點上,則該菱形的邊長為()A.或2 B.或2 C.2或2 D.2或26.初三(1)班的座位表如圖所示,如果如圖所示建立平面直角坐標系,并且“過道也占一個位置”,例如小王所對應的坐標為(3,2),小芳的為(5,1),小明的為(10,2),那么小李所對應的坐標是()A.(6,3) B.(6,4) C.(7,4) D.(8,4)7.已知點為某封閉圖形邊界上一定點,動點從點出發(fā),沿其邊界順時針勻速運動一周.設點運動的時間為,線段的長為.表示與的函數(shù)關系的圖象大致如右圖所示,則該封閉圖形可能是()A. B. C. D.8.tan60°的值是()A. B. C. D.9.如果與互補,與互余,則與的關系是()A. B.C. D.以上都不對10.如圖,A(4,0),B(1,3),以OA、OB為邊作□OACB,反比例函數(shù)(k≠0)的圖象經過點C.則下列結論不正確的是()A.□OACB的面積為12B.若y<3,則x>5C.將□OACB向上平移12個單位長度,點B落在反比例函數(shù)的圖象上.D.將□OACB繞點O旋轉180°,點C的對應點落在反比例函數(shù)圖象的另一分支上.11.如圖,拋物線y=ax2+bx+c與x軸交于點A(-1,0),頂點坐標(1,n)與y軸的交點在(0,2),(0,3)之間(包含端點),則下列結論:①3a+b<0;②-1≤a≤-23;③對于任意實數(shù)m,a+b≥am2+bm總成立;④關于x的方程ax2A.1個B.2個C.3個D.4個12.的絕對值是()A.﹣4 B. C.4 D.0.4二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,△ABC中,AB=AC,D是AB上的一點,且AD=AB,DF∥BC,E為BD的中點.若EF⊥AC,BC=6,則四邊形DBCF的面積為____.14.9的算術平方根是.15.在一次數(shù)學測試中,同年級人數(shù)相同的甲、乙兩個班的成績統(tǒng)計如下表:班級平均分中位數(shù)方差甲班乙班數(shù)學老師讓同學們針對統(tǒng)計的結果進行一下評估,學生的評估結果如下:這次數(shù)學測試成績中,甲、乙兩個班的平均水平相同;甲班學生中數(shù)學成績95分及以上的人數(shù)少;乙班學生的數(shù)學成績比較整齊,分化較?。鲜鲈u估中,正確的是______填序號16.如圖,一次函數(shù)y=x﹣2的圖象與反比例函數(shù)y=(k>0)的圖象相交于A、B兩點,與x軸交與點C,若tan∠AOC=,則k的值為_____.17.如圖,在正方形ABCD中,E是AB上一點,BE=2,AE=3BE,P是AC上一動點,則PB+PE的最小值是.18.已知菱形的周長為10cm,一條對角線長為6cm,則這個菱形的面積是_____cm1.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)計算下列各題:(1)tan45°?sin60°?cos30°;(2)sin230°+sin45°?tan30°.20.(6分)如圖,在平面直角坐標系中,點O為坐標原點,已知△ABC三個定點坐標分別為A(﹣4,1),B(﹣3,3),C(﹣1,2).畫出△ABC關于x軸對稱的△A1B1C1,點A,B,C的對稱點分別是點A1、B1、C1,直接寫出點A1,B1,C1的坐標:A1(,),B1(,),C1(,);畫出點C關于y軸的對稱點C2,連接C1C2,CC2,C1C,并直接寫出△CC1C2的面積是.21.(6分)如圖,AB是⊙O的直徑,C是弧AB的中點,弦CD與AB相交于E.若∠AOD=45°,求證:CE=ED;(2)若AE=EO,求tan∠AOD的值.22.(8分)先化簡,再求值:(﹣1)÷,其中x=1.23.(8分)在平面直角坐標系xOy中,若拋物線頂點A的橫坐標是,且與y軸交于點,點P為拋物線上一點.求拋物線的表達式;若將拋物線向下平移4個單位,點P平移后的對應點為如果,求點Q的坐標.24.(10分)計算:|﹣1|+﹣(1﹣)0﹣()﹣1.25.(10分)計算:÷(﹣1)26.(12分)列方程或方程組解應用題:去年暑期,某地由于暴雨導致電路中斷,該地供電局組織電工進行搶修.供電局距離搶修工地15千米.搶修車裝載著所需材料先從供電局出發(fā),10分鐘后,電工乘吉普車從同一地點出發(fā),結果他們同時到達搶修工地.已知吉普車速度是搶修車速度的1.5倍,求吉普車的速度.27.(12分)如圖所示,一堤壩的坡角,坡面長度米(圖為橫截面),為了使堤壩更加牢固,一施工隊欲改變堤壩的坡面,使得坡面的坡角,則此時應將壩底向外拓寬多少米?(結果保留到米)(參考數(shù)據(jù):,,)

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】

直接利用配方法將原式變形,進而利用平移規(guī)律得出答案.【詳解】y=x2﹣6x+21=(x2﹣12x)+21=[(x﹣6)2﹣16]+21=(x﹣6)2+1,故y=(x﹣6)2+1,向左平移2個單位后,得到新拋物線的解析式為:y=(x﹣4)2+1.故選D.【點睛】本題考查了二次函數(shù)圖象與幾何變換,熟記函數(shù)圖象平移的規(guī)律并正確配方將原式變形是解題關鍵.2、D【解析】

根據(jù)題意可得等量關系:①9枚黃金的重量=11枚白銀的重量;②(10枚白銀的重量+1枚黃金的重量)-(1枚白銀的重量+8枚黃金的重量)=13兩,根據(jù)等量關系列出方程組即可.【詳解】設每枚黃金重x兩,每枚白銀重y兩,由題意得:,故選:D.【點睛】此題主要考查了由實際問題抽象出二元一次方程組,關鍵是正確理解題意,找出題目中的等量關系.3、A【解析】解:圖B、C、D中,線段MN不與直線l垂直,故線段MN的長度不能表示點M到直線l的距離;圖A中,線段MN與直線l垂直,垂足為點N,故線段MN的長度能表示點M到直線l的距離.故選A.4、B【解析】解:過A點作AH⊥BC于H,∵△ABC是等腰直角三角形,∴∠B=∠C=45°,BH=CH=AH=12BC=2,當0≤x≤2時,如圖1,∵∠B=45°,∴PD=BD=x,∴y=12?x?x=當2<x≤4時,如圖2,∵∠C=45°,∴PD=CD=4﹣x,∴y=12?(4﹣x)?x=-5、C【解析】

過B作直徑,連接AC交AO于E,如圖①,根據(jù)已知條件得到BD=OB=2,如圖②,BD=6,求得OD、OE、DE的長,連接OD,根據(jù)勾股定理得到結論.【詳解】過B作直徑,連接AC交AO于E,∵點B為的中點,∴BD⊥AC,如圖①,∵點D恰在該圓直徑上,D為OB的中點,∴BD=×4=2,∴OD=OB-BD=2,∵四邊形ABCD是菱形,∴DE=BD=1,∴OE=1+2=3,連接OC,∵CE=,在Rt△DEC中,由勾股定理得:DC=;如圖②,OD=2,BD=4+2=6,DE=BD=3,OE=3-2=1,由勾股定理得:CE=,DC=.故選C.【點睛】本題考查了圓心角,弧,弦的關系,勾股定理,菱形的性質,正確的作出圖形是解題的關鍵.6、C【解析】

根據(jù)題意知小李所對應的坐標是(7,4).故選C.7、A【解析】

解:分析題中所給函數(shù)圖像,段,隨的增大而增大,長度與點的運動時間成正比.段,逐漸減小,到達最小值時又逐漸增大,排除、選項,段,逐漸減小直至為,排除選項.故選.【點睛】本題考查了動點問題的函數(shù)圖象,函數(shù)圖象是典型的數(shù)形結合,圖象應用信息廣泛,通過看圖獲取信息,不僅可以解決生活中的實際問題,還可以提高分析問題、解決問題的能力.用圖象解決問題時,要理清圖象的含義即會識圖.8、A【解析】

根據(jù)特殊角三角函數(shù)值,可得答案.【詳解】tan60°=故選:A.【點睛】本題考查了特殊角三角函數(shù)值,熟記特殊角三角函數(shù)值是解題關鍵.9、C【解析】

根據(jù)∠1與∠2互補,∠2與∠1互余,先把∠1、∠1都用∠2來表示,再進行運算.【詳解】∵∠1+∠2=180°∴∠1=180°-∠2又∵∠2+∠1=90°∴∠1=90°-∠2∴∠1-∠1=90°,即∠1=90°+∠1.故選C.【點睛】此題主要記住互為余角的兩個角的和為90°,互為補角的兩個角的和為180度.10、B【解析】

先根據(jù)平行四邊形的性質得到點的坐標,再代入反比例函數(shù)(k≠0)求出其解析式,再根據(jù)反比例函數(shù)的圖象與性質對選項進行判斷.【詳解】解:A(4,0),B(1,3),,,反比例函數(shù)(k≠0)的圖象經過點,,反比例函數(shù)解析式為.□OACB的面積為,正確;當時,,故錯誤;將□OACB向上平移12個單位長度,點的坐標變?yōu)椋诜幢壤瘮?shù)圖象上,故正確;因為反比例函數(shù)的圖象關于原點中心對稱,故將□OACB繞點O旋轉180°,點C的對應點落在反比例函數(shù)圖象的另一分支上,正確.故選:B.【點睛】本題綜合考查了平行四邊形的性質和反比例函數(shù)的圖象與性質,結合圖形,熟練掌握和運用相關性質定理是解答關鍵.11、D【解析】

利用拋物線開口方向得到a<0,再由拋物線的對稱軸方程得到b=-2a,則3a+b=a,于是可對①進行判斷;利用2≤c≤3和c=-3a可對②進行判斷;利用二次函數(shù)的性質可對③進行判斷;根據(jù)拋物線y=ax2+bx+c與直線y=n-1有兩個交點可對④進行判斷.【詳解】∵拋物線開口向下,∴a<0,而拋物線的對稱軸為直線x=-b2a∴3a+b=3a-2a=a<0,所以①正確;∵2≤c≤3,而c=-3a,∴2≤-3a≤3,∴-1≤a≤-23∵拋物線的頂點坐標(1,n),∴x=1時,二次函數(shù)值有最大值n,∴a+b+c≥am2+bm+c,即a+b≥am2+bm,所以③正確;∵拋物線的頂點坐標(1,n),∴拋物線y=ax2+bx+c與直線y=n-1有兩個交點,∴關于x的方程ax2+bx+c=n-1有兩個不相等的實數(shù)根,所以④正確.故選D.【點睛】本題考查了二次函數(shù)圖象與系數(shù)的關系:二次項系數(shù)a決定拋物線的開口方向和大?。攁>0時,拋物線向上開口;當a<0時,拋物線向下開口;一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置:當a與b同號時,對稱軸在y軸左;當a與b異號時,對稱軸在y軸右.常數(shù)項c決定拋物線與y軸交點:拋物線與y軸交于(0,c).拋物線與x軸交點個數(shù)由判別式確定:△=b2-4ac>0時,拋物線與x軸有2個交點;△=b2-4ac=0時,拋物線與x軸有1個交點;△=b2-4ac<0時,拋物線與x軸沒有交點.12、B【解析】分析:根據(jù)絕對值的性質,一個負數(shù)的絕對值等于其相反數(shù),可有相反數(shù)的意義求解.詳解:因為-的相反數(shù)為所以-的絕對值為.故選:B點睛:此題主要考查了求一個數(shù)的絕對值,關鍵是明確絕對值的性質,一個正數(shù)的絕對值等于本身,0的絕對值是0,一個負數(shù)的絕對值為其相反數(shù).二、填空題:(本大題共6個小題,每小題4分,共24分.)13、2【解析】

解:如圖,過D點作DG⊥AC,垂足為G,過A點作AH⊥BC,垂足為H,∵AB=AC,點E為BD的中點,且AD=AB,∴設BE=DE=x,則AD=AF=1x.∵DG⊥AC,EF⊥AC,∴DG∥EF,∴,即,解得.∵DF∥BC,∴△ADF∽△ABC,∴,即,解得DF=1.又∵DF∥BC,∴∠DFG=∠C,∴Rt△DFG∽Rt△ACH,∴,即,解得.在Rt△ABH中,由勾股定理,得.∴.又∵△ADF∽△ABC,∴,∴∴.故答案為:2.14、1.【解析】

根據(jù)一個正數(shù)的算術平方根就是其正的平方根即可得出.【詳解】∵,∴9算術平方根為1.故答案為1.【點睛】本題考查了算術平方根,熟練掌握算術平方根的概念是解題的關鍵.15、【解析】

根據(jù)平均數(shù)、中位數(shù)和方差的意義分別對每一項進行解答,即可得出答案.【詳解】解:∵甲班的平均成績是92.5分,乙班的平均成績是92.5分,∴這次數(shù)學測試成績中,甲、乙兩個班的平均水平相同;故正確;∵甲班的中位數(shù)是95.5分,乙班的中位數(shù)是90.5分,甲班學生中數(shù)學成績95分及以上的人數(shù)多,故錯誤;∵甲班的方差是41.25分,乙班的方差是36.06分,甲班的方差大于乙班的方差,乙班學生的數(shù)學成績比較整齊,分化較?。还收_;上述評估中,正確的是;故答案為:.【點睛】本題考查平均數(shù)、中位數(shù)和方差,平均數(shù)表示一組數(shù)據(jù)的平均程度中位數(shù)是將一組數(shù)據(jù)從小到大或從大到小重新排列后,最中間的那個數(shù)或最中間兩個數(shù)的平均數(shù);方差是用來衡量一組數(shù)據(jù)波動大小的量.16、1【解析】【分析】如圖,過點A作AD⊥x軸,垂足為D,根據(jù)題意設出點A的坐標,然后根據(jù)一次函數(shù)y=x﹣2的圖象與反比例函數(shù)y=(k>0)的圖象相交于A、B兩點,可以求得a的值,進而求得k的值即可.【詳解】如圖,過點A作AD⊥x軸,垂足為D,∵tan∠AOC==,∴設點A的坐標為(1a,a),∵一次函數(shù)y=x﹣2的圖象與反比例函數(shù)y=(k>0)的圖象相交于A、B兩點,∴a=1a﹣2,得a=1,∴1=,得k=1,故答案為:1.【點睛】本題考查了正切,反比例函數(shù)與一次函數(shù)的交點問題,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結合的思想解答.17、10【解析】

由正方形性質的得出B、D關于AC對稱,根據(jù)兩點之間線段最短可知,連接DE,交AC于P,連接BP,則此時PB+PE的值最小,進而利用勾股定理求出即可.【詳解】如圖,連接DE,交AC于P,連接BP,則此時PB+PE的值最小.∵四邊形ABCD是正方形,∴B、D關于AC對稱,∴PB=PD,∴PB+PE=PD+PE=DE.∵BE=2,AE=3BE,∴AE=6,AB=8,∴DE==10,故PB+PE的最小值是10.故答案為10.18、14【解析】

根據(jù)菱形的性質,先求另一條對角線的長度,再運用菱形的面積等于對角線乘積的一半求解.【詳解】解:如圖,在菱形ABCD中,BD=2.∵菱形的周長為10,BD=2,∴AB=5,BO=3,∴AC=3.∴面積故答案為14.【點睛】此題考查了菱形的性質及面積求法,難度不大.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1);(2).【解析】

(1)原式=1﹣×=1﹣=;(2)原式=×+×=.【點睛】本題考查特殊角的三角函數(shù)值,熟練掌握每個特殊角的三角函數(shù)值是解此題的關鍵.20、(1)﹣1、﹣1,﹣3、﹣3,﹣1、﹣2;(2)見解析,1.【解析】

(1)分別作出點A、B、C關于x軸的對稱點,再順次連接可得;(2)作出點C關于y軸的對稱點,然后連接得到三角形,根據(jù)面積公式計算可得.【詳解】(1)如圖所示,△A1B1C1即為所求.A1(﹣1,﹣1)B1(﹣3,﹣3),C1(﹣1,﹣2).故答案為:﹣1、﹣1、﹣3、﹣3、﹣1、﹣2;(2)如圖所示,△CC1C2的面積是2×1=1.故答案為:1.【點睛】本題考查了作圖﹣軸對稱變換,解題的關鍵是熟練掌握軸對稱變換的定義和性質.21、(1)見解析;(2)tan∠AOD=.【解析】

(1)作DF⊥AB于F,連接OC,則△ODF是等腰直角三角形,得出OC=OD=DF,由垂徑定理得出∠COE=90°,證明△DEF∽△CEO得出,即可得出結論;(2)由題意得OE=OA=OC,同(1)得△DEF∽△CEO,得出,設⊙O的半徑為2a(a>0),則OD=2a,EO=a,設EF=x,則DF=2x,在Rt△ODF中,由勾股定理求出x=a,得出DF=a,OF=EF+EO=a,由三角函數(shù)定義即可得出結果.【詳解】(1)證明:作DF⊥AB于F,連接OC,如圖所示:則∠DFE=90°,∵∠AOD=45°,∴△ODF是等腰直角三角形,∴OC=OD=DF,∵C是弧AB的中點,∴OC⊥AB,∴∠COE=90°,∵∠DEF=∠CEO,∴△DEF∽△CEO,∴,∴CE=ED;(2)如圖所示:∵AE=EO,∴OE=OA=OC,同(1)得:,△DEF∽△CEO,∴,設⊙O的半徑為2a(a>0),則OD=2a,EO=a,設EF=x,則DF=2x,在Rt△ODF中,由勾股定理得:(2x)2+(x+a)2=(2a)2,解得:x=a,或x=﹣a(舍去),∴DF=a,OF=EF+EO=a,∴.【點睛】本題考查了等腰直角三角形的判定與性質、相似三角形的判定與性質、勾股定理、垂徑定理、三角函數(shù)等知識,熟練掌握相似三角形的判定與性質、勾股定理是關鍵.22、-1.【解析】

先化簡題目中的式子,再將x的值代入化簡后的式子即可解答本題.【詳解】解:原式=,=,=,=﹣,當x=1時,原式=﹣=﹣1.【點睛】本題主要考查分式的化簡求值,解題的關鍵是掌握分式的混合運算順序和運算法則23、為;點Q的坐標為或.【解析】

依據(jù)拋物線的對稱軸方程可求得b的值,然后將點B的坐標代入線可求得c的值,即可求得拋物線的表達式;由平移后拋物線的頂點在x軸上可求得平移的方向和距離,故此,然后由點,軸可得到點Q和P關于x對稱,可求得點Q的縱坐標,將點Q的縱坐標代入平移后的解析式可求得對應的x的值,則可得到點Q的坐標.【詳解】拋物線頂點A的橫坐標是,,即,解得..將代入得:,拋物線的解析式為.拋物線向下平移了4個單位.平移后拋物線的解析

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論