




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023年高考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知實數(shù)滿足,則的最小值為()A. B. C. D.2.已知拋物線上一點的縱坐標為4,則點到拋物線焦點的距離為()A.2 B.3 C.4 D.53.已知是過拋物線焦點的弦,是原點,則()A.-2 B.-4 C.3 D.-34.已知函數(shù),若關(guān)于的不等式恰有1個整數(shù)解,則實數(shù)的最大值為()A.2 B.3 C.5 D.85.若集合,,則=()A. B. C. D.6.已知向量與向量平行,,且,則()A. B.C. D.7.某空間幾何體的三視圖如圖所示(圖中小正方形的邊長為1),則這個幾何體的體積是()A. B. C.16 D.328.在正方體中,E是棱的中點,F(xiàn)是側(cè)面內(nèi)的動點,且與平面的垂線垂直,如圖所示,下列說法不正確的是()A.點F的軌跡是一條線段 B.與BE是異面直線C.與不可能平行 D.三棱錐的體積為定值9.如圖是正方體截去一個四棱錐后的得到的幾何體的三視圖,則該幾何體的體積是()A. B. C. D.10.已知,是橢圓與雙曲線的公共焦點,是它們的一個公共點,且,橢圓的離心率為,雙曲線的離心率為,若,則的最小值為()A. B. C.8 D.611.已知函數(shù)在上都存在導函數(shù),對于任意的實數(shù)都有,當時,,若,則實數(shù)的取值范圍是()A. B. C. D.12.已知雙曲線的左右焦點分別為,,以線段為直徑的圓與雙曲線在第二象限的交點為,若直線與圓相切,則雙曲線的漸近線方程是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,網(wǎng)格紙上小正方形的邊長為,粗實線畫出的是某幾何體的三視圖,則該幾何體的體積為________.14.某外商計劃在個候選城市中投資個不同的項目,且在同一個城市投資的項目不超過個,則該外商不同的投資方案有____種.15.六位同學坐在一排,現(xiàn)讓六位同學重新坐,恰有兩位同學坐自己原來的位置,則不同的坐法有________種(用數(shù)字回答).16.某校高二(4)班統(tǒng)計全班同學中午在食堂用餐時間,有7人用時為6分鐘,有14人用時7分鐘,有15人用時為8分鐘,還有4人用時為10分鐘,則高二(4)班全體同學用餐平均用時為____分鐘.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(mR)的導函數(shù)為.(1)若函數(shù)存在極值,求m的取值范圍;(2)設(shè)函數(shù)(其中e為自然對數(shù)的底數(shù)),對任意mR,若關(guān)于x的不等式在(0,)上恒成立,求正整數(shù)k的取值集合.18.(12分)已知,,.(1)求的最小值;(2)若對任意,都有,求實數(shù)的取值范圍.19.(12分)若函數(shù)為奇函數(shù),且時有極小值.(1)求實數(shù)的值與實數(shù)的取值范圍;(2)若恒成立,求實數(shù)的取值范圍.20.(12分)已知數(shù)列的前項和為,且滿足().(1)求數(shù)列的通項公式;(2)設(shè)(),數(shù)列的前項和.若對恒成立,求實數(shù),的值.21.(12分)為貫徹十九大報告中“要提供更多優(yōu)質(zhì)生態(tài)產(chǎn)品以滿足人民日益增長的優(yōu)美生態(tài)環(huán)境需要”的要求,某生物小組通過抽樣檢測植物高度的方法來監(jiān)測培育的某種植物的生長情況.現(xiàn)分別從、、三塊試驗田中各隨機抽取株植物測量高度,數(shù)據(jù)如下表(單位:厘米):組組組假設(shè)所有植株的生長情況相互獨立.從、、三組各隨機選株,組選出的植株記為甲,組選出的植株記為乙,組選出的植株記為丙.(1)求丙的高度小于厘米的概率;(2)求甲的高度大于乙的高度的概率;(3)表格中所有數(shù)據(jù)的平均數(shù)記為.從、、三塊試驗田中分別再隨機抽取株該種植物,它們的高度依次是、、(單位:厘米).這個新數(shù)據(jù)與表格中的所有數(shù)據(jù)構(gòu)成的新樣本的平均數(shù)記為,試比較和的大?。ńY(jié)論不要求證明)22.(10分)的內(nèi)角,,的對邊分別為,,已知,.(1)求;(2)若的面積,求.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
所求的分母特征,利用變形構(gòu)造,再等價變形,利用基本不等式求最值.【詳解】解:因為滿足,則,當且僅當時取等號,故選:.【點睛】本題考查通過拼湊法利用基本不等式求最值.拼湊法的實質(zhì)在于代數(shù)式的靈活變形,拼系數(shù)、湊常數(shù)是關(guān)鍵.(1)拼湊的技巧,以整式為基礎(chǔ),注意利用系數(shù)的變化以及等式中常數(shù)的調(diào)整,做到等價變形;(2)代數(shù)式的變形以拼湊出和或積的定值為目標(3)拆項、添項應(yīng)注意檢驗利用基本不等式的前提.2、D【解析】試題分析:拋物線焦點在軸上,開口向上,所以焦點坐標為,準線方程為,因為點A的縱坐標為4,所以點A到拋物線準線的距離為,因為拋物線上的點到焦點的距離等于到準線的距離,所以點A與拋物線焦點的距離為5.考點:本小題主要考查應(yīng)用拋物線定義和拋物線上點的性質(zhì)拋物線上的點到焦點的距離,考查學生的運算求解能力.點評:拋物線上的點到焦點的距離等于到準線的距離,這條性質(zhì)在解題時經(jīng)常用到,可以簡化運算.3、D【解析】
設(shè),,設(shè):,聯(lián)立方程得到,計算得到答案.【詳解】設(shè),,故.易知直線斜率不為,設(shè):,聯(lián)立方程,得到,故,故.故選:.【點睛】本題考查了拋物線中的向量的數(shù)量積,設(shè)直線為可以簡化運算,是解題的關(guān)鍵.4、D【解析】
畫出函數(shù)的圖象,利用一元二次不等式解法可得解集,再利用數(shù)形結(jié)合即可得出.【詳解】解:函數(shù),如圖所示當時,,由于關(guān)于的不等式恰有1個整數(shù)解因此其整數(shù)解為3,又∴,,則當時,,則不滿足題意;當時,當時,,沒有整數(shù)解當時,,至少有兩個整數(shù)解綜上,實數(shù)的最大值為故選:D【點睛】本題主要考查了根據(jù)函數(shù)零點的個數(shù)求參數(shù)范圍,屬于較難題.5、C【解析】試題分析:化簡集合故選C.考點:集合的運算.6、B【解析】
設(shè),根據(jù)題意得出關(guān)于、的方程組,解出這兩個未知數(shù)的值,即可得出向量的坐標.【詳解】設(shè),且,,由得,即,①,由,②,所以,解得,因此,.故選:B.【點睛】本題考查向量坐標的求解,涉及共線向量的坐標表示和向量數(shù)量積的坐標運算,考查計算能力,屬于中等題.7、A【解析】幾何體為一個三棱錐,高為4,底面為一個等腰直角三角形,直角邊長為4,所以體積是,選A.8、C【解析】
分別根據(jù)線面平行的性質(zhì)定理以及異面直線的定義,體積公式分別進行判斷.【詳解】對于,設(shè)平面與直線交于點,連接、,則為的中點分別取、的中點、,連接、、,,平面,平面,平面.同理可得平面,、是平面內(nèi)的相交直線平面平面,由此結(jié)合平面,可得直線平面,即點是線段上上的動點.正確.對于,平面平面,和平面相交,與是異面直線,正確.對于,由知,平面平面,與不可能平行,錯誤.對于,因為,則到平面的距離是定值,三棱錐的體積為定值,所以正確;故選:.【點睛】本題考查了正方形的性質(zhì)、空間位置關(guān)系、空間角、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于中檔題.9、C【解析】
根據(jù)三視圖作出幾何體的直觀圖,結(jié)合三視圖的數(shù)據(jù)可求得幾何體的體積.【詳解】根據(jù)三視圖還原幾何體的直觀圖如下圖所示:由圖可知,該幾何體是在棱長為的正方體中截去四棱錐所形成的幾何體,該幾何體的體積為.故選:C.【點睛】本題考查利用三視圖計算幾何體的體積,考查空間想象能力與計算能力,屬于基礎(chǔ)題.10、C【解析】
由橢圓的定義以及雙曲線的定義、離心率公式化簡,結(jié)合基本不等式即可求解.【詳解】設(shè)橢圓的長半軸長為,雙曲線的半實軸長為,半焦距為,則,,設(shè)由橢圓的定義以及雙曲線的定義可得:,則當且僅當時,取等號.故選:C.【點睛】本題主要考查了橢圓的定義以及雙曲線的定義、離心率公式,屬于中等題.11、B【解析】
先構(gòu)造函數(shù),再利用函數(shù)奇偶性與單調(diào)性化簡不等式,解得結(jié)果.【詳解】令,則當時,,又,所以為偶函數(shù),從而等價于,因此選B.【點睛】本題考查利用函數(shù)奇偶性與單調(diào)性求解不等式,考查綜合分析求解能力,屬中檔題.12、B【解析】
先設(shè)直線與圓相切于點,根據(jù)題意,得到,再由,根據(jù)勾股定理求出,從而可得漸近線方程.【詳解】設(shè)直線與圓相切于點,因為是以圓的直徑為斜邊的圓內(nèi)接三角形,所以,又因為圓與直線的切點為,所以,又,所以,因此,因此有,所以,因此漸近線的方程為.故選B【點睛】本題主要考查雙曲線的漸近線方程,熟記雙曲線的簡單性質(zhì)即可,屬于常考題型.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)三視圖知該幾何體是三棱柱與半圓錐的組合體,結(jié)合圖中數(shù)據(jù)求出它的體積.【詳解】根據(jù)三視圖知,該幾何體是三棱柱與半圓錐的組合體,如圖所示:結(jié)合圖中數(shù)據(jù),計算它的體積為.故答案為:.【點睛】本題考查了根據(jù)三視圖求簡單組合體的體積應(yīng)用問題,是基礎(chǔ)題.14、60【解析】試題分析:每個城市投資1個項目有種,有一個城市投資2個有種,投資方案共種.考點:排列組合.15、135【解析】
根據(jù)題意先確定2個人位置不變,共有種選擇,再確定4個人坐4個位置,但是不能坐原來的位置,計算得到答案.【詳解】根據(jù)題意先確定2個人位置不變,共有種選擇.再確定4個人坐4個位置,但是不能坐原來的位置,共有種選擇,故不同的坐法有.故答案為:.【點睛】本題考查了分步乘法原理,意在考查學生的計算能力和應(yīng)用能力.16、7.5【解析】
分別求出所有人用時總和再除以總?cè)藬?shù)即可得到平均數(shù).【詳解】故答案為:7.5【點睛】此題考查求平均數(shù),關(guān)鍵在于準確計算出所有數(shù)據(jù)之和,易錯點在于概念辨析不清導致計算出錯.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2){1,2}.【解析】
(1)求解導數(shù),表示出,再利用的導數(shù)可求m的取值范圍;(2)表示出,結(jié)合二次函數(shù)知識求出的最小值,再結(jié)合導數(shù)及基本不等式求出的最值,從而可求正整數(shù)k的取值集合.【詳解】(1)因為,所以,所以,則,由題意可知,解得;(2)由(1)可知,,所以因為整理得,設(shè),則,所以單調(diào)遞增,又因為,所以存在,使得,設(shè),是關(guān)于開口向上的二次函數(shù),則,設(shè),則,令,則,所以單調(diào)遞增,因為,所以存在,使得,即,當時,,當時,,所以在上單調(diào)遞減,在上單調(diào)遞增,所以,因為,所以,又由題意可知,所以,解得,所以正整數(shù)k的取值集合為{1,2}.【點睛】本題主要考查導數(shù)的應(yīng)用,利用導數(shù)研究極值問題一般轉(zhuǎn)化為導數(shù)的零點問題,恒成立問題要逐步消去參數(shù),轉(zhuǎn)化為最值問題求解,適當構(gòu)造函數(shù)是轉(zhuǎn)化的關(guān)鍵,本題綜合性較強,難度較大,側(cè)重考查數(shù)學抽象和邏輯推理的核心素養(yǎng).18、(1)2;(2).【解析】
(1)化簡得,所以,展開后利用基本不等式求最小值即可;(2)由(1),原不等式可轉(zhuǎn)化為,討論去絕對值即可求得的取值范圍.【詳解】(1)∵,,∴,∴.∴.當且僅當且即時,.(2)由(1)知,,對任意,都有,∴,即.①當時,有,解得;②當,時,有,解得;③當時,有,解得;綜上,,∴實數(shù)的取值范圍是.【點睛】本題主要考查基本不等式的運用和求解含絕對值的不等式,考查學生的分類思想和計算能力,屬于中檔題.19、(1),;(2)【解析】
(1)由奇函數(shù)可知在定義域上恒成立,由此建立方程,即可求出實數(shù)的值;對函數(shù)進行求導,,通過導數(shù)求出,若,則恒成立不符合題意,當,可證明,此時時有極小值.(2)可知,進而得到,令,通過導數(shù)可知在上為單調(diào)減函數(shù),由可得,從而可求實數(shù)的取值范圍.【詳解】(1)由函數(shù)為奇函數(shù),得在定義域上恒成立,所以,化簡可得,所以.則,令,則.故當時,;當時,,故在上遞減,在上遞增,若,則恒成立,單調(diào)遞增,無極值點;所以,解得,取,則又函數(shù)的圖象在區(qū)間上連續(xù)不間斷,故由函數(shù)零點存在性定理知在區(qū)間上,存在為函數(shù)的零點,為極小值,所以,的取值范圍是.(2)由滿足,代入,消去可得.構(gòu)造函數(shù),所以,當時,,即恒成立,故在上為單調(diào)減函數(shù),其中.則可轉(zhuǎn)化為,故,由,設(shè),可得當時,則在上遞增,故.綜上,的取值范圍是.【點睛】本題考查了利用導數(shù)研究函數(shù)的單調(diào)性,考查了利用導數(shù)求函數(shù)的最值,考查了奇函數(shù)的定義,考查了轉(zhuǎn)化的思想.對于恒成立的問題,常轉(zhuǎn)化為求的最小值,使;對于恒成立的問題,常轉(zhuǎn)化為求的最大值,使.20、(1)(2),.【解析】
(1)根據(jù)數(shù)列的通項與前n項和的關(guān)系式,即求解數(shù)列的通項公式;(2)由(1)可得,利用等比數(shù)列的前n項和公式和裂項法,求得,結(jié)合題意,即可求解.【詳解】(1)由題意,當時,由,解得;當時,可得,即,顯然當時上式也適合,所以數(shù)列的通項公式為.(2)由(1)可得,所以.因為對恒成立,所以,.【點睛】本題主要考查了數(shù)列的通項公式的求解,等差數(shù)列的前n項和公式,以及裂項法求和的應(yīng)用,其中解答中熟記等差、等比數(shù)列的通項公式和前n項和公式,以及合理利用“裂項法”求和是解答的關(guān)鍵,著重考查了推理與運算能力,屬于中檔試題.21、(1);(2);(3).【解析】
設(shè)事件為“甲是組的第株植物”,事件為“乙是組的第株植物
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 管理人員續(xù)聘管理辦法
- 射陽農(nóng)村殯葬管理辦法
- 以盤錦市為例探究鄉(xiāng)土地理素材在高中地理教學中的應(yīng)用與實踐
- 以電腦機器人活動為載體:“問題解決引導”提升高段小學生科學素養(yǎng)探究
- 以生為本:基于大學生學習狀況洞察的高校教學改革新路徑
- 2025年導游資格證考試筆試旅游項目管理與團隊協(xié)作試卷
- 2025年西式烹飪師(中級)職業(yè)技能鑒定備考策略
- 2025年中國凹凸棒粘土粉行業(yè)市場發(fā)展前景及發(fā)展趨勢與投資戰(zhàn)略研究報告
- 2025年叉車司機(應(yīng)急處理)考試試卷:突發(fā)事件與應(yīng)急響應(yīng)
- 2025年禮儀主持人(中級)考試試卷:禮儀主持人禮儀主持風格與創(chuàng)新
- 2025年中小學教師職稱評審考試試卷及答案
- 2025年人教版小學二年級科學(下冊)期末試卷及答案
- 醫(yī)院培訓課件:《高血壓及糖尿病患者管理與治療》
- 勞動教育和各學科融合
- 改革開放簡史
- 2025年聊城市茌平區(qū)高鐵建設(shè)發(fā)展有限公司招聘筆試參考題庫含答案解析
- 湖南省長沙市寧鄉(xiāng)市2024-2025學年三年級下學期6月期末科學試卷(含答案)
- 海綿城市建設(shè)中的BIM技術(shù)應(yīng)用實例
- 定向士官心理測試題及答案
- 2025至2030中國低溫氣體產(chǎn)品行業(yè)項目調(diào)研及市場前景預(yù)測評估報告
- e級籃球教練員理論考試試題及答案
評論
0/150
提交評論