2023屆湖南岳陽第一中學(xué)高三第二次調(diào)研數(shù)學(xué)試卷含解析_第1頁
2023屆湖南岳陽第一中學(xué)高三第二次調(diào)研數(shù)學(xué)試卷含解析_第2頁
2023屆湖南岳陽第一中學(xué)高三第二次調(diào)研數(shù)學(xué)試卷含解析_第3頁
2023屆湖南岳陽第一中學(xué)高三第二次調(diào)研數(shù)學(xué)試卷含解析_第4頁
2023屆湖南岳陽第一中學(xué)高三第二次調(diào)研數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023年高考數(shù)學(xué)模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線C:()的左、右焦點分別為,過的直線l與雙曲線C的左支交于A、B兩點.若,則雙曲線C的漸近線方程為()A. B. C. D.2.拋物線的焦點為,點是上一點,,則()A. B. C. D.3.閱讀如圖所示的程序框圖,運行相應(yīng)的程序,則輸出的結(jié)果為()A. B.6 C. D.4.若的內(nèi)角滿足,則的值為()A. B. C. D.5.在等腰直角三角形中,,為的中點,將它沿翻折,使點與點間的距離為,此時四面體的外接球的表面積為().A. B. C. D.6.已知i為虛數(shù)單位,則()A. B. C. D.7.已知函數(shù)f(x)=sin2x+sin2(x),則f(x)的最小值為()A. B. C. D.8.集合,,則()A. B. C. D.9.已知的面積是,,,則()A.5 B.或1 C.5或1 D.10.2019年10月1日,中華人民共和國成立70周年,舉國同慶.將2,0,1,9,10這5個數(shù)字按照任意次序排成一行,拼成一個6位數(shù),則產(chǎn)生的不同的6位數(shù)的個數(shù)為A.96 B.84 C.120 D.36011.已知集合,,則A. B. C. D.12.函數(shù)在上為增函數(shù),則的值可以是()A.0 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在正方體中,為棱的中點,是棱上的點,且,則異面直線與所成角的余弦值為__________.14.已知,復(fù)數(shù)且(為虛數(shù)單位),則__________,_________.15.已知的終邊過點,若,則__________.16.已知二面角α﹣l﹣β為60°,在其內(nèi)部取點A,在半平面α,β內(nèi)分別取點B,C.若點A到棱l的距離為1,則△ABC的周長的最小值為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,三棱錐中,,,,,.(1)求證:;(2)求直線與平面所成角的正弦值.18.(12分)已知;.(1)若為真命題,求實數(shù)的取值范圍;(2)若為真命題且為假命題,求實數(shù)的取值范圍.19.(12分)如圖,點是以為直徑的圓上異于、的一點,直角梯形所在平面與圓所在平面垂直,且,.(1)證明:平面;(2)求點到平面的距離.20.(12分)已知.(1)求不等式的解集;(2)記的最小值為,且正實數(shù)滿足.證明:.21.(12分)已知分別是橢圓的左、右焦點,直線與交于兩點,,且.(1)求的方程;(2)已知點是上的任意一點,不經(jīng)過原點的直線與交于兩點,直線的斜率都存在,且,求的值.22.(10分)已知數(shù)列和滿足,,,,.(Ⅰ)求與;(Ⅱ)記數(shù)列的前項和為,且,若對,恒成立,求正整數(shù)的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

設(shè),利用余弦定理,結(jié)合雙曲線的定義進行求解即可.【詳解】設(shè),由雙曲線的定義可知:因此再由雙曲線的定義可知:,在三角形中,由余弦定理可知:,因此雙曲線的漸近線方程為:.故選:D【點睛】本題考查了雙曲線的定義的應(yīng)用,考查了余弦定理的應(yīng)用,考查了雙曲線的漸近線方程,考查了數(shù)學(xué)運算能力.2、B【解析】

根據(jù)拋物線定義得,即可解得結(jié)果.【詳解】因為,所以.故選B【點睛】本題考查拋物線定義,考查基本分析求解能力,屬基礎(chǔ)題.3、D【解析】

用列舉法,通過循環(huán)過程直接得出與的值,得到時退出循環(huán),即可求得.【詳解】執(zhí)行程序框圖,可得,,滿足條件,,,滿足條件,,,滿足條件,,,由題意,此時應(yīng)該不滿足條件,退出循環(huán),輸出S的值為.故選D.【點睛】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的應(yīng)用,正確依次寫出每次循環(huán)得到的與的值是解題的關(guān)鍵,難度較易.4、A【解析】

由,得到,得出,再結(jié)合三角函數(shù)的基本關(guān)系式,即可求解.【詳解】由題意,角滿足,則,又由角A是三角形的內(nèi)角,所以,所以,因為,所以.故選:A.【點睛】本題主要考查了正弦函數(shù)的性質(zhì),以及三角函數(shù)的基本關(guān)系式和正弦的倍角公式的化簡、求值問題,著重考查了推理與計算能力.5、D【解析】

如圖,將四面體放到直三棱柱中,求四面體的外接球的半徑轉(zhuǎn)化為求三棱柱外接球的半徑,然后確定球心在上下底面外接圓圓心連線中點,這樣根據(jù)幾何關(guān)系,求外接球的半徑.【詳解】中,易知,翻折后,,,設(shè)外接圓的半徑為,,,如圖:易得平面,將四面體放到直三棱柱中,則球心在上下底面外接圓圓心連線中點,設(shè)幾何體外接球的半徑為,,四面體的外接球的表面積為.故選:D【點睛】本題考查幾何體的外接球的表面積,意在考查空間想象能力,和計算能力,屬于中檔題型,求幾何體的外接球的半徑時,一般可以用補形法,因正方體,長方體的外接球半徑容易求,可以將一些特殊的幾何體補形為正方體或長方體,比如三條側(cè)棱兩兩垂直的三棱錐,或是構(gòu)造直角三角形法,確定球心的位置,構(gòu)造關(guān)于外接球半徑的方程求解.6、A【解析】

根據(jù)復(fù)數(shù)乘除運算法則,即可求解.【詳解】.故選:A.【點睛】本題考查復(fù)數(shù)代數(shù)運算,屬于基礎(chǔ)題題.7、A【解析】

先通過降冪公式和輔助角法將函數(shù)轉(zhuǎn)化為,再求最值.【詳解】已知函數(shù)f(x)=sin2x+sin2(x),=,=,因為,所以f(x)的最小值為.故選:A【點睛】本題主要考查倍角公式及兩角和與差的三角函數(shù)的逆用,還考查了運算求解的能力,屬于中檔題.8、A【解析】

解一元二次不等式化簡集合A,再根據(jù)對數(shù)的真數(shù)大于零化簡集合B,求交集運算即可.【詳解】由可得,所以,由可得,所以,所以,故選A.【點睛】本題主要考查了集合的交集運算,涉及一元二次不等式解法及對數(shù)的概念,屬于中檔題.9、B【解析】∵,,∴①若為鈍角,則,由余弦定理得,解得;②若為銳角,則,同理得.故選B.10、B【解析】

2,0,1,9,10按照任意次序排成一行,得所有不以0開頭的排列數(shù)共個,其中含有2個10的排列數(shù)共個,所以產(chǎn)生的不同的6位數(shù)的個數(shù)為.故選B.11、C【解析】分析:根據(jù)集合可直接求解.詳解:,,故選C點睛:集合題也是每年高考的必考內(nèi)容,一般以客觀題形式出現(xiàn),一般解決此類問題時要先將參與運算的集合化為最簡形式,如果是“離散型”集合可采用Venn圖法解決,若是“連續(xù)型”集合則可借助不等式進行運算.12、D【解析】

依次將選項中的代入,結(jié)合正弦、余弦函數(shù)的圖象即可得到答案.【詳解】當時,在上不單調(diào),故A不正確;當時,在上單調(diào)遞減,故B不正確;當時,在上不單調(diào),故C不正確;當時,在上單調(diào)遞增,故D正確.故選:D【點睛】本題考查正弦、余弦函數(shù)的單調(diào)性,涉及到誘導(dǎo)公式的應(yīng)用,是一道容易題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據(jù)題意畫出幾何題,建立空間直角坐標系,寫個各個點的坐標,并求得.由空間向量的夾角求法即可求得異面直線與所成角的余弦值.【詳解】根據(jù)題意畫出幾何圖形,以為原點建立空間直角坐標系:設(shè)正方體的棱長為1,則所以所以,所以異面直線與所成角的余弦值為,故答案為:.【點睛】本題考查了異面直線夾角的求法,利用空間向量求異面直線夾角,屬于中檔題.14、【解析】∵復(fù)數(shù)且∴∴∴∴,故答案為,15、【解析】

】由題意利用任意角的三角函數(shù)的定義,求得的值.【詳解】∵的終邊過點,若,.即答案為-2.【點睛】本題主要考查任意角的三角函數(shù)的定義和誘導(dǎo)公式,屬基礎(chǔ)題.16、【解析】

作A關(guān)于平面α和β的對稱點M,N,交α和β與D,E,連接MN,AM,AN,DE,根據(jù)對稱性三角形ADC的周長為AB+AC+BC=MB+BC+CN,當四點共線時長度最短,結(jié)合對稱性和余弦定理求解.【詳解】作A關(guān)于平面α和β的對稱點M,N,交α和β與D,E,連接MN,AM,AN,DE,根據(jù)對稱性三角形ABC的周長為AB+AC+BC=MB+BC+CN,當M,B,C,N共線時,周長最小為MN設(shè)平面ADE交l于,O,連接OD,OE,顯然OD⊥l,OE⊥l,∠DOE=60°,∠MOA+∠AON=240°,OA=1,∠MON=120°,且OM=ON=OA=1,根據(jù)余弦定理,故MN2=1+1﹣2×1×1×cos120°=3,故MN.故答案為:.【點睛】此題考查求空間三角形邊長的最值,關(guān)鍵在于根據(jù)幾何性質(zhì)找出對稱關(guān)系,結(jié)合解三角形知識求解.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見詳解;(2)【解析】

(1)取中點,根據(jù),利用線面垂直的判定定理,可得平面,最后可得結(jié)果.(2)利用建系,假設(shè)長度,可得,以及平面的一個法向量,然后利用向量的夾角公式,可得結(jié)果.【詳解】(1)取中點,連接,如圖由,所以由,平面所以平面,又平面所以(2)假設(shè),由,,.所以則,所以又,平面所以平面,所以,又,故建立空間直角坐標系,如圖設(shè)平面的一個法向量為則令,所以則直線與平面所成角的正弦值為【點睛】本題考查線面垂直、線線垂直的應(yīng)用,還考查線面角,學(xué)會使用建系的方法來解決立體幾何問題,將幾何問題代數(shù)化,化繁為簡,屬中檔題.18、(1)(2)或【解析】

(1)根據(jù)為真命題列出不等式,進而求得實數(shù)的取值范圍;(2)應(yīng)用復(fù)合命題真假判定的口訣:真“非”假,假“非”真,一真“或”為真,兩真“且”才真.【詳解】(1),且,解得所以當為真命題時,實數(shù)的取值范圍是.(2)由,可得,又∵當時,,.∵當為真命題,且為假命題時,∴與的真假性相同,當假假時,有,解得;當真真時,有,解得;故當為真命題且為假命題時,可得或.【點睛】本題主要考查結(jié)合不等式的含有量詞的命題的恒成立問題,存在性問題,考查復(fù)合命題的真假判斷,意在考查學(xué)生對這些知識的掌握水平和分析推理能力.19、(1)見解析;(2)【解析】

(1)取的中點,證明,則平面平面,則可證平面.(2)利用,是平面的高,容易求.,再求,則點到平面的距離可求.【詳解】解:(1)如圖:取的中點,連接、.在中,是的中點,是的中點,平面平面,故平面在直角梯形中,,且,∴四邊形是平行四邊形,,同理平面又,故平面平面,又平面平面.(2)是圓的直徑,點是圓上異于、的一點,又∵平面平面,平面平面平面,可得是三棱錐的高線.在直角梯形中,.設(shè)到平面的距離為,則,即由已知得,由余弦定理易知:,則解得,即點到平面的距離為故答案為:.【點睛】考查線面平行的判定和利用等體積法求距離的方法,是中檔題.20、(1)或;(2)見解析【解析】

(1)根據(jù),利用零點分段法解不等式,或作出函數(shù)的圖像,利用函數(shù)的圖像解不等式;(2)由(1)作出的函數(shù)圖像求出的最小值為,可知,代入中,然后給等式兩邊同乘以,再將寫成后,化簡變形,再用均值不等式可證明.【詳解】(1)解法一:1°時,,即,解得;2°時,,即,解得;3°時,,即,解得.綜上可得,不等式的解集為或.解法二:由作出圖象如下:由圖象可得不等式的解集為或.(2)由所以在上單調(diào)遞減,在上單調(diào)遞增,所以,正實數(shù)滿足,則,即,(當且僅當即時取等號)故,得證.【點睛】此題考查了絕對值不等式的解法,絕對值不等式的性質(zhì)和均值不等式的運用,考查了分類討論思想和轉(zhuǎn)化思想,屬于中檔題.21、(1)(2)【解析】

(1)不妨設(shè),,計算得到,根據(jù)面積得到,計算得到答案.(2)設(shè),,,聯(lián)立方程利用韋達定理得到,,代入化簡計算得到答案.【詳解】(1)由題意不妨設(shè),,則,.∵,∴,∴.又,∴,∴,,故的方程為.(2)設(shè),,,則.∵,∴,設(shè)直線的方程為,聯(lián)立整理得.∵在上,∴,∴上式可化為.∴,,,∴,,∴.∴.【點睛】本題考查了橢圓方程,定值問題,意在考查學(xué)生的計算能力和綜合應(yīng)用能力.22、(Ⅰ),;(Ⅱ)1【解析】

(Ⅰ)易得為等比數(shù)列,再利用前項和與通項的關(guān)系求解的通項公式

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論