2023屆新疆呼圖壁縣第一中學(xué)高三最后一模數(shù)學(xué)試題含解析_第1頁(yè)
2023屆新疆呼圖壁縣第一中學(xué)高三最后一模數(shù)學(xué)試題含解析_第2頁(yè)
2023屆新疆呼圖壁縣第一中學(xué)高三最后一模數(shù)學(xué)試題含解析_第3頁(yè)
2023屆新疆呼圖壁縣第一中學(xué)高三最后一模數(shù)學(xué)試題含解析_第4頁(yè)
2023屆新疆呼圖壁縣第一中學(xué)高三最后一模數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年高考數(shù)學(xué)模擬試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.中國(guó)古代用算籌來(lái)進(jìn)行記數(shù),算籌的擺放形式有縱橫兩種形式(如圖所示),表示一個(gè)多位數(shù)時(shí),像阿拉伯記數(shù)一樣,把各個(gè)數(shù)位的數(shù)碼從左到右排列,但各位數(shù)碼的籌式需要縱橫相間,其中個(gè)位、百位、方位……用縱式表示,十位、千位、十萬(wàn)位……用橫式表示,則56846可用算籌表示為()A. B. C. D.2.德國(guó)數(shù)學(xué)家萊布尼茲(1646年-1716年)于1674年得到了第一個(gè)關(guān)于π的級(jí)數(shù)展開(kāi)式,該公式于明朝初年傳入我國(guó).在我國(guó)科技水平業(yè)已落后的情況下,我國(guó)數(shù)學(xué)家?天文學(xué)家明安圖(1692年-1765年)為提高我國(guó)的數(shù)學(xué)研究水平,從乾隆初年(1736年)開(kāi)始,歷時(shí)近30年,證明了包括這個(gè)公式在內(nèi)的三個(gè)公式,同時(shí)求得了展開(kāi)三角函數(shù)和反三角函數(shù)的6個(gè)新級(jí)數(shù)公式,著有《割圓密率捷法》一書(shū),為我國(guó)用級(jí)數(shù)計(jì)算π開(kāi)創(chuàng)了先河.如圖所示的程序框圖可以用萊布尼茲“關(guān)于π的級(jí)數(shù)展開(kāi)式”計(jì)算π的近似值(其中P表示π的近似值),若輸入,則輸出的結(jié)果是()A. B.C. D.3.若雙曲線的漸近線與圓相切,則雙曲線的離心率為()A.2 B. C. D.4.已知為虛數(shù)單位,實(shí)數(shù)滿足,則()A.1 B. C. D.5.已知下列命題:①“”的否定是“”;②已知為兩個(gè)命題,若“”為假命題,則“”為真命題;③“”是“”的充分不必要條件;④“若,則且”的逆否命題為真命題.其中真命題的序號(hào)為()A.③④ B.①② C.①③ D.②④6.二項(xiàng)式的展開(kāi)式中,常數(shù)項(xiàng)為()A. B.80 C. D.1607.若雙曲線的離心率為,則雙曲線的焦距為()A. B. C.6 D.88.拋物線的準(zhǔn)線與軸的交點(diǎn)為點(diǎn),過(guò)點(diǎn)作直線與拋物線交于、兩點(diǎn),使得是的中點(diǎn),則直線的斜率為()A. B. C.1 D.9.在長(zhǎng)方體中,,則直線與平面所成角的余弦值為()A. B. C. D.10.已知排球發(fā)球考試規(guī)則:每位考生最多可發(fā)球三次,若發(fā)球成功,則停止發(fā)球,否則一直發(fā)到次結(jié)束為止.某考生一次發(fā)球成功的概率為,發(fā)球次數(shù)為,若的數(shù)學(xué)期望,則的取值范圍為()A. B. C. D.11.若函數(shù)滿足,且,則的最小值是()A. B. C. D.12.已知函數(shù),,若總有恒成立.記的最小值為,則的最大值為()A.1 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知變量x,y滿足約束條件x-y≤0x+2y≤34x-y≥-6,則14.?dāng)?shù)列滿足,則,_____.若存在n∈N*使得成立,則實(shí)數(shù)λ的最小值為_(kāi)_____15.已知函數(shù),若關(guān)于的方程在定義域上有四個(gè)不同的解,則實(shí)數(shù)的取值范圍是_______.16.已知單位向量的夾角為,則=_________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,直線的的參數(shù)方程為(其中為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,點(diǎn)的極坐標(biāo)為,直線經(jīng)過(guò)點(diǎn).曲線的極坐標(biāo)方程為.(1)求直線的普通方程與曲線的直角坐標(biāo)方程;(2)過(guò)點(diǎn)作直線的垂線交曲線于兩點(diǎn)(在軸上方),求的值.18.(12分)已知函數(shù).(Ⅰ)當(dāng)時(shí),求不等式的解集;(Ⅱ)若存在滿足不等式,求實(shí)數(shù)的取值范圍.19.(12分)已知函數(shù),.(1)討論的單調(diào)性;(2)當(dāng)時(shí),證明:.20.(12分)設(shè)都是正數(shù),且,.求證:.21.(12分)已知函數(shù),其中.(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;(Ⅱ)設(shè),求證:;(Ⅲ)若對(duì)于恒成立,求的最大值.22.(10分)已知等差數(shù)列{an}的各項(xiàng)均為正數(shù),Sn為等差數(shù)列{an}的前n項(xiàng)和,.(1)求數(shù)列{an}的通項(xiàng)an;(2)設(shè)bn=an?3n,求數(shù)列{bn}的前n項(xiàng)和Tn.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

根據(jù)題意表示出各位上的數(shù)字所對(duì)應(yīng)的算籌即可得答案.【詳解】解:根據(jù)題意可得,各個(gè)數(shù)碼的籌式需要縱橫相間,個(gè)位,百位,萬(wàn)位用縱式表示;十位,千位,十萬(wàn)位用橫式表示,用算籌表示應(yīng)為:縱5橫6縱8橫4縱6,從題目中所給出的信息找出對(duì)應(yīng)算籌表示為中的.故選:.【點(diǎn)睛】本題主要考查學(xué)生的合情推理與演繹推理,屬于基礎(chǔ)題.2、B【解析】

執(zhí)行給定的程序框圖,輸入,逐次循環(huán),找到計(jì)算的規(guī)律,即可求解.【詳解】由題意,執(zhí)行給定的程序框圖,輸入,可得:第1次循環(huán):;第2次循環(huán):;第3次循環(huán):;第10次循環(huán):,此時(shí)滿足判定條件,輸出結(jié)果,故選:B.【點(diǎn)睛】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的計(jì)算與輸出,其中解答中認(rèn)真審題,逐次計(jì)算,得到程序框圖的計(jì)算功能是解答的關(guān)鍵,著重考查了分析問(wèn)題和解答問(wèn)題的能力,屬于基礎(chǔ)題.3、C【解析】

利用圓心到漸近線的距離等于半徑即可建立間的關(guān)系.【詳解】由已知,雙曲線的漸近線方程為,故圓心到漸近線的距離等于1,即,所以,.故選:C.【點(diǎn)睛】本題考查雙曲線離心率的求法,求雙曲線離心率問(wèn)題,關(guān)鍵是建立三者間的方程或不等關(guān)系,本題是一道基礎(chǔ)題.4、D【解析】,則故選D.5、B【解析】

由命題的否定,復(fù)合命題的真假,充分必要條件,四種命題的關(guān)系對(duì)每個(gè)命題進(jìn)行判斷.【詳解】“”的否定是“”,正確;已知為兩個(gè)命題,若“”為假命題,則“”為真命題,正確;“”是“”的必要不充分條件,錯(cuò)誤;“若,則且”是假命題,則它的逆否命題為假命題,錯(cuò)誤.故選:B.【點(diǎn)睛】本題考查命題真假判斷,掌握四種命題的關(guān)系,復(fù)合命題的真假判斷,充分必要條件等概念是解題基礎(chǔ).6、A【解析】

求出二項(xiàng)式的展開(kāi)式的通式,再令的次數(shù)為零,可得結(jié)果.【詳解】解:二項(xiàng)式展開(kāi)式的通式為,令,解得,則常數(shù)項(xiàng)為.故選:A.【點(diǎn)睛】本題考查二項(xiàng)式定理指定項(xiàng)的求解,關(guān)鍵是熟練應(yīng)用二項(xiàng)展開(kāi)式的通式,是基礎(chǔ)題.7、A【解析】

依題意可得,再根據(jù)離心率求出,即可求出,從而得解;【詳解】解:∵雙曲線的離心率為,所以,∴,∴,雙曲線的焦距為.故選:A【點(diǎn)睛】本題考查雙曲線的簡(jiǎn)單幾何性質(zhì),屬于基礎(chǔ)題.8、B【解析】

設(shè)點(diǎn)、,設(shè)直線的方程為,由題意得出,將直線的方程與拋物線的方程聯(lián)立,列出韋達(dá)定理,結(jié)合可求得的值,由此可得出直線的斜率.【詳解】由題意可知點(diǎn),設(shè)點(diǎn)、,設(shè)直線的方程為,由于點(diǎn)是的中點(diǎn),則,將直線的方程與拋物線的方程聯(lián)立得,整理得,由韋達(dá)定理得,得,,解得,因此,直線的斜率為.故選:B.【點(diǎn)睛】本題考查直線斜率的求解,考查直線與拋物線的綜合問(wèn)題,涉及韋達(dá)定理設(shè)而不求法的應(yīng)用,考查運(yùn)算求解能力,屬于中等題.9、C【解析】

在長(zhǎng)方體中,得與平面交于,過(guò)做于,可證平面,可得為所求解的角,解,即可求出結(jié)論.【詳解】在長(zhǎng)方體中,平面即為平面,過(guò)做于,平面,平面,平面,為與平面所成角,在,,直線與平面所成角的余弦值為.故選:C.【點(diǎn)睛】本題考查直線與平面所成的角,定義法求空間角要體現(xiàn)“做”“證”“算”,三步驟缺一不可,屬于基礎(chǔ)題.10、A【解析】

根據(jù)題意,分別求出再根據(jù)離散型隨機(jī)變量期望公式進(jìn)行求解即可【詳解】由題可知,,,則解得,由可得,答案選A【點(diǎn)睛】本題考查離散型隨機(jī)變量期望的求解,易錯(cuò)點(diǎn)為第三次發(fā)球分為兩種情況:三次都不成功、第三次成功11、A【解析】

由推導(dǎo)出,且,將所求代數(shù)式變形為,利用基本不等式求得的取值范圍,再利用函數(shù)的單調(diào)性可得出其最小值.【詳解】函數(shù)滿足,,即,,,,即,,則,由基本不等式得,當(dāng)且僅當(dāng)時(shí),等號(hào)成立.,由于函數(shù)在區(qū)間上為增函數(shù),所以,當(dāng)時(shí),取得最小值.故選:A.【點(diǎn)睛】本題考查代數(shù)式最值的計(jì)算,涉及對(duì)數(shù)運(yùn)算性質(zhì)、基本不等式以及函數(shù)單調(diào)性的應(yīng)用,考查計(jì)算能力,屬于中等題.12、C【解析】

根據(jù)總有恒成立可構(gòu)造函數(shù),求導(dǎo)后分情況討論的最大值可得最大值最大值,即.根據(jù)題意化簡(jiǎn)可得,求得,再換元求導(dǎo)分析最大值即可.【詳解】由題,總有即恒成立.設(shè),則的最大值小于等于0.又,若則,在上單調(diào)遞增,無(wú)最大值.若,則當(dāng)時(shí),,在上單調(diào)遞減,當(dāng)時(shí),,在上單調(diào)遞增.故在處取得最大值.故,化簡(jiǎn)得.故,令,可令,故,當(dāng)時(shí),,在遞減;當(dāng)時(shí),,在遞增.故在處取得極大值,為.故的最大值為.故選:C【點(diǎn)睛】本題主要考查了根據(jù)導(dǎo)數(shù)求解函數(shù)的最值問(wèn)題,需要根據(jù)題意分析導(dǎo)數(shù)中參數(shù)的范圍,再分析函數(shù)的最值,進(jìn)而求導(dǎo)構(gòu)造函數(shù)求解的最大值.屬于難題.二、填空題:本題共4小題,每小題5分,共20分。13、-5【解析】

畫(huà)出x,y滿足的可行域,當(dāng)目標(biāo)函數(shù)z=x-2y經(jīng)過(guò)點(diǎn)A時(shí),z最小,求解即可。【詳解】畫(huà)出x,y滿足的可行域,由x+2y=34x-y=-6解得A-1,2,當(dāng)目標(biāo)函數(shù)z=x-2y經(jīng)過(guò)點(diǎn)A【點(diǎn)睛】本題考查的是線性規(guī)劃問(wèn)題,解決線性規(guī)劃問(wèn)題的實(shí)質(zhì)是把代數(shù)問(wèn)題幾何化,即數(shù)形結(jié)合思想。需要注意的是:一,準(zhǔn)確無(wú)誤地作出可行域;二,畫(huà)目標(biāo)函數(shù)所對(duì)應(yīng)的直線時(shí),要注意讓其斜率與約束條件中的直線的斜率進(jìn)行比較,避免出錯(cuò);三,一般情況下,目標(biāo)函數(shù)的最大值或最小值會(huì)在可行域的端點(diǎn)或邊界上取得。14、【解析】

利用“退一作差法”求得數(shù)列的通項(xiàng)公式,將不等式分離常數(shù),利用商比較法求得的最小值,由此求得的取值范圍,進(jìn)而求得的最小值.【詳解】當(dāng)時(shí)兩式相減得所以當(dāng)時(shí),滿足上式綜上所述存在使得成立的充要條件為存在使得,設(shè),所以,即,所以單調(diào)遞增,的最小項(xiàng),即有的最小值為.故答案為:(1).(2).【點(diǎn)睛】本小題主要考查根據(jù)遞推關(guān)系式求數(shù)列的通項(xiàng)公式,考查數(shù)列單調(diào)性的判斷方法,考查不等式成立的存在性問(wèn)題的求解策略,屬于中檔題.15、【解析】

由題意可在定義域上有四個(gè)不同的解等價(jià)于關(guān)于原點(diǎn)對(duì)稱的函數(shù)與函數(shù)的圖象有兩個(gè)交點(diǎn),運(yùn)用參變分離和構(gòu)造函數(shù),進(jìn)而借助導(dǎo)數(shù)分析單調(diào)性與極值,畫(huà)出函數(shù)圖象,即可得到所求范圍.【詳解】已知定義在上的函數(shù)若在定義域上有四個(gè)不同的解等價(jià)于關(guān)于原點(diǎn)對(duì)稱的函數(shù)與函數(shù)f(x)=lnx-x(x>0)的圖象有兩個(gè)交點(diǎn),聯(lián)立可得有兩個(gè)解,即可設(shè),則,進(jìn)而且不恒為零,可得在單調(diào)遞增.由可得時(shí),單調(diào)遞減;時(shí),單調(diào)遞增,即在處取得極小值且為作出的圖象,可得時(shí),有兩個(gè)解.故答案為:【點(diǎn)睛】本題考查利用利用導(dǎo)數(shù)解決方程的根的問(wèn)題,還考查了等價(jià)轉(zhuǎn)化思想與函數(shù)對(duì)稱性的應(yīng)用,屬于難題.16、【解析】

因?yàn)閱挝幌蛄康膴A角為,所以,所以==.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1),;(2)【解析】

(1)利用代入法消去參數(shù)可得到直線的普通方程,利用公式可得到曲線的直角坐標(biāo)方程;(2)設(shè)直線的參數(shù)方程為(為參數(shù)),代入得,根據(jù)直線參數(shù)方程的幾何意義,利用韋達(dá)定理可得結(jié)果.【詳解】(1)由題意得點(diǎn)的直角坐標(biāo)為,將點(diǎn)代入得則直線的普通方程為.由得,即.故曲線的直角坐標(biāo)方程為.(2)設(shè)直線的參數(shù)方程為(為參數(shù)),代入得.設(shè)對(duì)應(yīng)參數(shù)為,對(duì)應(yīng)參數(shù)為.則,,且..【點(diǎn)睛】參數(shù)方程主要通過(guò)代入法或者已知恒等式(如等三角恒等式)消去參數(shù)化為普通方程,通過(guò)選取相應(yīng)的參數(shù)可以把普通方程化為參數(shù)方程,利用關(guān)系式,等可以把極坐標(biāo)方程與直角坐標(biāo)方程互化,這類問(wèn)題一般我們可以先把曲線方程化為直角坐標(biāo)方程,用直角坐標(biāo)方程解決相應(yīng)問(wèn)題.18、(Ⅰ)或.(Ⅱ)【解析】

(Ⅰ)分類討論解絕對(duì)值不等式得到答案.(Ⅱ)討論和兩種情況,得到函數(shù)單調(diào)性,得到只需,代入計(jì)算得到答案.【詳解】(Ⅰ)當(dāng)時(shí),不等式為,變形為或或,解集為或.(Ⅱ)當(dāng)時(shí),,由此可知在單調(diào)遞減,在單調(diào)遞增,當(dāng)時(shí),同樣得到在單調(diào)遞減,在單調(diào)遞增,所以,存在滿足不等式,只需,即,解得.【點(diǎn)睛】本題考查了解絕對(duì)值不等式,不等式存在性問(wèn)題,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.19、(1)見(jiàn)解析;(2)見(jiàn)解析【解析】

(1)求導(dǎo)得,分類討論和,利用導(dǎo)數(shù)研究含參數(shù)的函數(shù)單調(diào)性;(2)根據(jù)(1)中求得的的單調(diào)性,得出在處取得最大值為,構(gòu)造函數(shù),利用導(dǎo)數(shù),推出,即可證明不等式.【詳解】解:(1)由于,得,當(dāng)時(shí),,此時(shí)在上遞增;當(dāng)時(shí),由,解得,若,則,若,,此時(shí)在遞增,在上遞減.(2)由(1)知在處取得最大值為:,設(shè),則,令,則,則在單調(diào)遞減,∴,即,則在單調(diào)遞減∴,∴,∴.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和最值,涉及分類討論和構(gòu)造新函數(shù),通過(guò)導(dǎo)數(shù)證明不等式,考查轉(zhuǎn)化思想和計(jì)算能力.20、證明見(jiàn)解析【解析】

利用比較法進(jìn)行證明:把代數(shù)式展開(kāi)、作差、化簡(jiǎn)可得,,可證得成立,同理可證明,由此不等式得證.【詳解】證明:因?yàn)?,所以,∴成立,又都是正數(shù),∴,①同理,∴.【點(diǎn)睛】本題考查利用比較法證明不等式;考查學(xué)生的邏輯推理能力和運(yùn)算求解能力;把差變形為因式乘積的形式是證明本題的關(guān)鍵;屬于中檔題。21、(Ⅰ)函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為;(Ⅱ)證明見(jiàn)解析;(Ⅲ).【解析】

(Ⅰ)利用二次求導(dǎo)可得,所以在上為增函數(shù),進(jìn)而可得函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為;(Ⅱ)利用導(dǎo)數(shù)可得在區(qū)間上存在唯一零點(diǎn),所以函數(shù)在遞減,在,遞增,則,進(jìn)而可證;(Ⅲ)條件等價(jià)于對(duì)于恒成立,構(gòu)造函數(shù),利用導(dǎo)數(shù)可得的單調(diào)性,即可得到的最小值為,再次構(gòu)造函數(shù)(a),,利用導(dǎo)數(shù)得其單調(diào)區(qū)間,進(jìn)而求得最大值.【詳解】(Ⅰ)當(dāng)時(shí),,則,所以,又因?yàn)?,所以在上為增函?shù),因?yàn)?,所以?dāng)時(shí),,為增函數(shù),當(dāng)時(shí),,為減函數(shù),即函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為;(Ⅱ),則令,則(1),,所以在區(qū)間上存在唯一零點(diǎn),設(shè)零點(diǎn)為,則,且,當(dāng)時(shí),,當(dāng),,,所以函數(shù)在遞減,在,遞增,,由,得,所以,由于,,從而;(Ⅲ)因?yàn)閷?duì)于恒成立,即對(duì)于恒成立,不妨令,因?yàn)?,,所以的解為,則當(dāng)時(shí),,為增函數(shù),當(dāng)時(shí),,為減函數(shù),所以的最小值為,則,不妨令(a),,則(a),解得,所以當(dāng)時(shí),

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論