2022年河南省豫北地區(qū)重點(diǎn)中學(xué)高考數(shù)學(xué)押題試卷含解析_第1頁(yè)
2022年河南省豫北地區(qū)重點(diǎn)中學(xué)高考數(shù)學(xué)押題試卷含解析_第2頁(yè)
2022年河南省豫北地區(qū)重點(diǎn)中學(xué)高考數(shù)學(xué)押題試卷含解析_第3頁(yè)
2022年河南省豫北地區(qū)重點(diǎn)中學(xué)高考數(shù)學(xué)押題試卷含解析_第4頁(yè)
2022年河南省豫北地區(qū)重點(diǎn)中學(xué)高考數(shù)學(xué)押題試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知,,分別是三個(gè)內(nèi)角,,的對(duì)邊,,則()A. B. C. D.2.如圖,正方體的棱長(zhǎng)為1,動(dòng)點(diǎn)在線段上,、分別是、的中點(diǎn),則下列結(jié)論中錯(cuò)誤的是()A., B.存在點(diǎn),使得平面平面C.平面 D.三棱錐的體積為定值3.如圖,網(wǎng)格紙是由邊長(zhǎng)為1的小正方形構(gòu)成,若粗實(shí)線畫出的是某幾何體的三視圖,則該幾何體的表面積為()A. B. C. D.4.將函數(shù)的圖像向左平移個(gè)單位長(zhǎng)度后,得到的圖像關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,則的最小值為()A. B. C. D.5.如圖所示,用一邊長(zhǎng)為的正方形硬紙,按各邊中點(diǎn)垂直折起四個(gè)小三角形,做成一個(gè)蛋巢,將體積為的雞蛋(視為球體)放入其中,蛋巢形狀保持不變,則雞蛋(球體)離蛋巢底面的最短距離為()A. B.C. D.6.執(zhí)行下面的程序框圖,若輸出的的值為63,則判斷框中可以填入的關(guān)于的判斷條件是()A. B. C. D.7.已知復(fù)數(shù)滿足:,則的共軛復(fù)數(shù)為()A. B. C. D.8.已知函數(shù)的圖像向右平移個(gè)單位長(zhǎng)度后,得到的圖像關(guān)于軸對(duì)稱,,當(dāng)取得最小值時(shí),函數(shù)的解析式為()A. B.C. D.9.已知函數(shù),則在上不單調(diào)的一個(gè)充分不必要條件可以是()A. B. C.或 D.10.方程在區(qū)間內(nèi)的所有解之和等于()A.4 B.6 C.8 D.1011.用電腦每次可以從區(qū)間內(nèi)自動(dòng)生成一個(gè)實(shí)數(shù),且每次生成每個(gè)實(shí)數(shù)都是等可能性的.若用該電腦連續(xù)生成3個(gè)實(shí)數(shù),則這3個(gè)實(shí)數(shù)都小于的概率為()A. B. C. D.12.已知等比數(shù)列的前項(xiàng)和為,且滿足,則的值是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列是等比數(shù)列,,則__________.14.設(shè)滿足約束條件,則的取值范圍為__________.15.已知函數(shù),令,,若,表示不超過實(shí)數(shù)的最大整數(shù),記數(shù)列的前項(xiàng)和為,則_________16.不等式對(duì)于定義域內(nèi)的任意恒成立,則的取值范圍為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)一張邊長(zhǎng)為的正方形薄鋁板(圖甲),點(diǎn),分別在,上,且(單位:).現(xiàn)將該薄鋁板沿裁開,再將沿折疊,沿折疊,使,重合,且重合于點(diǎn),制作成一個(gè)無(wú)蓋的三棱錐形容器(圖乙),記該容器的容積為(單位:),(注:薄鋁板的厚度忽略不計(jì))(1)若裁開的三角形薄鋁板恰好是該容器的蓋,求,的值;(2)試確定的值,使得無(wú)蓋三棱錐容器的容積最大.18.(12分)如圖,在直角梯形中,,,,為的中點(diǎn),沿將折起,使得點(diǎn)到點(diǎn)位置,且,為的中點(diǎn),是上的動(dòng)點(diǎn)(與點(diǎn),不重合).(Ⅰ)證明:平面平面垂直;(Ⅱ)是否存在點(diǎn),使得二面角的余弦值?若存在,確定點(diǎn)位置;若不存在,說明理由.19.(12分)已知函數(shù).(1)求不等式的解集;(2)若不等式在上恒成立,求實(shí)數(shù)的取值范圍.20.(12分)在平面直角坐標(biāo)系中,已知橢圓的中心為坐標(biāo)原點(diǎn)焦點(diǎn)在軸上,右頂點(diǎn)到右焦點(diǎn)的距離與它到右準(zhǔn)線的距離之比為.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若是橢圓上關(guān)于軸對(duì)稱的任意兩點(diǎn),設(shè),連接交橢圓于另一點(diǎn).求證:直線過定點(diǎn)并求出點(diǎn)的坐標(biāo);(3)在(2)的條件下,過點(diǎn)的直線交橢圓于兩點(diǎn),求的取值范圍.21.(12分)如圖,正方形所在平面外一點(diǎn)滿足,其中分別是與的中點(diǎn).(1)求證:;(2)若,且二面角的平面角的余弦值為,求與平面所成角的正弦值.22.(10分)已知三棱柱中,,是的中點(diǎn),,.(1)求證:;(2)若側(cè)面為正方形,求直線與平面所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】

原式由正弦定理化簡(jiǎn)得,由于,可求的值.【詳解】解:由及正弦定理得.因?yàn)?,所以代入上式化?jiǎn)得.由于,所以.又,故.故選:C.【點(diǎn)睛】本題主要考查正弦定理解三角形,三角函數(shù)恒等變換等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,推理論證能力,屬于中檔題.2.B【解析】

根據(jù)平行的傳遞性判斷A;根據(jù)面面平行的定義判斷B;根據(jù)線面垂直的判定定理判斷C;由三棱錐以三角形為底,則高和底面積都為定值,判斷D.【詳解】在A中,因?yàn)榉謩e是中點(diǎn),所以,故A正確;在B中,由于直線與平面有交點(diǎn),所以不存在點(diǎn),使得平面平面,故B錯(cuò)誤;在C中,由平面幾何得,根據(jù)線面垂直的性質(zhì)得出,結(jié)合線面垂直的判定定理得出平面,故C正確;在D中,三棱錐以三角形為底,則高和底面積都為定值,即三棱錐的體積為定值,故D正確;故選:B【點(diǎn)睛】本題主要考查了判斷面面平行,線面垂直等,屬于中檔題.3.C【解析】

根據(jù)三視圖還原為幾何體,結(jié)合組合體的結(jié)構(gòu)特征求解表面積.【詳解】由三視圖可知,該幾何體可看作是半個(gè)圓柱和一個(gè)長(zhǎng)方體的組合體,其中半圓柱的底面半圓半徑為1,高為4,長(zhǎng)方體的底面四邊形相鄰邊長(zhǎng)分別為1,2,高為4,所以該幾何體的表面積,故選C.【點(diǎn)睛】本題主要考查三視圖的識(shí)別,利用三視圖還原成幾何體是求解關(guān)鍵,側(cè)重考查直觀想象和數(shù)學(xué)運(yùn)算的核心素養(yǎng).4.B【解析】

由余弦的二倍角公式化簡(jiǎn)函數(shù)為,要想在括號(hào)內(nèi)構(gòu)造變?yōu)檎液瘮?shù),至少需要向左平移個(gè)單位長(zhǎng)度,即為答案.【詳解】由題可知,對(duì)其向左平移個(gè)單位長(zhǎng)度后,,其圖像關(guān)于坐標(biāo)原點(diǎn)對(duì)稱故的最小值為故選:B【點(diǎn)睛】本題考查三角函數(shù)圖象性質(zhì)與平移變換,還考查了余弦的二倍角公式逆運(yùn)用,屬于簡(jiǎn)單題.5.D【解析】因?yàn)榈俺驳牡酌媸沁呴L(zhǎng)為的正方形,所以過四個(gè)頂點(diǎn)截雞蛋所得的截面圓的直徑為,又因?yàn)殡u蛋的體積為,所以球的半徑為,所以球心到截面的距離,而截面到球體最低點(diǎn)距離為,而蛋巢的高度為,故球體到蛋巢底面的最短距離為.點(diǎn)睛:本題主要考查折疊問題,考查球體有關(guān)的知識(shí).在解答過程中,如果遇到球體或者圓錐等幾何體的內(nèi)接或外接幾何體的問題時(shí),可以采用軸截面的方法來(lái)處理.也就是畫出題目通過球心和最低點(diǎn)的截面,然后利用弦長(zhǎng)和勾股定理來(lái)解決.球的表面積公式和體積公式是需要熟記的.6.B【解析】

根據(jù)程序框圖,逐步執(zhí)行,直到的值為63,結(jié)束循環(huán),即可得出判斷條件.【詳解】執(zhí)行框圖如下:初始值:,第一步:,此時(shí)不能輸出,繼續(xù)循環(huán);第二步:,此時(shí)不能輸出,繼續(xù)循環(huán);第三步:,此時(shí)不能輸出,繼續(xù)循環(huán);第四步:,此時(shí)不能輸出,繼續(xù)循環(huán);第五步:,此時(shí)不能輸出,繼續(xù)循環(huán);第六步:,此時(shí)要輸出,結(jié)束循環(huán);故,判斷條件為.故選B【點(diǎn)睛】本題主要考查完善程序框圖,只需逐步執(zhí)行框圖,結(jié)合輸出結(jié)果,即可確定判斷條件,屬于??碱}型.7.B【解析】

轉(zhuǎn)化,為,利用復(fù)數(shù)的除法化簡(jiǎn),即得解【詳解】復(fù)數(shù)滿足:所以故選:B【點(diǎn)睛】本題考查了復(fù)數(shù)的除法和復(fù)數(shù)的基本概念,考查了學(xué)生概念理解,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.8.A【解析】

先求出平移后的函數(shù)解析式,結(jié)合圖像的對(duì)稱性和得到A和.【詳解】因?yàn)殛P(guān)于軸對(duì)稱,所以,所以,的最小值是.,則,所以.【點(diǎn)睛】本題主要考查三角函數(shù)的圖像變換及性質(zhì).平移圖像時(shí)需注意x的系數(shù)和平移量之間的關(guān)系.9.D【解析】

先求函數(shù)在上不單調(diào)的充要條件,即在上有解,即可得出結(jié)論.【詳解】,若在上不單調(diào),令,則函數(shù)對(duì)稱軸方程為在區(qū)間上有零點(diǎn)(可以用二分法求得).當(dāng)時(shí),顯然不成立;當(dāng)時(shí),只需或,解得或.故選:D.【點(diǎn)睛】本題考查含參數(shù)的函數(shù)的單調(diào)性及充分不必要條件,要注意二次函數(shù)零點(diǎn)的求法,屬于中檔題.10.C【解析】

畫出函數(shù)和的圖像,和均關(guān)于點(diǎn)中心對(duì)稱,計(jì)算得到答案.【詳解】,驗(yàn)證知不成立,故,畫出函數(shù)和的圖像,易知:和均關(guān)于點(diǎn)中心對(duì)稱,圖像共有8個(gè)交點(diǎn),故所有解之和等于.故選:.【點(diǎn)睛】本題考查了方程解的問題,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力,確定函數(shù)關(guān)于點(diǎn)中心對(duì)稱是解題的關(guān)鍵.11.C【解析】

由幾何概型的概率計(jì)算,知每次生成一個(gè)實(shí)數(shù)小于1的概率為,結(jié)合獨(dú)立事件發(fā)生的概率計(jì)算即可.【詳解】∵每次生成一個(gè)實(shí)數(shù)小于1的概率為.∴這3個(gè)實(shí)數(shù)都小于1的概率為.故選:C.【點(diǎn)睛】本題考查獨(dú)立事件同時(shí)發(fā)生的概率,考查學(xué)生基本的計(jì)算能力,是一道容易題.12.C【解析】

利用先求出,然后計(jì)算出結(jié)果.【詳解】根據(jù)題意,當(dāng)時(shí),,,故當(dāng)時(shí),,數(shù)列是等比數(shù)列,則,故,解得,故選.【點(diǎn)睛】本題主要考查了等比數(shù)列前項(xiàng)和的表達(dá)形式,只要求出數(shù)列中的項(xiàng)即可得到結(jié)果,較為基礎(chǔ).二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

根據(jù)等比數(shù)列通項(xiàng)公式,首先求得,然后求得.【詳解】設(shè)的公比為,由,得,故.故答案為:【點(diǎn)睛】本小題主要考查等比數(shù)列通項(xiàng)公式的基本量計(jì)算,屬于基礎(chǔ)題.14.【解析】

由題意畫出可行域,轉(zhuǎn)化目標(biāo)函數(shù)為,數(shù)形結(jié)合即可得到的最值,即可得解.【詳解】由題意畫出可行域,如圖:轉(zhuǎn)化目標(biāo)函數(shù)為,通過平移直線,數(shù)形結(jié)合可知:當(dāng)直線過點(diǎn)A時(shí),直線截距最大,z最??;當(dāng)直線過點(diǎn)C時(shí),直線截距最小,z最大.由可得,由可得,當(dāng)直線過點(diǎn)時(shí),;當(dāng)直線過點(diǎn)時(shí),,所以.故答案為:.【點(diǎn)睛】本題考查了簡(jiǎn)單的線性規(guī)劃,考查了數(shù)形結(jié)合思想,屬于基礎(chǔ)題.15.4【解析】

根據(jù)導(dǎo)數(shù)的運(yùn)算,結(jié)合數(shù)列的通項(xiàng)公式的求法,求得,,,進(jìn)而得到,再利用放縮法和取整函數(shù)的定義,即可求解.【詳解】由題意,函數(shù),且,,可得,,又由,可得為常數(shù)列,且,數(shù)列表示首項(xiàng)為4,公差為2的等差數(shù)列,所以,其中數(shù)列滿足,所以,所以,又由,可得數(shù)列的前n項(xiàng)和為,數(shù)列的前n項(xiàng)和為,所以數(shù)列的前項(xiàng)和為,滿足,所以,即,又由表示不超過實(shí)數(shù)的最大整數(shù),所以.故答案為:4.【點(diǎn)睛】本題主要考查了函數(shù)的導(dǎo)數(shù)的計(jì)算,以及等差數(shù)列的通項(xiàng)公式,累加法求解數(shù)列的通項(xiàng)公式,以及裂項(xiàng)法求數(shù)列的和的綜合應(yīng)用,著重考查了分析問題和解答問題的能力,屬于中檔試題.16.【解析】

根據(jù)題意,分離參數(shù),轉(zhuǎn)化為只對(duì)于內(nèi)的任意恒成立,令,則只需在定義域內(nèi)即可,利用放縮法,得出,化簡(jiǎn)后得出,即可得出的取值范圍.【詳解】解:已知對(duì)于定義域內(nèi)的任意恒成立,即對(duì)于內(nèi)的任意恒成立,令,則只需在定義域內(nèi)即可,,,當(dāng)時(shí)取等號(hào),由可知,,當(dāng)時(shí)取等號(hào),,當(dāng)有解時(shí),令,則,在上單調(diào)遞增,又,,使得,,則,所以的取值范圍為.故答案為:.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)單調(diào)性和最值,解決恒成立問題求參數(shù)值,涉及分離參數(shù)法和放縮法,考查轉(zhuǎn)化能力和計(jì)算能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1),;(2)當(dāng)值為時(shí),無(wú)蓋三棱錐容器的容積最大.【解析】

(1)由已知求得,求得三角形的面積,再由已知得到平面,代入三棱錐體積公式求的值;(2)由題意知,在等腰三角形中,,則,,寫出三角形面積,求其平方導(dǎo)數(shù)的最值,則答案可求.【詳解】解:(1)由題意,為等腰直角三角形,又,,恰好是該零件的蓋,,則,由圖甲知,,,則在圖乙中,,,,又,平面,平面,;(2)由題意知,在等腰三角形中,,則,,.令,,,.可得:當(dāng)時(shí),,當(dāng),時(shí),,當(dāng)時(shí),有最大值.由(1)知,平面,該三棱錐容積的最大值為,且.當(dāng)時(shí),取得最大值,無(wú)蓋三棱錐容器的容積最大.答:當(dāng)值為時(shí),無(wú)蓋三棱錐容器的容積最大.【點(diǎn)睛】本題考查棱錐體積的求法,考查空間想象能力與思維能力,訓(xùn)練了利用導(dǎo)數(shù)求最值,屬于中檔題.18.(Ⅰ)見解析(Ⅱ)存在,此時(shí)為的中點(diǎn).【解析】

(Ⅰ)證明平面,得到平面平面,故平面平面,平面,得到答案.(Ⅱ)假設(shè)存在點(diǎn)滿足題意,過作于,平面,過作于,連接,則,過作于,連接,是二面角的平面角,設(shè),,計(jì)算得到答案.【詳解】(Ⅰ)∵,,,∴平面.又平面,∴平面平面,而平面,,∴平面平面,由,知,可知平面,又平面,∴平面平面.(Ⅱ)假設(shè)存在點(diǎn)滿足題意,過作于,由知,易證平面,所以平面,過作于,連接,則(三垂線定理),即是二面角的平面角,不妨設(shè),則,在中,設(shè)(),由得,即,得,∴,依題意知,即,解得,此時(shí)為的中點(diǎn).綜上知,存在點(diǎn),使得二面角的余弦值,此時(shí)為的中點(diǎn).【點(diǎn)睛】本題考查了面面垂直,根據(jù)二面角確定點(diǎn)的位置,意在考查學(xué)生的空間想象能力和計(jì)算能力,也可以建立空間直角坐標(biāo)系解得答案.19.(1);(2)【解析】

(1)分類討論去絕對(duì)值號(hào),即可求解;(2)原不等式可轉(zhuǎn)化為在R上恒成立,分別求函數(shù)與的最小值,根據(jù)能同時(shí)成立,可得的最小值,即可求解.【詳解】(1)①當(dāng)時(shí),不等式可化為,得,無(wú)解;②當(dāng)-2≤x≤1時(shí),不等式可化為得x>0,故0<x≤1;③當(dāng)x>1時(shí),不等式可化為,得x<2,故1<x<2.綜上,不等式的解集為(2)由題意知在R上恒成立,所以令,則當(dāng)時(shí),又當(dāng)時(shí),取得最小值,且又所以當(dāng)時(shí),與同時(shí)取得最小值.所以所以,即實(shí)數(shù)的取值范圍為【點(diǎn)睛】本題主要考查了含絕對(duì)值不等式的解法,分類討論,函數(shù)的最值,屬于中檔題.20.(1);(2)證明詳見解析,;(3).【解析】

(1)根據(jù)題意列出關(guān)于的等式求解即可.(2)先根據(jù)對(duì)稱性,直線過的定點(diǎn)一定在軸上,再設(shè)直線的方程為,聯(lián)立直線與橢圓的方程,進(jìn)而求得的方程,并代入,化簡(jiǎn)分析即可.(3)先分析過點(diǎn)的直線斜率不存在時(shí)的值,再分析存在時(shí),設(shè)直線的方程為,聯(lián)立直線與橢圓的方程,得出韋達(dá)定理再代入求解出關(guān)于的解析式,再求解范圍即可.【詳解】解:設(shè)橢圓的標(biāo)準(zhǔn)方程焦距為,由題意得,由,可得則,所以橢圓的標(biāo)準(zhǔn)方程為;證明:根據(jù)對(duì)稱性,直線過的定點(diǎn)一定在軸上,由題意可知直線的斜率存在,設(shè)直線的方程為,聯(lián)立,消去得到,設(shè)點(diǎn),則.所以,所以的方程為,令得,將,代入上式并整理,,整理得,所以,直線與軸相交于定點(diǎn).當(dāng)過點(diǎn)的直線的斜率不存在時(shí),直線的方程為,此時(shí),當(dāng)過點(diǎn)的直線斜率存在時(shí),設(shè)直線的方程為,且在橢圓上,聯(lián)立方程組,消去,整理得,則.所以所以,所以,由得,綜上可得,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論