安徽省“江南十校”2023屆高考數(shù)學(xué)四模試卷含解析_第1頁(yè)
安徽省“江南十校”2023屆高考數(shù)學(xué)四模試卷含解析_第2頁(yè)
安徽省“江南十校”2023屆高考數(shù)學(xué)四模試卷含解析_第3頁(yè)
安徽省“江南十校”2023屆高考數(shù)學(xué)四模試卷含解析_第4頁(yè)
安徽省“江南十校”2023屆高考數(shù)學(xué)四模試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫(xiě)在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫(xiě)在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.下列說(shuō)法正確的是()A.“若,則”的否命題是“若,則”B.“若,則”的逆命題為真命題C.,使成立D.“若,則”是真命題2.已知函數(shù),若函數(shù)在上有3個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍為()A. B. C. D.3.在中,已知,,,為線段上的一點(diǎn),且,則的最小值為()A. B. C. D.4.若復(fù)數(shù)滿足,則對(duì)應(yīng)的點(diǎn)位于復(fù)平面的()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.?dāng)?shù)列的通項(xiàng)公式為.則“”是“為遞增數(shù)列”的()條件.A.必要而不充分 B.充要 C.充分而不必要 D.即不充分也不必要6.已知集合.為自然數(shù)集,則下列表示不正確的是()A. B. C. D.7.已知,則不等式的解集是()A. B. C. D.8.若實(shí)數(shù)、滿足,則的最小值是()A. B. C. D.9.函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)構(gòu)成一個(gè)公差為的等差數(shù)列,要得到函數(shù)的圖象,只需將的圖象()A.向左平移個(gè)單位 B.向右平移個(gè)單位C.向左平移個(gè)單位 D.向右平移個(gè)單位10.已知數(shù)列滿足:)若正整數(shù)使得成立,則()A.16 B.17 C.18 D.1911.甲乙丙丁四人中,甲說(shuō):我年紀(jì)最大,乙說(shuō):我年紀(jì)最大,丙說(shuō):乙年紀(jì)最大,丁說(shuō):我不是年紀(jì)最大的,若這四人中只有一個(gè)人說(shuō)的是真話,則年紀(jì)最大的是()A.甲 B.乙 C.丙 D.丁12.已知(i為虛數(shù)單位,),則ab等于()A.2 B.-2 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若點(diǎn)在直線上,則的值等于______________.14.已知拋物線的焦點(diǎn)為,過(guò)點(diǎn)且斜率為1的直線與拋物線交于點(diǎn),以線段為直徑的圓上存在點(diǎn),使得以為直徑的圓過(guò)點(diǎn),則實(shí)數(shù)的取值范圍為_(kāi)_______.15.若隨機(jī)變量的分布列如表所示,則______,______.-10116.已知,,且,若恒成立,則實(shí)數(shù)的取值范圍是____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,四棱錐中,平面,,,.(I)證明:;(Ⅱ)若是中點(diǎn),與平面所成的角的正弦值為,求的長(zhǎng).18.(12分)已知,,且.(1)求的最小值;(2)證明:.19.(12分)已知函數(shù).(1)若函數(shù),求的極值;(2)證明:.(參考數(shù)據(jù):)20.(12分)記數(shù)列的前項(xiàng)和為,已知成等差數(shù)列.(1)證明:數(shù)列是等比數(shù)列,并求的通項(xiàng)公式;(2)記數(shù)列的前項(xiàng)和為,求.21.(12分)如圖,在四棱錐中,底面為直角梯形,,,,,,點(diǎn)、分別為,的中點(diǎn),且平面平面.(1)求證:平面.(2)若,求直線與平面所成角的正弦值.22.(10分)如圖,在矩形中,,,點(diǎn)是邊上一點(diǎn),且,點(diǎn)是的中點(diǎn),將沿著折起,使點(diǎn)運(yùn)動(dòng)到點(diǎn)處,且滿足.(1)證明:平面;(2)求二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】選項(xiàng)A,否命題為“若,則”,故A不正確.選項(xiàng)B,逆命題為“若,則”,為假命題,故B不正確.選項(xiàng)C,由題意知對(duì),都有,故C不正確.選項(xiàng)D,命題的逆否命題“若,則”為真命題,故“若,則”是真命題,所以D正確.選D.2、B【解析】

根據(jù)分段函數(shù),分當(dāng),,將問(wèn)題轉(zhuǎn)化為的零點(diǎn)問(wèn)題,用數(shù)形結(jié)合的方法研究.【詳解】當(dāng)時(shí),,令,在是增函數(shù),時(shí),有一個(gè)零點(diǎn),當(dāng)時(shí),,令當(dāng)時(shí),,在上單調(diào)遞增,當(dāng)時(shí),,在上單調(diào)遞減,所以當(dāng)時(shí),取得最大值,因?yàn)樵谏嫌?個(gè)零點(diǎn),所以當(dāng)時(shí),有2個(gè)零點(diǎn),如圖所示:所以實(shí)數(shù)的取值范圍為綜上可得實(shí)數(shù)的取值范圍為,故選:B【點(diǎn)睛】本題主要考查了函數(shù)的零點(diǎn)問(wèn)題,還考查了數(shù)形結(jié)合的思想和轉(zhuǎn)化問(wèn)題的能力,屬于中檔題.3、A【解析】

在中,設(shè),,,結(jié)合三角形的內(nèi)角和及和角的正弦公式化簡(jiǎn)可求,可得,再由已知條件求得,,,考慮建立以所在的直線為軸,以所在的直線為軸建立直角坐標(biāo)系,根據(jù)已知條件結(jié)合向量的坐標(biāo)運(yùn)算求得,然后利用基本不等式可求得的最小值.【詳解】在中,設(shè),,,,即,即,,,,,,,,即,又,,,則,所以,,解得,.以所在的直線為軸,以所在的直線為軸建立如下圖所示的平面直角坐標(biāo)系,則、、,為線段上的一點(diǎn),則存在實(shí)數(shù)使得,,設(shè),,則,,,,,消去得,,所以,,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,因此,的最小值為.故選:A.【點(diǎn)睛】本題是一道構(gòu)思非常巧妙的試題,綜合考查了三角形的內(nèi)角和定理、兩角和的正弦公式及基本不等式求解最值問(wèn)題,解題的關(guān)鍵是理解是一個(gè)單位向量,從而可用、表示,建立、與參數(shù)的關(guān)系,解決本題的第二個(gè)關(guān)鍵點(diǎn)在于由,發(fā)現(xiàn)為定值,從而考慮利用基本不等式求解最小值,考查計(jì)算能力,屬于難題.4、D【解析】

利用復(fù)數(shù)模的計(jì)算、復(fù)數(shù)的除法化簡(jiǎn)復(fù)數(shù),再根據(jù)復(fù)數(shù)的幾何意義,即可得答案;【詳解】,對(duì)應(yīng)的點(diǎn),對(duì)應(yīng)的點(diǎn)位于復(fù)平面的第四象限.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)模的計(jì)算、復(fù)數(shù)的除法、復(fù)數(shù)的幾何意義,考查運(yùn)算求解能力,屬于基礎(chǔ)題.5、A【解析】

根據(jù)遞增數(shù)列的特點(diǎn)可知,解得,由此得到若是遞增數(shù)列,則,根據(jù)推出關(guān)系可確定結(jié)果.【詳解】若“是遞增數(shù)列”,則,即,化簡(jiǎn)得:,又,,,則是遞增數(shù)列,是遞增數(shù)列,“”是“為遞增數(shù)列”的必要不充分條件.故選:.【點(diǎn)睛】本題考查充分條件與必要條件的判斷,涉及到根據(jù)數(shù)列的單調(diào)性求解參數(shù)范圍,屬于基礎(chǔ)題.6、D【解析】

集合.為自然數(shù)集,由此能求出結(jié)果.【詳解】解:集合.為自然數(shù)集,在A中,,正確;在B中,,正確;在C中,,正確;在D中,不是的子集,故D錯(cuò)誤.故選:D.【點(diǎn)睛】本題考查命題真假的判斷、元素與集合的關(guān)系、集合與集合的關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.7、A【解析】

構(gòu)造函數(shù),通過(guò)分析的單調(diào)性和對(duì)稱性,求得不等式的解集.【詳解】構(gòu)造函數(shù),是單調(diào)遞增函數(shù),且向左移動(dòng)一個(gè)單位得到,的定義域?yàn)?,且,所以為奇函?shù),圖像關(guān)于原點(diǎn)對(duì)稱,所以圖像關(guān)于對(duì)稱.不等式等價(jià)于,等價(jià)于,注意到,結(jié)合圖像關(guān)于對(duì)稱和單調(diào)遞增可知.所以不等式的解集是.故選:A【點(diǎn)睛】本小題主要考查根據(jù)函數(shù)的單調(diào)性和對(duì)稱性解不等式,屬于中檔題.8、D【解析】

根據(jù)約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,求出最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案【詳解】作出不等式組所表示的可行域如下圖所示:聯(lián)立,得,可得點(diǎn),由得,平移直線,當(dāng)該直線經(jīng)過(guò)可行域的頂點(diǎn)時(shí),該直線在軸上的截距最小,此時(shí)取最小值,即.故選:D.【點(diǎn)睛】本題考查簡(jiǎn)單的線性規(guī)劃,考查數(shù)形結(jié)合的解題思想方法,是基礎(chǔ)題.9、A【解析】依題意有的周期為.而,故應(yīng)左移.10、B【解析】

計(jì)算,故,解得答案.【詳解】當(dāng)時(shí),,即,且.故,,故.故選:.【點(diǎn)睛】本題考查了數(shù)列的相關(guān)計(jì)算,意在考查學(xué)生的計(jì)算能力和對(duì)于數(shù)列公式方法的綜合應(yīng)用.11、C【解析】

分別假設(shè)甲乙丙丁說(shuō)的是真話,結(jié)合其他人的說(shuō)法,看是否只有一個(gè)說(shuō)的是真話,即可求得年紀(jì)最大者,即可求得答案.【詳解】①假設(shè)甲說(shuō)的是真話,則年紀(jì)最大的是甲,那么乙說(shuō)謊,丙也說(shuō)謊,而丁說(shuō)的是真話,而已知只有一個(gè)人說(shuō)的是真話,故甲說(shuō)的不是真話,年紀(jì)最大的不是甲;②假設(shè)乙說(shuō)的是真話,則年紀(jì)最大的是乙,那么甲說(shuō)謊,丙說(shuō)真話,丁也說(shuō)真話,而已知只有一個(gè)人說(shuō)的是真話,故乙說(shuō)謊,年紀(jì)最大的也不是乙;③假設(shè)丙說(shuō)的是真話,則年紀(jì)最大的是乙,所以乙說(shuō)真話,甲說(shuō)謊,丁說(shuō)的是真話,而已知只有一個(gè)人說(shuō)的是真話,故丙在說(shuō)謊,年紀(jì)最大的也不是乙;④假設(shè)丁說(shuō)的是真話,則年紀(jì)最大的不是丁,而已知只有一個(gè)人說(shuō)的是真話,那么甲也說(shuō)謊,說(shuō)明甲也不是年紀(jì)最大的,同時(shí)乙也說(shuō)謊,說(shuō)明乙也不是年紀(jì)最大的,年紀(jì)最大的只有一人,所以只有丙才是年紀(jì)最大的,故假設(shè)成立,年紀(jì)最大的是丙.綜上所述,年紀(jì)最大的是丙故選:C.【點(diǎn)睛】本題考查合情推理,解題時(shí)可從一種情形出發(fā),推理出矛盾的結(jié)論,說(shuō)明這種情形不會(huì)發(fā)生,考查了分析能力和推理能力,屬于中檔題.12、A【解析】

利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),再由復(fù)數(shù)相等的條件列式求解.【詳解】,,得,..故選:.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)相等的條件,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據(jù)題意可得,再由,即可得到結(jié)論.【詳解】由題意,得,又,解得,當(dāng)時(shí),則,此時(shí);當(dāng)時(shí),則,此時(shí),綜上,.故答案為:.【點(diǎn)睛】本題考查誘導(dǎo)公式和同角的三角函數(shù)的關(guān)系,考查計(jì)算能力,屬于基礎(chǔ)題.14、【解析】

由題意求出以線段AB為直徑的圓E的方程,且點(diǎn)D恒在圓E外,即圓E上存在點(diǎn),使得,則當(dāng)與圓E相切時(shí),此時(shí),由此列出不等式,即可求解?!驹斀狻坑深}意可得,直線的方程為,聯(lián)立方程組,可得,設(shè),則,,設(shè),則,,又,所以圓是以為圓心,4為半徑的圓,所以點(diǎn)恒在圓外.圓上存在點(diǎn),使得以為直徑的圓過(guò)點(diǎn),即圓上存在點(diǎn),使得,設(shè)過(guò)點(diǎn)的兩直線分別切圓于點(diǎn),要滿足題意,則,所以,整理得,解得,故實(shí)數(shù)的取值范圍為【點(diǎn)睛】本題主要考查了直線與拋物線位置關(guān)系的應(yīng)用,以及直線與圓的位置關(guān)系的應(yīng)用,其中解答中準(zhǔn)確求得圓E的方程,把圓上存在點(diǎn),使得以為直徑的圓過(guò)點(diǎn),轉(zhuǎn)化為圓上存在點(diǎn),使得是解答的關(guān)鍵,著重考查了分析問(wèn)題和解答問(wèn)題的能力,屬于中檔試題。15、【解析】

首先求得a的值,然后利用均值的性質(zhì)計(jì)算均值,最后求得的值,由方差的性質(zhì)計(jì)算的值即可.【詳解】由題意可知,解得(舍去)或.則,則,由方差的計(jì)算性質(zhì)得.【點(diǎn)睛】本題主要考查分布列的性質(zhì),均值的計(jì)算公式,方差的計(jì)算公式,方差的性質(zhì)等知識(shí),意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.16、(-4,2)【解析】試題分析:因?yàn)楫?dāng)且僅當(dāng)時(shí)取等號(hào),所以考點(diǎn):基本不等式求最值三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(Ⅰ)見(jiàn)解析;(Ⅱ)【解析】

(Ⅰ)取的中點(diǎn),連接,由,,得三點(diǎn)共線,且,又,再利用線面垂直的判定定理證明.(Ⅱ)設(shè),則,,在底面中,,在中,由余弦定理得:,在中,由余弦定理得,兩式相加求得,再過(guò)作,則平面,即點(diǎn)到平面的距離,由是中點(diǎn),得到到平面的距離,然后根據(jù)與平面所成的角的正弦值為求解.【詳解】(Ⅰ)取的中點(diǎn),連接,由,,得三點(diǎn)共線,且,又,,所以平面,所以.(Ⅱ)設(shè),,,在底面中,,在中,由余弦定理得:,在中,由余弦定理得,兩式相加得:,所以,,過(guò)作,則平面,即點(diǎn)到平面的距離,因?yàn)槭侵悬c(diǎn),所以為到平面的距離,因?yàn)榕c平面所成的角的正弦值為,即,解得.【點(diǎn)睛】本題主要考查線面垂直的判定定理,線面角的應(yīng)用,還考查了轉(zhuǎn)化化歸的思想和空間想象運(yùn)算求解的能力,屬于中檔題.18、(1)(2)證明見(jiàn)解析【解析】

(1)利用基本不等式即可求得最小值;(2)關(guān)鍵是配湊系數(shù),進(jìn)而利用基本不等式得證.【詳解】(1),當(dāng)且僅當(dāng)“”時(shí)取等號(hào),故的最小值為;(2),當(dāng)且僅當(dāng)時(shí)取等號(hào),此時(shí).故.【點(diǎn)睛】本題主要考查基本不等式的運(yùn)用,屬于基礎(chǔ)題.19、(1)見(jiàn)解析;(1)見(jiàn)證明【解析】

(1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值即可;(1)問(wèn)題轉(zhuǎn)化為證ex﹣x1﹣xlnx﹣1>0,根據(jù)xlnx≤x(x﹣1),問(wèn)題轉(zhuǎn)化為只需證明當(dāng)x>0時(shí),ex﹣1x1+x﹣1>0恒成立,令k(x)=ex﹣1x1+x﹣1,(x≥0),根據(jù)函數(shù)的單調(diào)性證明即可.【詳解】(1),,當(dāng),,當(dāng),,在上遞增,在上遞減,在取得極大值,極大值為,無(wú)極大值.(1)要證f(x)+1<ex﹣x1.即證ex﹣x1﹣xlnx﹣1>0,先證明lnx≤x﹣1,取h(x)=lnx﹣x+1,則h′(x)=,易知h(x)在(0,1)遞增,在(1,+∞)遞減,故h(x)≤h(1)=0,即lnx≤x﹣1,當(dāng)且僅當(dāng)x=1時(shí)取“=”,故xlnx≤x(x﹣1),ex﹣x1﹣xlnx≥ex﹣1x1+x﹣1,故只需證明當(dāng)x>0時(shí),ex﹣1x1+x﹣1>0恒成立,令k(x)=ex﹣1x1+x﹣1,(x≥0),則k′(x)=ex﹣4x+1,令F(x)=k′(x),則F′(x)=ex﹣4,令F′(x)=0,解得:x=1ln1,∵F′(x)遞增,故x∈(0,1ln1]時(shí),F(xiàn)′(x)≤0,F(xiàn)(x)遞減,即k′(x)遞減,x∈(1ln1,+∞)時(shí),F(xiàn)′(x)>0,F(xiàn)(x)遞增,即k′(x)遞增,且k′(1ln1)=5﹣8ln1<0,k′(0)=1>0,k′(1)=e1﹣8+1>0,由零點(diǎn)存在定理,可知?x1∈(0,1ln1),?x1∈(1ln1,1),使得k′(x1)=k′(x1)=0,故0<x<x1或x>x1時(shí),k′(x)>0,k(x)遞增,當(dāng)x1<x<x1時(shí),k′(x)<0,k(x)遞減,故k(x)的最小值是k(0)=0或k(x1),由k′(x1)=0,得=4x1﹣1,k(x1)=﹣1+x1﹣1=﹣(x1﹣1)(1x1﹣1),∵x1∈(1ln1,1),∴k(x1)>0,故x>0時(shí),k(x)>0,原不等式成立.【點(diǎn)睛】本題考查了函數(shù)的單調(diào)性,極值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及不等式的證明,考查轉(zhuǎn)化思想,屬于中檔題.20、(1)證明見(jiàn)解析,;(2)【解析】

(1)由成等差數(shù)列,可得到,再結(jié)合公式,消去,得到,再給等式兩邊同時(shí)加1,整理可證明結(jié)果;(2)將(1)得到的代入中化簡(jiǎn)后再裂項(xiàng),然后求其前項(xiàng)和.【詳解】(1)由成等差數(shù)列,則,即,①當(dāng)時(shí),,又,②由①②可得:,即,時(shí),.所以是以3為首項(xiàng),3為公比的等比數(shù)列,,所以.(2),所以.【點(diǎn)睛】此題考查了數(shù)列遞推式,等比數(shù)列的證明,裂列相消求和,考查了學(xué)生分析問(wèn)題和解決問(wèn)題的能力,屬于中檔題.21、(1)見(jiàn)解析(2)【解析】

(1)首先可得,再面面垂直的性質(zhì)可得平面,即可得到,再由,即可得到線面垂直;(2)過(guò)點(diǎn)做平面的垂線,以為原點(diǎn),分別以,,為,,軸建立空間直角坐標(biāo)系,利用空間向量

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論