版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.2019年4月份,某市市區(qū)一周空氣質量報告中某項污染指數的數據是:31,35,31,34,30,32,31,這組數據的中位數、眾數分別是()A.32,31 B.31,32 C.31,31 D.32,352.下列說法:四邊相等的四邊形一定是菱形順次連接矩形各邊中點形成的四邊形一定是正方形對角線相等的四邊形一定是矩形經過平行四邊形對角線交點的直線,一定能把平行四邊形分成面積相等的兩部分其中正確的有個.A.4 B.3 C.2 D.13.估計的值在()A.2和3之間 B.3和4之間 C.4和5之間 D.5和6之間4.已知不透明的袋中只裝有黑、白兩種球,這些球除顏色外都相同,其中白球有30個,黑球有n個.隨機地從袋中摸出一個球,記錄下顏色后,放回袋子中并搖勻,再從中摸出一個球,經過如此大量重復試驗,發(fā)現摸出的黑球的頻率穩(wěn)定在0.4附近,則n的值約為()A.20 B.30 C.40 D.505.已知函數y=的圖象如圖,當x≥﹣1時,y的取值范圍是()A.y<﹣1 B.y≤﹣1 C.y≤﹣1或y>0 D.y<﹣1或y≥06.如圖,在△ABC中,點D、E分別在邊AB、AC的反向延長線上,下面比例式中,不能判定ED//BC的是()A. B.C. D.7.如圖,AB是⊙O的直徑,弦CD⊥AB于E,∠CDB=30°,⊙O的半徑為,則弦CD的長為()A. B.3cm C. D.9cm8.如圖,在Rt△ABC中,∠C=90°,以頂點A為圓心,適當長為半徑畫弧,分別交AC,AB于點M、N,再分別以點M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,作射線AP交邊BC于點D,若CD=4,AB=18,則△ABD的面積是()A.18 B.36 C.54 D.729.關于的敘述正確的是()A.= B.在數軸上不存在表示的點C.=± D.與最接近的整數是310.下列各圖中,既可經過平移,又可經過旋轉,由圖形①得到圖形②的是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在扇形AOB中,∠AOB=90°,點C為OA的中點,CE⊥OA交于點E,以點O為圓心,OC的長為半徑作交OB于點D,若OA=2,則陰影部分的面積為.12.若⊙O所在平面內一點P到⊙O的最大距離為6,最小距離為2,則⊙O的半徑為_____.13.一元二次方程有兩個不相等的實數根,則的取值范圍是________.14.如圖,在△ABC中,AB≠AC.D,E分別為邊AB,AC上的點.AC=3AD,AB=3AE,點F為BC邊上一點,添加一個條件:______,可以使得△FDB與△ADE相似.(只需寫出一個)
15.如圖,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,點D是BC上一動點,連接AD,將△ACD沿AD折疊,點C落在點E處,連接DE交AB于點F,當△DEB是直角三角形時,DF的長為_____.16.平面直角坐標系中一點P(m﹣3,1﹣2m)在第三象限,則m的取值范圍是_____.17.在平面直角坐標系中,若點P(2x+6,5x)在第四象限,則x的取值范圍是_________;三、解答題(共7小題,滿分69分)18.(10分)如圖,AB為⊙O的直徑,D為⊙O上一點,以AD為斜邊作△ADC,使∠C=90°,∠CAD=∠DAB求證:DC是⊙O的切線;若AB=9,AD=6,求DC的長.19.(5分)小明在熱氣球A上看到正前方橫跨河流兩岸的大橋BC,并測得B、C兩點的俯角分別為45°、35°.已知大橋BC與地面在同一水平面上,其長度為100m,求熱氣球離地面的高度.(結果保留整數)(參考數據:sin35°=0.57,cos35°=0.82,tan35°=0.70)20.(8分)已知關于x的方程.當該方程的一個根為1時,求a的值及該方程的另一根;求證:不論a取何實數,該方程都有兩個不相等的實數根.21.(10分)如圖,矩形ABCD中,E是AD的中點,延長CE,BA交于點F,連接AC,DF.(1)求證:四邊形ACDF是平行四邊形;(2)當CF平分∠BCD時,寫出BC與CD的數量關系,并說明理由.22.(10分)如圖,矩形中,對角線、交于點,以、為鄰邊作平行四邊形,連接求證:四邊形是菱形若,,求四邊形的面積23.(12分)如圖,平面直角坐標系內,小正方形網格的邊長為1個單位長度,△ABC的三個頂點的坐標分別為A(﹣1,3),B(﹣4,0),C(0,0)(1)畫出將△ABC向上平移1個單位長度,再向右平移5個單位長度后得到的△A1B1C1;(2)畫出將△ABC繞原點O順時針方向旋轉90°得到△A2B2O;(3)在x軸上存在一點P,滿足點P到A1與點A2距離之和最小,請直接寫出P點的坐標.24.(14分)已知:二次函數滿足下列條件:①拋物線y=ax2+bx與直線y=x只有一個交點;②對于任意實數x,a(-x+5)2+b(-x+5)=a(x-3)2+b(x-3)都成立.(1)求二次函數y=ax2+bx的解析式;(2)若當-2≤x≤r(r≠0)時,恰有t≤y≤1.5r成立,求t和r的值.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】分析:找中位數要把數據按從小到大的順序排列,位于最中間的一個數(或兩個數的平均數)為中位數;眾數是一組數據中出現次數最多的數據,注意眾數可以不只一個.解答:解:從小到大排列此數據為:30、1、1、1、32、34、35,數據1出現了三次最多為眾數,1處在第4位為中位數.所以本題這組數據的中位數是1,眾數是1.故選C.2、C【解析】
∵四邊相等的四邊形一定是菱形,∴①正確;∵順次連接矩形各邊中點形成的四邊形一定是菱形,∴②錯誤;∵對角線相等的平行四邊形才是矩形,∴③錯誤;∵經過平行四邊形對角線交點的直線,一定能把平行四邊形分成面積相等的兩部分,∴④正確;其中正確的有2個,故選C.考點:中點四邊形;平行四邊形的性質;菱形的判定;矩形的判定與性質;正方形的判定.3、D【解析】
尋找小于26的最大平方數和大于26的最小平方數即可.【詳解】解:小于26的最大平方數為25,大于26的最小平方數為36,故,即:,故選擇D.【點睛】本題考查了二次根式的相關定義.4、A【解析】分析:根據白球的頻率穩(wěn)定在0.4附近得到白球的概率約為0.4,根據白球個數確定出總個數,進而確定出黑球個數n.詳解:根據題意得:,
計算得出:n=20,
故選A.
點睛:根據概率的求法,找準兩點:①全部情況的總數;②符合條件的情況數目;二者的比值就是其發(fā)生的概率.5、C【解析】試題分析:根據反比例函數的性質,再結合函數的圖象即可解答本題.解:根據反比例函數的性質和圖象顯示可知:此函數為減函數,x≥-1時,在第三象限內y的取值范圍是y≤-1;在第一象限內y的取值范圍是y>1.故選C.考點:本題考查了反比例函數的性質點評:此類試題屬于難度一般的試題,考生在解答此類試題時一定要注意分析反比例函數的基本性質和知識,反比例函數y=的圖象是雙曲線,當k>1時,圖象在一、三象限,在每個象限內y隨x的增大而減?。划攌<1時,圖象在二、四象限,在每個象限內,y隨x的增大而增大6、C【解析】
根據平行線分線段成比例定理推理的逆定理,對各選項進行逐一判斷即可.【詳解】A.當時,能判斷;B.
當時,能判斷;C.
當時,不能判斷;D.
當時,,能判斷.故選:C.【點睛】本題考查平行線分線段成比例定理推理的逆定理,根據定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于三角形的第三邊.能根據定理判斷線段是否為對應線段是解決此題的關鍵.7、B【解析】
解:∵∠CDB=30°,∴∠COB=60°,又∵OC=,CD⊥AB于點E,∴,解得CE=cm,CD=3cm.故選B.考點:1.垂徑定理;2.圓周角定理;3.特殊角的三角函數值.8、B【解析】
根據題意可知AP為∠CAB的平分線,由角平分線的性質得出CD=DH,再由三角形的面積公式可得出結論.【詳解】由題意可知AP為∠CAB的平分線,過點D作DH⊥AB于點H,∵∠C=90°,CD=1,∴CD=DH=1.∵AB=18,∴S△ABD=AB?DH=×18×1=36故選B.【點睛】本題考查的是作圖-基本作圖,熟知角平分線的作法是解答此題的關鍵.9、D【解析】
根據二次根式的加法法則、實數與數軸上的點是一一對應的關系、二次根式的化簡及無理數的估算對各項依次分析,即可解答.【詳解】選項A,+無法計算;選項B,在數軸上存在表示的點;選項C,;選項D,與最接近的整數是=1.故選D.【點睛】本題考查了二次根式的加法法則、實數與數軸上的點是一一對應的關系、二次根式的化簡及無理數的估算等知識點,熟記這些知識點是解題的關鍵.10、D【解析】A,B,C只能通過旋轉得到,D既可經過平移,又可經過旋轉得到,故選D.二、填空題(共7小題,每小題3分,滿分21分)11、.【解析】試題解析:連接OE、AE,∵點C為OA的中點,∴∠CEO=30°,∠EOC=60°,∴△AEO為等邊三角形,∴S扇形AOE=∴S陰影=S扇形AOB-S扇形COD-(S扇形AOE-S△COE)===.12、2或1【解析】
點P可能在圓內.也可能在圓外,因而分兩種情況進行討論.【詳解】解:當這點在圓外時,則這個圓的半徑是(6-2)÷2=2;當點在圓內時,則這個圓的半徑是(6+2)÷2=1.故答案為2或1.【點睛】此題主要考查點與圓的位置關系,解題的關鍵是注意此題應分為兩種情況來解決.13、且【解析】
根據一元二次方程的根與判別式△的關系,結合一元二次方程的定義解答即可.【詳解】由題意可得,1?k≠0,△=4+4(1?k)>0,∴k<2且k≠1.故答案為k<2且k≠1.【點睛】本題主要考查了一元二次方程的根的判別式的應用,解題中要注意不要漏掉對二次項系數1-k≠0的考慮.14、或【解析】因為,,,所以,欲使與相似,只需要與相似即可,則可以添加的條件有:∠A=∠BDF,或者∠C=∠BDF,等等,答案不唯一.【方法點睛】在解決本題目,直接處理與,無從下手,沒有公共邊或者公共角,稍作轉化,通過,與相似.這時,柳暗花明,迎刃而解.15、或【解析】試題分析:如圖4所示;點E與點C′重合時.在Rt△ABC中,BC==4.由翻折的性質可知;AE=AC=3、DC=DE.則EB=2.設DC=ED=x,則BD=4﹣x.在Rt△DBE中,DE2+BE2=DB2,即x2+22=(4﹣x)2.解得:x=.∴DE=.如圖2所示:∠EDB=90時.由翻折的性質可知:AC=AC′,∠C=∠C′=90°.∵∠C=∠C′=∠CDC′=90°,∴四邊形ACDC′為矩形.又∵AC=AC′,∴四邊形ACDC′為正方形.∴CD=AC=3.∴DB=BC﹣DC=4﹣3=4.∵DE∥AC,∴△BDE∽△BCA.∴,即.解得:DE=.點D在CB上運動,∠DBC′<90°,故∠DBC′不可能為直角.考點:翻折變換(折疊問題).16、0.5<m<3【解析】
根據第三象限內點的橫坐標與縱坐標都是負數列式不等式組,然后求解即可.【詳解】∵點P(m?3,1?2m)在第三象限,∴,解得:0.5<m<3.故答案為:0.5<m<3.【點睛】本題考查了解一元二次方程組與象限及點的坐標的有關性質,解題的關鍵是熟練的掌握解一元二次方程組與象限及點的坐標的有關性質.17、﹣3<x<1【解析】
根據第四象限內橫坐標為正,縱坐標為負可得出答案.【詳解】∵點P(2x-6,x-5)在第四象限,∴2x+解得-3<x<1.故答案為-3<x<1.【點睛】本題考查了點的坐標、一元一次不等式組,解題的關鍵是知道平面直角坐標系中第四象限橫、縱坐標的符號.三、解答題(共7小題,滿分69分)18、(1)見解析;(2)【解析】分析:(1)如下圖,連接OD,由OA=OD可得∠DAO=∠ADO,結合∠CAD=∠DAB,可得∠CAD=∠ADO,從而可得OD∥AC,由此可得∠C+∠CDO=180°,結合∠C=90°可得∠CDO=90°即可證得CD是⊙O的切線;(2)如下圖,連接BD,由AB是⊙O的直徑可得∠ADB=90°=∠C,結合∠CAD=∠DAB可得△ACD∽△ADB,由此可得,在Rt△ABD中由AD=6,AB=9易得BD=,由此即可解得CD的長了.詳解:(1)如下圖,連接OD.∵OA=OD,∴∠DAB=∠ODA,∵∠CAD=∠DAB,∴∠ODA=∠CAD∴AC∥OD∴∠C+∠ODC=180°∵∠C=90°∴∠ODC=90°∴OD⊥CD,∴CD是⊙O的切線.(2)如下圖,連接BD,∵AB是⊙O的直徑,∴∠ADB=90°,∵AB=9,AD=6,∴BD===3,∵∠CAD=∠BAD,∠C=∠ADB=90°,∴△ACD∽△ADB,∴,∴,∴CD=.點睛:這是一道考查“圓和直線的位置關系與相似三角形的判定和性質”的幾何綜合題,作出如圖所示的輔助線,熟悉“圓的切線的判定方法”和“相似三角形的判定和性質”是正確解答本題的關鍵.19、熱氣球離地面的高度約為1米.【解析】
作AD⊥BC交CB的延長線于D,設AD為x,表示出DB和DC,根據正切的概念求出x的值即可.【詳解】解:作AD⊥BC交CB的延長線于D,設AD為x,由題意得,∠ABD=45°,∠ACD=35°,在Rt△ADB中,∠ABD=45°,∴DB=x,在Rt△ADC中,∠ACD=35°,∴tan∠ACD=,∴=,解得,x≈1.答:熱氣球離地面的高度約為1米.【點睛】考查的是解直角三角形的應用,理解仰角和俯角的概念、掌握銳角三角函數的概念是解題的關鍵,解答時,注意正確作出輔助線構造直角三角形.20、(1),;(2)證明見解析.【解析】試題分析:(1)根據一元二次方程根與系數的關系列方程組求解即可.(2)要證方程都有兩個不相等的實數根,只要證明根的判別式大于0即可.試題解析:(1)設方程的另一根為x1,∵該方程的一個根為1,∴.解得.∴a的值為,該方程的另一根為.(2)∵,∴不論a取何實數,該方程都有兩個不相等的實數根.考點:1.一元二次方程根與系數的關系;2.一元二次方程根根的判別式;3.配方法的應用.21、(1)證明見解析;(2)BC=2CD,理由見解析.【解析】分析:(1)利用矩形的性質,即可判定△FAE≌△CDE,即可得到CD=FA,再根據CD∥AF,即可得出四邊形ACDF是平行四邊形;(2)先判定△CDE是等腰直角三角形,可得CD=DE,再根據E是AD的中點,可得AD=2CD,依據AD=BC,即可得到BC=2CD.詳解:(1)∵四邊形ABCD是矩形,∴AB∥CD,∴∠FAE=∠CDE,∵E是AD的中點,∴AE=DE,又∵∠FEA=∠CED,∴△FAE≌△CDE,∴CD=FA,又∵CD∥AF,∴四邊形ACDF是平行四邊形;(2)BC=2CD.證明:∵CF平分∠BCD,∴∠DCE=45°,∵∠CDE=90°,∴△CDE是等腰直角三角形,∴CD=DE,∵E是AD的中點,∴AD=2CD,∵AD=BC,∴BC=2CD.點睛:本題主要考查了矩形的性質以及平行四邊形的判定與性質,要證明兩直線平行和兩線段相等、兩角相等,可考慮將要證的直線、線段、角、分別置于一個四邊形的對邊或對角的位置上,通過證明四邊形是平行四邊形達到上述目的.22、(1)見解析;(2)S四邊形ADOE=.【解析】
(1)根據矩形的性質有OA=OB=OC=OD,根據四邊形ADOE是平行四邊形,得到OD∥AE,AE=OD.等量代換得到AE=OB.即可證明四邊形AOBE為平行四邊形.根據有一組鄰邊相等的平行四邊形是菱形即可證明.(2)根據菱形的性質有∠EAB=∠BAO.根據矩形的性質有AB∥CD,根據平行線的性質有∠BAC=∠ACD,求出∠DCA=60°,求出AD=.根據面積公式SΔADC,即可求解.【詳解】(1)證明:∵矩形ABCD,∴OA=OB=OC=OD.∵平行四邊形ADOE,∴OD∥AE,AE=OD.∴AE=OB.∴四邊形AOBE為平行四邊形.∵OA=OB,∴四邊形AOBE為菱形.(2)解:∵菱形AOBE,∴∠EAB=∠BAO.∵矩形ABCD,∴AB∥CD.∴∠BAC=∠ACD,∠ADC=90°.∴∠EAB=∠BAO=∠DCA.∵∠EAO+∠DCO=180°,∴∠
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 海鮮購銷合同范本模板示例
- 借款合同協議格式
- 技術開發(fā)與服務協議
- 玻璃原片采購交易價目表
- 借款合同中的抵押條款
- 重新簽訂的合同協議
- 農產品選購合同格式
- 展覽活動承包合同
- 文化傳播公司內容創(chuàng)意與市場推廣策略方案設計方
- 智慧城市管理
- 110kV升壓站構支架組立施工方案
- 何以中國:公元前的中原圖景
- 【中藥貯藏與養(yǎng)護問題及解決對策4000字(論文)】
- 自然環(huán)境對聚落的影響
- 2023-2024學年天津市部分地區(qū)六年級數學第一學期期末綜合測試試題含答案
- 河南省洛陽市偃師區(qū)2023-2024學年四年級數學第一學期期末經典模擬試題含答案
- 小學生預防性侵講稿
- 人工智能算法貝葉斯算法
- 外墻外保溫監(jiān)理實施細則
- 剪映使用課件s
- B2B電子商務網站調研報告
評論
0/150
提交評論