版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若變量,滿足,則的最大值為()A.3 B.2 C. D.102.設(shè)函數(shù)滿足,則的圖像可能是A. B.C. D.3.某幾何體的三視圖如圖所示(單位:),則該幾何體的體積(單位:)為()A. B.6 C. D.4.已知雙曲線C:1(a>0,b>0)的焦距為8,一條漸近線方程為,則C為()A. B.C. D.5.已知實(shí)數(shù)、滿足約束條件,則的最大值為()A. B. C. D.6.執(zhí)行如圖所示的程序框圖,當(dāng)輸出的時(shí),則輸入的的值為()A.-2 B.-1 C. D.7.已知,,,,則()A. B. C. D.8.某學(xué)校為了調(diào)查學(xué)生在課外讀物方面的支出情況,抽取了一個(gè)容量為的樣本,其頻率分布直方圖如圖所示,其中支出在(單位:元)的同學(xué)有34人,則的值為()A.100 B.1000 C.90 D.909.已知函數(shù)是定義在上的偶函數(shù),當(dāng)時(shí),,則,,的大小關(guān)系為()A. B. C. D.10.執(zhí)行下面的程序框圖,如果輸入,,則計(jì)算機(jī)輸出的數(shù)是()A. B. C. D.11.若雙曲線的離心率,則該雙曲線的焦點(diǎn)到其漸近線的距離為()A. B.2 C. D.112.設(shè)等差數(shù)列的前n項(xiàng)和為,若,則()A. B. C.7 D.2二、填空題:本題共4小題,每小題5分,共20分。13.圖(1)是第七屆國際數(shù)學(xué)教育大會(huì)(ICME-7)的會(huì)徽?qǐng)D案,它是由一串直角三角形演化而成的(如圖(2)),其中,則的值是______.14.四面體中,底面,,,則四面體的外接球的表面積為______15.已知,,,,則______.16.已知向量,,滿足,,,則的取值范圍為_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)若曲線存在與軸垂直的切線,求的取值范圍.(2)當(dāng)時(shí),證明:.18.(12分)在新中國成立70周年國慶閱兵慶典中,眾多群眾在臉上貼著一顆紅心,以此表達(dá)對(duì)祖國的熱愛之情,在數(shù)學(xué)中,有多種方程都可以表示心型曲線,其中有著名的笛卡爾心型曲線,如圖,在直角坐標(biāo)系中,以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.圖中的曲線就是笛卡爾心型曲線,其極坐標(biāo)方程為(),M為該曲線上的任意一點(diǎn).(1)當(dāng)時(shí),求M點(diǎn)的極坐標(biāo);(2)將射線OM繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)與該曲線相交于點(diǎn)N,求的最大值.19.(12分)在四棱柱中,底面為正方形,,平面.(1)證明:平面;(2)若,求二面角的余弦值.20.(12分)已知函數(shù).(1)若在上單調(diào)遞增,求實(shí)數(shù)的取值范圍;(2)若,對(duì),恒有成立,求實(shí)數(shù)的最小值.21.(12分)已知函數(shù)(mR)的導(dǎo)函數(shù)為.(1)若函數(shù)存在極值,求m的取值范圍;(2)設(shè)函數(shù)(其中e為自然對(duì)數(shù)的底數(shù)),對(duì)任意mR,若關(guān)于x的不等式在(0,)上恒成立,求正整數(shù)k的取值集合.22.(10分)如圖,在直棱柱中,底面為菱形,,,與相交于點(diǎn),與相交于點(diǎn).(1)求證:平面;(2)求直線與平面所成的角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
畫出約束條件的可行域,利用目標(biāo)函數(shù)的幾何意義求解最大值即可.【詳解】解:畫出滿足條件的平面區(qū)域,如圖示:如圖點(diǎn)坐標(biāo)分別為,目標(biāo)函數(shù)的幾何意義為,可行域內(nèi)點(diǎn)與坐標(biāo)原點(diǎn)的距離的平方,由圖可知到原點(diǎn)的距離最大,故.故選:D【點(diǎn)睛】本題考查了簡(jiǎn)單的線性規(guī)劃問題,考查數(shù)形結(jié)合思想,屬于中檔題.2、B【解析】根據(jù)題意,確定函數(shù)的性質(zhì),再判斷哪一個(gè)圖像具有這些性質(zhì).由得是偶函數(shù),所以函數(shù)的圖象關(guān)于軸對(duì)稱,可知B,D符合;由得是周期為2的周期函數(shù),選項(xiàng)D的圖像的最小正周期是4,不符合,選項(xiàng)B的圖像的最小正周期是2,符合,故選B.3、D【解析】
根據(jù)幾何體的三視圖,該幾何體是由正方體去掉三棱錐得到,根據(jù)正方體和三棱錐的體積公式可求解.【詳解】如圖,該幾何體為正方體去掉三棱錐,所以該幾何體的體積為:,故選:D【點(diǎn)睛】本題主要考查了空間幾何體的三視圖以及體積的求法,考查了空間想象力,屬于中檔題.4、A【解析】
由題意求得c與的值,結(jié)合隱含條件列式求得a2,b2,則答案可求.【詳解】由題意,2c=8,則c=4,又,且a2+b2=c2,解得a2=4,b2=12.∴雙曲線C的方程為.故選:A.【點(diǎn)睛】本題考查雙曲線的簡(jiǎn)單性質(zhì),屬于基礎(chǔ)題.5、C【解析】
作出不等式組表示的平面區(qū)域,作出目標(biāo)函數(shù)對(duì)應(yīng)的直線,結(jié)合圖象知當(dāng)直線過點(diǎn)時(shí),取得最大值.【詳解】解:作出約束條件表示的可行域是以為頂點(diǎn)的三角形及其內(nèi)部,如下圖表示:當(dāng)目標(biāo)函數(shù)經(jīng)過點(diǎn)時(shí),取得最大值,最大值為.故選:C.【點(diǎn)睛】本題主要考查線性規(guī)劃等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,數(shù)形結(jié)合思想,應(yīng)用意識(shí),屬于中檔題.6、B【解析】若輸入,則執(zhí)行循環(huán)得結(jié)束循環(huán),輸出,與題意輸出的矛盾;若輸入,則執(zhí)行循環(huán)得結(jié)束循環(huán),輸出,符合題意;若輸入,則執(zhí)行循環(huán)得結(jié)束循環(huán),輸出,與題意輸出的矛盾;若輸入,則執(zhí)行循環(huán)得結(jié)束循環(huán),輸出,與題意輸出的矛盾;綜上選B.7、D【解析】
令,求,利用導(dǎo)數(shù)判斷函數(shù)為單調(diào)遞增,從而可得,設(shè),利用導(dǎo)數(shù)證出為單調(diào)遞減函數(shù),從而證出,即可得到答案.【詳解】時(shí),令,求導(dǎo),,故單調(diào)遞增:∴,當(dāng),設(shè),,又,,即,故.故選:D【點(diǎn)睛】本題考查了作差法比較大小,考查了構(gòu)造函數(shù)法,利用導(dǎo)數(shù)判斷式子的大小,屬于中檔題.8、A【解析】
利用頻率分布直方圖得到支出在的同學(xué)的頻率,再結(jié)合支出在(單位:元)的同學(xué)有34人,即得解【詳解】由題意,支出在(單位:元)的同學(xué)有34人由頻率分布直方圖可知,支出在的同學(xué)的頻率為.故選:A【點(diǎn)睛】本題考查了頻率分布直方圖的應(yīng)用,考查了學(xué)生概念理解,數(shù)據(jù)處理,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.9、C【解析】
根據(jù)函數(shù)的奇偶性得,再比較的大小,根據(jù)函數(shù)的單調(diào)性可得選項(xiàng).【詳解】依題意得,,當(dāng)時(shí),,因?yàn)?,所以在上單調(diào)遞增,又在上單調(diào)遞增,所以在上單調(diào)遞增,,即,故選:C.【點(diǎn)睛】本題考查函數(shù)的奇偶性的應(yīng)用、冪、指、對(duì)的大小比較,以及根據(jù)函數(shù)的單調(diào)性比較大小,屬于中檔題.10、B【解析】
先明確該程序框圖的功能是計(jì)算兩個(gè)數(shù)的最大公約數(shù),再利用輾轉(zhuǎn)相除法計(jì)算即可.【詳解】本程序框圖的功能是計(jì)算,中的最大公約數(shù),所以,,,故當(dāng)輸入,,則計(jì)算機(jī)輸出的數(shù)是57.故選:B.【點(diǎn)睛】本題考查程序框圖的功能,做此類題一定要注意明確程序框圖的功能是什么,本題是一道基礎(chǔ)題.11、C【解析】
根據(jù)雙曲線的解析式及離心率,可求得的值;得漸近線方程后,由點(diǎn)到直線距離公式即可求解.【詳解】雙曲線的離心率,則,,解得,所以焦點(diǎn)坐標(biāo)為,所以,則雙曲線漸近線方程為,即,不妨取右焦點(diǎn),則由點(diǎn)到直線距離公式可得,故選:C.【點(diǎn)睛】本題考查了雙曲線的幾何性質(zhì)及簡(jiǎn)單應(yīng)用,漸近線方程的求法,點(diǎn)到直線距離公式的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.12、B【解析】
根據(jù)等差數(shù)列的性質(zhì)并結(jié)合已知可求出,再利用等差數(shù)列性質(zhì)可得,即可求出結(jié)果.【詳解】因?yàn)椋?,所以,所以,故選:B【點(diǎn)睛】本題主要考查等差數(shù)列的性質(zhì)及前項(xiàng)和公式,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先求出向量和夾角的余弦值,再由公式即得.【詳解】如圖,過點(diǎn)作的平行線交于點(diǎn),那么向量和夾角為,,,,,且是直角三角形,,同理得,,.故答案為:【點(diǎn)睛】本題主要考查平面向量數(shù)量積,解題關(guān)鍵是找到向量和的夾角.14、【解析】
由題意畫出圖形,補(bǔ)形為長(zhǎng)方體,求其對(duì)角線長(zhǎng),可得四面體外接球的半徑,則表面積可求.【詳解】解:如圖,在四面體中,底面,,,可得,補(bǔ)形為長(zhǎng)方體,則過一個(gè)頂點(diǎn)的三條棱長(zhǎng)分別為1,1,,則長(zhǎng)方體的對(duì)角線長(zhǎng)為,則三棱錐的外接球的半徑為1.其表面積為.故答案為:.【點(diǎn)睛】本題考查多面體外接球表面積的求法,補(bǔ)形是關(guān)鍵,屬于中檔題.15、【解析】
由已知利用同角三角函數(shù)的基本關(guān)系式可求得,的值,由兩角差的正弦公式即可計(jì)算得的值.【詳解】,,,,,,,,.故答案為:【點(diǎn)睛】本題主要考查了同角三角函數(shù)的基本關(guān)系、兩角差的正弦公式,需熟記公式,屬于基礎(chǔ)題.16、【解析】
設(shè),,,,由,,,根據(jù)平面向量模的幾何意義,可得A點(diǎn)軌跡為以O(shè)為圓心、1為半徑的圓,C點(diǎn)軌跡為以B為圓心、1為半徑的圓,為的距離,利用數(shù)形結(jié)合求解.【詳解】設(shè),,,,如圖所示:因?yàn)椋?,,所以A點(diǎn)軌跡為以O(shè)為圓心、1為半徑的圓,C點(diǎn)軌跡為以B為圓心、1為半徑的圓,則即的距離,由圖可知,.故答案為:【點(diǎn)睛】本題主要考查平面向量的模及運(yùn)算的幾何意義,還考查了數(shù)形結(jié)合的方法,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】
(1)在上有解,,設(shè),求導(dǎo)根據(jù)函數(shù)的單調(diào)性得到最值,得到答案.(2)證明,只需證,記,求導(dǎo)得到函數(shù)的單調(diào)性,得到函數(shù)的最小值,得到證明.【詳解】(1)由題可得,在上有解,則,令,,當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減.所以是的最大值點(diǎn),所以.(2)由,所以,要證明,只需證,即證.記在上單調(diào)遞增,且,當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增.所以是的最小值點(diǎn),,則,故.【點(diǎn)睛】本題考查了函數(shù)的切線問題,證明不等式,意在考查學(xué)生的綜合應(yīng)用能力和轉(zhuǎn)化能力.18、(1)點(diǎn)M的極坐標(biāo)為或(2)【解析】
(1)令,由此求得的值,進(jìn)而求得點(diǎn)的極坐標(biāo).(2)設(shè)出兩點(diǎn)的極坐標(biāo),利用勾股定理求得的表達(dá)式,利用三角函數(shù)最值的求法,求得的最大值.【詳解】(1)設(shè)點(diǎn)M在極坐標(biāo)系中的坐標(biāo),由,得,∵∴或,所以點(diǎn)M的極坐標(biāo)為或(2)由題意可設(shè),.由,得,.故時(shí),的最大值為.【點(diǎn)睛】本小題主要考查極坐標(biāo)的求法,考查極坐標(biāo)下兩點(diǎn)間距離的計(jì)算以及距離最值的求法,屬于中檔題.19、(1)詳見解析;(2).【解析】
(1)連接,設(shè),可證得四邊形為平行四邊形,由此得到,根據(jù)線面平行判定定理可證得結(jié)論;(2)以為原點(diǎn)建立空間直角坐標(biāo)系,利用二面角的空間向量求法可求得結(jié)果.【詳解】(1)連接,設(shè),連接,在四棱柱中,分別為的中點(diǎn),,四邊形為平行四邊形,,平面,平面,平面.(2)以為原點(diǎn),所在直線分別為軸建立空間直角坐標(biāo)系.設(shè),四邊形為正方形,,,則,,,,,,,設(shè)為平面的法向量,為平面的法向量,由得:,令,則,,由得:,令,則,,,,,二面角為銳二面角,二面角的余弦值為.【點(diǎn)睛】本題考查立體幾何中線面平行關(guān)系的證明、空間向量法求解二面角的問題;關(guān)鍵是能夠熟練掌握二面角的向量求法,易錯(cuò)點(diǎn)是求得法向量夾角余弦值后,未根據(jù)圖形判斷二面角為銳二面角還是鈍二面角,造成余弦值符號(hào)出現(xiàn)錯(cuò)誤.20、(1)(2)【解析】
(1)求得,根據(jù)已知條件得到在恒成立,由此得到在恒成立,利用分離常數(shù)法求得的取值范圍.(2)構(gòu)造函數(shù)設(shè),利用求二階導(dǎo)數(shù)的方法,結(jié)合恒成立,求得的取值范圍,由此求得的最小值.【詳解】(1)因?yàn)樵谏蠁握{(diào)遞增,所以在恒成立,即在恒成立,當(dāng)時(shí),上式成立,當(dāng),有,需,而,,,,故綜上,實(shí)數(shù)的取值范圍是(2)設(shè),,則,令,,在單調(diào)遞增,也就是在單調(diào)遞增,所以.當(dāng)即時(shí),,不符合;當(dāng)即時(shí),,符合當(dāng)即時(shí),根據(jù)零點(diǎn)存在定理,,使,有時(shí),,在單調(diào)遞減,時(shí),,在單調(diào)遞增,成立,故只需即可,有,得,符合綜上得,,實(shí)數(shù)的最小值為【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查利用導(dǎo)數(shù)研究不等式恒成立問題,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查分類討論的數(shù)學(xué)思想方法,屬于難題.21、(1)(2){1,2}.【解析】
(1)求解導(dǎo)數(shù),表示出,再利用的導(dǎo)數(shù)可求m的取值范圍;(2)表示出,結(jié)合二次函數(shù)知識(shí)求出的最小值,再結(jié)合導(dǎo)數(shù)及基本不等式求出的最值,從而可求正整數(shù)k的取值集合.【詳解】(1)因?yàn)椋?,所以,則,由題意可知,解得;(2)由(1)可知,,所以因?yàn)檎淼?,設(shè),則,所以單調(diào)遞增,又因?yàn)椋源嬖?,使得,設(shè),是關(guān)于開口向上的二次函數(shù),則,設(shè),則,令,則,所以單調(diào)遞增,因?yàn)?,所以存在,使得,即,?dāng)時(shí),,當(dāng)時(shí),,所以在上單調(diào)遞減,在上單調(diào)遞增,所以,因?yàn)?,所以,又由題意可知,所以,解得,所以正整數(shù)k的取值集合為{1,2}.【點(diǎn)睛】本題主要考查導(dǎo)數(shù)的應(yīng)用,利用導(dǎo)數(shù)研究極值問題一般轉(zhuǎn)化為導(dǎo)數(shù)的零點(diǎn)問題,恒成立問題要逐步消去參數(shù),轉(zhuǎn)化為最值問題求解,適當(dāng)構(gòu)造函數(shù)是轉(zhuǎn)化的關(guān)鍵,本題綜合性較強(qiáng),
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025防水工程施工合同模板
- 2024-2025年中國區(qū)域金融體系創(chuàng)新市場(chǎng)市場(chǎng)供需格局及未來發(fā)展趨勢(shì)報(bào)告
- 新疆昌吉回族自治州2024年中考語文模擬試卷含答案
- 工程造價(jià)畢業(yè)論文開題報(bào)告6
- 中國男士化妝品行業(yè)市場(chǎng)運(yùn)行態(tài)勢(shì)及投資戰(zhàn)略咨詢研究報(bào)告
- 關(guān)于編制鈹銅合金項(xiàng)目可行性研究報(bào)告編制說明
- 汽車檢測(cè)儀項(xiàng)目可行性研究報(bào)告
- 2025年摩托車大架項(xiàng)目可行性研究報(bào)告
- 2025年突發(fā)環(huán)境事件應(yīng)急預(yù)案、環(huán)境風(fēng)險(xiǎn)評(píng)估報(bào)告(版)
- 2025加盟品牌轉(zhuǎn)讓合同
- 工抵房協(xié)議模板
- 校本課程《典籍里的中國》教案
- CNAS-CV03-2022 溫室氣體 第三部分 溫室氣體聲明審定與核查規(guī)范和指南
- 四年級(jí)上冊(cè)信息技術(shù)教案-9演示文稿巧編輯 |人教版
- 2022年人力資源管理各專業(yè)領(lǐng)域必備知識(shí)技能
- 租賃(出租)物品清單表
- 提高聚氯乙烯卷材地面一次驗(yàn)收合格率
- 【部編版】2022年語文七年級(jí)上:作文能力提升—謀篇布局(含答案)
- 甲型H1N1流感防治應(yīng)急演練方案(1)
- LU和QR分解法解線性方程組
- 漏油器外殼的落料、拉深、沖孔級(jí)進(jìn)模的設(shè)計(jì)【畢業(yè)論文絕對(duì)精品】
評(píng)論
0/150
提交評(píng)論