版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023年高考數(shù)學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,平面ABCD,ABCD為正方形,且,E,F(xiàn)分別是線段PA,CD的中點,則異面直線EF與BD所成角的余弦值為()A. B. C. D.2.如圖,在平面四邊形中,滿足,且,沿著把折起,使點到達點的位置,且使,則三棱錐體積的最大值為()A.12 B. C. D.3.已知函數(shù)(表示不超過x的最大整數(shù)),若有且僅有3個零點,則實數(shù)a的取值范圍是()A. B. C. D.4.已知,是兩條不重合的直線,,是兩個不重合的平面,則下列命題中錯誤的是()A.若,,則或B.若,,,則C.若,,,則D.若,,則5.已知,,,則,,的大小關(guān)系為()A. B. C. D.6.已知角的頂點與坐標原點重合,始邊與軸的非負半軸重合,若點在角的終邊上,則()A. B. C. D.7.已知集合A={0,1},B={0,1,2},則滿足A∪C=B的集合C的個數(shù)為()A.4 B.3 C.2 D.18.過雙曲線左焦點的直線交的左支于兩點,直線(是坐標原點)交的右支于點,若,且,則的離心率是()A. B. C. D.9.如圖,將兩個全等等腰直角三角形拼成一個平行四邊形,將平行四邊形沿對角線折起,使平面平面,則直線與所成角余弦值為()A. B. C. D.10.已知函數(shù)的最大值為,若存在實數(shù),使得對任意實數(shù)總有成立,則的最小值為()A. B. C. D.11.“完全數(shù)”是一些特殊的自然數(shù),它所有的真因子(即除了自身以外的約數(shù))的和恰好等于它本身.古希臘數(shù)學家畢達哥拉斯公元前六世紀發(fā)現(xiàn)了第一、二個“完全數(shù)”6和28,進一步研究發(fā)現(xiàn)后續(xù)三個完全數(shù)”分別為496,8128,33550336,現(xiàn)將這五個“完全數(shù)”隨機分為兩組,一組2個,另一組3個,則6和28不在同一組的概率為()A. B. C. D.12.已知集合A={x|–1<x<2},B={x|x>1},則A∪B=A.(–1,1) B.(1,2) C.(–1,+∞) D.(1,+∞)二、填空題:本題共4小題,每小題5分,共20分。13.工人在安裝一個正六邊形零件時,需要固定如圖所示的六個位置的螺栓.若按一定順序?qū)⒚總€螺栓固定緊,但不能連續(xù)固定相鄰的2個螺栓.則不同的固定螺栓方式的種數(shù)是________.14.已知橢圓的左右焦點分別為,過且斜率為的直線交橢圓于,若三角形的面積等于,則該橢圓的離心率為________.15.已知為拋物線:的焦點,過作兩條互相垂直的直線,,直線與交于、兩點,直線與交于、兩點,則的最小值為__________.16.正四棱柱中,,.若是側(cè)面內(nèi)的動點,且,則與平面所成角的正切值的最大值為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)橢圓的左、右焦點分別為,橢圓上兩動點使得四邊形為平行四邊形,且平行四邊形的周長和最大面積分別為8和.(1)求橢圓的標準方程;(2)設(shè)直線與橢圓的另一交點為,當點在以線段為直徑的圓上時,求直線的方程.18.(12分)在中,角,,的對邊分別為,其中,.(1)求角的值;(2)若,,為邊上的任意一點,求的最小值.19.(12分)已知函數(shù)的最小正周期是,且當時,取得最大值.(1)求的解析式;(2)作出在上的圖象(要列表).20.(12分)等差數(shù)列的前項和為,已知,.(Ⅰ)求數(shù)列的通項公式及前項和為;(Ⅱ)設(shè)為數(shù)列的前項的和,求證:.21.(12分)已知函數(shù),.(1)求證:在區(qū)間上有且僅有一個零點,且;(2)若當時,不等式恒成立,求證:.22.(10分)已知函數(shù)(mR)的導(dǎo)函數(shù)為.(1)若函數(shù)存在極值,求m的取值范圍;(2)設(shè)函數(shù)(其中e為自然對數(shù)的底數(shù)),對任意mR,若關(guān)于x的不等式在(0,)上恒成立,求正整數(shù)k的取值集合.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
分別以AB,AD,AP所在直線為x軸,y軸,軸,建立如圖所示的空間直角坐標系,再利用向量法求異面直線EF與BD所成角的余弦值.【詳解】由題可知,分別以AB,AD,AP所在直線為x軸,y軸,軸,建立如圖所示的空間直角坐標系.設(shè).則.故異面直線EF與BD所成角的余弦值為.故選:C【點睛】本題主要考查空間向量和異面直線所成的角的向量求法,意在考查學生對這些知識的理解掌握水平.2、C【解析】
過作于,連接,易知,,從而可證平面,進而可知,當最大時,取得最大值,取的中點,可得,再由,求出的最大值即可.【詳解】在和中,,所以,則,過作于,連接,顯然,則,且,又因為,所以平面,所以,當最大時,取得最大值,取的中點,則,所以,因為,所以點在以為焦點的橢圓上(不在左右頂點),其中長軸長為10,焦距長為8,所以的最大值為橢圓的短軸長的一半,故最大值為,所以最大值為,故的最大值為.故選:C.【點睛】本題考查三棱錐體積的最大值,考查學生的空間想象能力與計算求解能力,屬于中檔題.3、A【解析】
根據(jù)[x]的定義先作出函數(shù)f(x)的圖象,利用函數(shù)與方程的關(guān)系轉(zhuǎn)化為f(x)與g(x)=ax有三個不同的交點,利用數(shù)形結(jié)合進行求解即可.【詳解】當時,,當時,,當時,,當時,,若有且僅有3個零點,則等價為有且僅有3個根,即與有三個不同的交點,作出函數(shù)和的圖象如圖,當a=1時,與有無數(shù)多個交點,當直線經(jīng)過點時,即,時,與有兩個交點,當直線經(jīng)過點時,即時,與有三個交點,要使與有三個不同的交點,則直線處在過和之間,即,故選:A.【點睛】利用函數(shù)零點的情況求參數(shù)值或取值范圍的方法(1)直接法:直接根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的不等式,再通過解不等式確定參數(shù)的范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域(最值)問題加以解決;(3)數(shù)形結(jié)合法:先對解析式變形,在同一平面直角坐標系中,畫出函數(shù)的圖象,然后數(shù)形結(jié)合求解.4、D【解析】
根據(jù)線面平行和面面平行的性質(zhì),可判定A;由線面平行的判定定理,可判斷B;C中可判斷,所成的二面角為;D中有可能,即得解.【詳解】選項A:若,,根據(jù)線面平行和面面平行的性質(zhì),有或,故A正確;選項B:若,,,由線面平行的判定定理,有,故B正確;選項C:若,,,故,所成的二面角為,則,故C正確;選項D,若,,有可能,故D不正確.故選:D【點睛】本題考查了空間中的平行垂直關(guān)系判斷,考查了學生邏輯推理,空間想象能力,屬于中檔題.5、D【解析】
構(gòu)造函數(shù),利用導(dǎo)數(shù)求得的單調(diào)區(qū)間,由此判斷出的大小關(guān)系.【詳解】依題意,得,,.令,所以.所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.所以,且,即,所以.故選:D.【點睛】本小題主要考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,考查對數(shù)式比較大小,屬于中檔題.6、D【解析】
由題知,又,代入計算可得.【詳解】由題知,又.故選:D【點睛】本題主要考查了三角函數(shù)的定義,誘導(dǎo)公式,二倍角公式的應(yīng)用求值.7、A【解析】
由可確定集合中元素一定有的元素,然后列出滿足題意的情況,得到答案.【詳解】由可知集合中一定有元素2,所以符合要求的集合有,共4種情況,所以選A項.【點睛】考查集合并集運算,屬于簡單題.8、D【解析】
如圖,設(shè)雙曲線的右焦點為,連接并延長交右支于,連接,設(shè),利用雙曲線的幾何性質(zhì)可以得到,,結(jié)合、可求離心率.【詳解】如圖,設(shè)雙曲線的右焦點為,連接,連接并延長交右支于.因為,故四邊形為平行四邊形,故.又雙曲線為中心對稱圖形,故.設(shè),則,故,故.因為為直角三角形,故,解得.在中,有,所以.故選:D.【點睛】本題考查雙曲線離心率,注意利用雙曲線的對稱性(中心對稱、軸對稱)以及雙曲線的定義來構(gòu)造關(guān)于的方程,本題屬于難題.9、C【解析】
利用建系,假設(shè)長度,表示向量與,利用向量的夾角公式,可得結(jié)果.【詳解】由平面平面,平面平面,平面所以平面,又平面所以,又所以作軸//,建立空間直角坐標系如圖設(shè),所以則所以所以故選:C【點睛】本題考查異面直線所成成角的余弦值,一般采用這兩種方法:(1)將兩條異面直線作輔助線放到同一個平面,然后利用解三角形知識求解;(2)建系,利用空間向量,屬基礎(chǔ)題.10、B【解析】
根據(jù)三角函數(shù)的兩角和差公式得到,進而可以得到函數(shù)的最值,區(qū)間(m,n)長度要大于等于半個周期,最終得到結(jié)果.【詳解】函數(shù)則函數(shù)的最大值為2,存在實數(shù),使得對任意實數(shù)總有成立,則區(qū)間(m,n)長度要大于等于半個周期,即故答案為:B.【點睛】這個題目考查了三角函數(shù)的兩角和差的正余弦公式的應(yīng)用,以及三角函數(shù)的圖像的性質(zhì)的應(yīng)用,題目比較綜合.11、C【解析】
先求出五個“完全數(shù)”隨機分為兩組,一組2個,另一組3個的基本事件總數(shù)為,再求出6和28恰好在同一組包含的基本事件個數(shù),根據(jù)即可求出6和28不在同一組的概率.【詳解】解:根據(jù)題意,將五個“完全數(shù)”隨機分為兩組,一組2個,另一組3個,則基本事件總數(shù)為,則6和28恰好在同一組包含的基本事件個數(shù),∴6和28不在同一組的概率.故選:C.【點睛】本題考查古典概型的概率的求法,涉及實際問題中組合數(shù)的應(yīng)用.12、C【解析】
根據(jù)并集的求法直接求出結(jié)果.【詳解】∵,∴,故選C.【點睛】考查并集的求法,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、60【解析】分析:首先將選定第一個釘,總共有6種方法,假設(shè)選定1號,之后分析第二步,第三步等,按照分類加法計數(shù)原理,可以求得共有10種方法,利用分步乘法計數(shù)原理,求得總共有種方法.詳解:根據(jù)題意,第一個可以從6個釘里任意選一個,共有6種選擇方法,并且是機會相等的,若第一個選1號釘?shù)臅r候,第二個可以選3,4,5號釘,依次選下去,可以得到共有10種方法,所以總共有種方法,故答案是60.點睛:該題考查的是有關(guān)分類加法計數(shù)原理和分步乘法計數(shù)原理,在解題的過程中,需要逐個的將對應(yīng)的過程寫出來,所以利用列舉法將對應(yīng)的結(jié)果列出,而對于第一個選哪個是機會均等的,從而用乘法運算得到結(jié)果.14、【解析】
由題得直線的方程為,代入橢圓方程得:,設(shè)點,則有,由,且解出,進而求解出離心率.【詳解】由題知,直線的方程為,代入消得:,設(shè)點,則有,,而,又,解得:,所以離心率.故答案為:【點睛】本題主要考查了直線與橢圓的位置關(guān)系,三角形面積計算與離心率的求解,考查了學生的運算求解能力15、16.【解析】由題意可知拋物線的焦點,準線為設(shè)直線的解析式為∵直線互相垂直∴的斜率為與拋物線的方程聯(lián)立,消去得設(shè)點由跟與系數(shù)的關(guān)系得,同理∵根據(jù)拋物線的性質(zhì),拋物線上的點到焦點的距離等于到準線的距離∴,同理∴,當且僅當時取等號.故答案為16點睛:(1)與拋物線有關(guān)的最值問題,一般情況下都與拋物線的定義有關(guān).利用定義可將拋物線上的點到焦點的距離轉(zhuǎn)化為到準線的距離,可以使運算化繁為簡.“看到準線想焦點,看到焦點想準線”,這是解決拋物線焦點弦有關(guān)問題的重要途徑;(2)圓錐曲線中的最值問題,可利用基本不等式求解,但要注意不等式成立的條件.16、2.【解析】
如圖,以為原點建立空間直角坐標系,設(shè)點,由得,證明為與平面所成角,令,用三角函數(shù)表示出,求解三角函數(shù)的最大值得到結(jié)果.【詳解】如圖,以為原點建立空間直角坐標系,設(shè)點,則,,又,得即;又平面,為與平面所成角,令,當時,最大,即與平面所成角的正切值的最大值為2.故答案為:2【點睛】本題主要考查了立體幾何中的動點問題,考查了直線與平面所成角的計算.對于這類題,一般是建立空間直角坐標,在動點坐標內(nèi)引入?yún)?shù),將最值問題轉(zhuǎn)化為函數(shù)的最值問題求解,考查了學生的運算求解能力和直觀想象能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)或【解析】
(1)根據(jù)題意計算得到,,得到橢圓方程.(2)設(shè),聯(lián)立方程得到,根據(jù),計算得到答案.【詳解】(1)由平行四邊形的周長為8,可知,即.由平行四邊形的最大面積為,可知,又,解得.所以橢圓方程為.(2)注意到直線的斜率不為0,且過定點.設(shè),由消得,所以,因為,所以.因為點在以線段為直徑的圓上,所以,即,所以直線的方程或.【點睛】本題考查了橢圓方程,根據(jù)直線和橢圓的位置關(guān)系求直線,將題目轉(zhuǎn)化為是解題的關(guān)鍵.18、(1);(2).【解析】
(1)利用余弦定理和二倍角的正弦公式,化簡即可得出結(jié)果;(2)在中,由余弦定理得,在中結(jié)合正弦定理求出,從而得出,即可得出的解析式,最后結(jié)合斜率的幾何意義,即可求出的最小值.【詳解】(1),,由題知,,則,則,,;(2)在中,由余弦定理得,,設(shè),其中.在中,,,,,所以,,所以的幾何意義為兩點連線斜率的相反數(shù),數(shù)形結(jié)合可得,故的最小值為.【點睛】本題考查正弦定理和余弦定理的實際應(yīng)用,還涉及二倍角正弦公式和誘導(dǎo)公式,考查計算能力.19、(1);(2)見解析.【解析】
(1)根據(jù)函數(shù)的最小正周期可求出的值,由該函數(shù)的最大值可得出的值,再由,結(jié)合的取值范圍可求得的值,由此可得出函數(shù)的解析式;(2)由計算出的取值范圍,據(jù)此列表、描點、連線可得出函數(shù)在區(qū)間上的圖象.【詳解】(1)因為函數(shù)的最小正周期是,所以.又因為當時,函數(shù)取得最大值,所以,同時,得,因為,所以,所以;(2)因為,所以,列表如下:描點、連線得圖象:【點睛】本題考查正弦函數(shù)解析式的求解,同時也考查了利用五點作圖法作圖,考查分析問題與解決問題的能力,屬于中等題.20、(Ⅰ),(Ⅱ)見解析【解析】
(Ⅰ)根據(jù)等差數(shù)列公式直接計算得到答案.(Ⅱ),根據(jù)裂項求和法計算得到得到證明.【詳解】(Ⅰ)等差數(shù)列的公差為,由,得,,即,,解得,.∴,.(Ⅱ),∴,∴,即.【點睛】本題考查了等差數(shù)列的基本量的計算,裂項求和,意在考查學生對于數(shù)列公式方法的靈活運用.21、(1)詳見解析;(2)詳見解析.【解析】
(1)利用求導(dǎo)數(shù),判斷在區(qū)間上的單調(diào)性,然后再證異號,即可證明結(jié)論;(2)當時,不等式恒成立,分離參數(shù)只需時,恒成立,設(shè)(),需,根據(jù)(1)中的結(jié)論
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《阿爾茨海默病湯穎》課件
- 養(yǎng)老院老人生活照料規(guī)范制度
- 養(yǎng)老院老人健康飲食營養(yǎng)師培訓(xùn)制度
- 政府委托課題項目合同(2篇)
- 斷絕關(guān)系協(xié)議書
- 2024年度衛(wèi)生紙品牌授權(quán)與區(qū)域代理銷售合同3篇
- 2025年陜西貨運從業(yè)資格證實操考試題
- 2025年浙江貨運從業(yè)資格證500道題目和答案大全
- 2025年臨汾貨運員初級考試題庫
- 《腸桿菌科細菌鑒定》課件
- 北京市海淀區(qū)2023-2024學年高二上學期期末考試 英語 含答案
- 國開2024年秋《大數(shù)據(jù)技術(shù)概論》形考作業(yè)1-4答案
- TWSJD 66-2024 放射工作人員職業(yè)健康檢查技術(shù)指南
- 技能人才評價新職業(yè)考評員培訓(xùn)在線考試(四川省)
- 2024年中華人民共和國企業(yè)所得稅年度納稅申報表(帶公式)20240301更新
- DZ∕T 0148-2014 水文水井地質(zhì)鉆探規(guī)程(正式版)
- 中國抗日戰(zhàn)爭史智慧樹知到期末考試答案章節(jié)答案2024年浙江大學
- 2023年秋季國家開放大學-02154-數(shù)據(jù)庫應(yīng)用技術(shù)期末考試題帶答案
- 肝衰竭的護理查房
- 廣廈建筑結(jié)構(gòu)CAD基礎(chǔ)部分
- 食品防護計劃檢查表(食品生產(chǎn)加工企業(yè)臺帳表格)
評論
0/150
提交評論