空氣動(dòng)力學(xué)電子教案Chapter-01_第1頁
空氣動(dòng)力學(xué)電子教案Chapter-01_第2頁
空氣動(dòng)力學(xué)電子教案Chapter-01_第3頁
空氣動(dòng)力學(xué)電子教案Chapter-01_第4頁
空氣動(dòng)力學(xué)電子教案Chapter-01_第5頁
已閱讀5頁,還剩109頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

PARTIFUNDAMENTALPRINCIPLES(基本原理)InpartI,wecoversomeofthebasicprinciplesthatapplytoaerodynamicsingeneral.ThesearethepillarsonwhichallofaerodynamicsisbasedChapter1Aerodynamics:SomeIntroductoryThoughtsTheterm“aerodynamics”isgenerallyusedforproblemsarisingfromflightandothertopicsinvolvingtheflowofair.LudwigPrandtl,1949Aerodynamics:Thedynamicsofgases,especiallyofatmosphericinteractionswithmovingobjects.TheAmericanHeritageDictionaryofEnglishLanguage,19691.1ImportanceofAerodynamics:

HistoricalExamplesSeabattlebetweenEnglishfleetandSpanishfleet,Englishchannel,8-8-1588(英國與西班牙海戰(zhàn),英吉利海峽)FirstflightofWrightbrothers,12-27-1903(懷特兄弟首次飛行)MinimizingofaerodynamicheatingofICBMs(洲際彈道導(dǎo)彈氣動(dòng)熱降低問題)Impetustothestudyoffluidmechnics(流體力學(xué)研究的推動(dòng)力)1.Newton’ssine-squarelaw2.ExperimentscarriedoutbyD’Alembert3.Euler’sdescriptionoftheflowmodel1.Newton’ssine-squarelawa)Newtonconsideredafluidflowasauniform,rectilinearstreamofparticles,muchlikeacloudofpelletsfromashotgunblast.b)Newtonassumedthatuponstrikingasurfaceinclinedataangletothestream,theparticleswouldtransfertheirnormalmomentumtothesurfacebuttheirtangentialmomentumwouldbepreserved.Hence,aftercollisionwiththesurface,theparticleswouldthenmovealongthesurface.Thisledtoanexpressionforthehydrodynamicsforceonthesurfacewhichvariesas2.D’Alembert

Theexperimentresultsshow:therulethatforobliqueresistancevarieswiththesinesquareoftheangleoftheincidenceholdsgoodonlyforanglebetween50and90degandmustbeabandonedforlesserangles3.Eulernoted

Thefluidmovingtowardabody“beforereachingthelatter,bendsitsdirectionanditsvelocitysothatwhenitreachesthebodyitflowspassitalongthesurface,andexercisenootherforceonthebodyexceptthepressurecorrespondingtothesinglepointsofthecontact.”4.Realcaseforfluidapproachingabody

Allthefluidparticlesareinrandommotion,andhasaaveragevelocity.Duringtheirmotion,theycollidewitheachother.

Themoleculesstrikeontothesolidsurfacewillberebounded,andthesereboundedmoleculeswillmakecollisiontoothermolecules.

Thisprocesstransfersthemessageoftheexistenceofthebody,andmostoftheparticleswillgootherround.Afterthecollisionbetweenfluidparticlesandsolidsurface,the

momentumchangeoftheparticlesisintheperpendiculardirectionofthesurface.FirstflightofWrightbrothersDec.17,1903WilburandOrvilleWright'sWrightFlyerwasthefirstsuccessfulairplane.OnDecember17,1903,atKittyHawk,NorthCarolina,OrvilleWrightflewthefirstheavier-than-airmachineinapowered,controlled,andsustainedflight.TheFlyer,constructedofwood,wire,andmuslin,wentadistanceof120feetin12seconds.Itwasatremendoussuccess,comingfromalongseriesofaeronauticsexperimentsthattheWrightBrothersstartedin1899withakite.Attherearofthe1903WrightFlyeronefindsapairofpusherpropellers.Thepropellersarelong,thin,twistedpiecesofwoodwhicharespunathighspeed.Controlofroll:WINGWARPOverviewofWrightBrothersDiscoveriesAerodynamicheatingofthereentryvehicle

ICBMsreentrytheatmosphereatthespeedsoffrom6to6.7km/s.Theaerodynamicheatingofthereentryvehiclesbecomessevere,thecoverofthewarheadwillbeheatedupto10,000K.Bluntreentrybodydesigncanminimizetheaerodynamicheatingproblem.1.2Aerodynamics:ClassificationandPracticalObjectives

(空氣動(dòng)力學(xué):分類和應(yīng)用目標(biāo))Distinctionofsolids,liquids,andgasesPracticalapplicationsinengineeringSolids,liquids,andgasesinacontainerThesolidobjectwillnotchange:itsshapeandboundarieswillremindthesame.Theliquidwillchangeitsshapetoconformtothatofthecontainerandwilltaketakeonthesameboundariesasthecontaineruptothemaximumdepthoftheliquid.Thegaswillcompletelyfillthecontainer,takingonthesameboundariesasthecontainer.Solidand“fluid”(aliquidoragas)underatangentialforce==deformation固體和流體在受到剪應(yīng)力時(shí),各自形狀所發(fā)生的變化方式截然不同。Underaforceappliedtangentiallytothesurfaceofasolidbody,thesolidbodywillundergoafinitedeformation,andthetangentialforceperunitarea—theshearstress—willusuallybeproportionaltotheamountofdeformation.Ifthecasehappensforafluid,then,thefluidwillexperienceacontinuouslyincreasingdeformationandtheshearstresswillusuallybeproportionaltotherateofthedeformation.Solid:fluid:Shearstress剪應(yīng)力Deformation變形Rateofdeformation變形率Mechanicsdistinctionofsolids,liquids,andgasesDistinctionofsolids,liquids,andgasesrespectstotheintermolecularforcesFluiddynamicsissubdividedintothreeareas:

Hydrodynamics---flowofliquidsGasdynamics---flowofgases

Aerodynamics---flowofairPracticalobjectivesofAerodynamics1.Thepredictionofforcesandmomentsonandheattransferto,bodiesmovingthroughafluid.2.Determinationofflowsmovinginternallythroughducts3.Externalaerodynamics4.Internalaerodynamics1.3RoadMapofthischapterWhat’stheusageoftheroadmapAtthebeginningofeachchapter,roadmapgiveyouthesenseforyougettoknowwhereyouare,whereyouaregoing,andhowcanyougetthereShowtheinterrelationshipofthematerialsinthechapterAttheendofthechapter,afteryoulookbackovertheroadmap,youwillseewhereyoustarted,whereyouarenow,andwhatyoulearnedinbetween.1.4SomefundamentalAerodynamicVariablesAerodynamicvariablesaresomethingliketechnicalvocabularyforthephysicalscienceandengineeringunderstandingFirstintroducedaerodynamicvariables:

pressure,density,temperature,andflowvelocityThevelocitydescriptionofafluidisquitedifferenttothatofasolidbody.VelocityofaflowinggasatanyfixedpointBinspaceisthevelocityofasmallfluidelementasitsweepsthroughB.1.5AerodynamicforcesandmomentsAerodynamicforcesandmomentsonamovingbodyareduetoonlytwobasicsources:1.Pressuredistributionoverthebodysurface2.ShearstressdistributionoverthebodysurfaceBothpressureandshearstresshavedimensionsofforceperunitarea.

pressureactsnormaltothebodysurface.shearstressactstangentialtothesurface.TheneteffectofthepressureandshearstressdistributionresultsinaaerodynamicforceRandmomentMonthebody.TheresultantforceRcanbesplitintocomponentsL=lift:componentofRperpendiculartoD=drag:componentsofRparallelto(windsystem)N=normalforce:componentofRperpendiculartoc

A=axialforce:componentsofRparalleltoc

(bodysystem)Afterthe

pressureandshearstress

distributionsbeingdefined,andthegeometryshapeofthebodybeingknown,theresultantaerodynamicforcecanbeobtainedbytheintegrationofthepressureandshearstress

distributionsalongthesurfaceofthebody.FromEqs.(1.7),(1.8)and(1.11),wecanseeclearly,thatthesourcesoftheaerodynamiclift,drag,andmomentsonabodyarethepressureandshearstressdistributionintegratedoverthebody.Thebasictaskoftheoreticalaerodynamicsistocalculatep(s)andτ(s)foragivenbodyshapeandfreestreamconditions,andthenobtaintheaerodynamicforcesandmomentswiththeuseofEqs.(1.7),(1.8)and(1.11)Dimensionlessaerodynamicforceandmomentcoefficientsareevenmoreimportantthantheaerodynamicforcesandmoments.Definitionofanddensityandvelocityinthefreestream,whichisfaraheadofthebody.Definitionofdynamicpressure

ThedynamicpressurehastheunitofpressureDefinitionofdimensionlessforceandmomentcoefficientsLiftcoefficient:

Dragcoefficient:

Normalforcecoefficient:

Axialforcecoefficient:Momentcoefficient:

:reference

area:reference

length

Definitionofandmaybedifferentfordifferentshapesofthebodybeingconcerned.Thesymbolsincapitalletters,suchasrepresentstheforceandmomentcoefficientsforathree-dimensionalbody.Thesymbolsinlowercaselettersdenotetheforceandmomentcoefficientsforatwo-dimensionalbody

areforceandmomentsperunitspanTwoadditionaldimensionlessquantitiesofimmediateusearePressurecoefficientSkinfrictioncoefficientWhereisthe

freestreampressure1.6Centerofpressure(壓力中心)Thecenterofthepressureisapointonthebodyaboutwhichtheaerodynamicmomentcontributedbythepressureandshearstressdistributionsisequaltozero.Ifisdefinedasthemomentgeneratedbythedistributedloads,andisthecomponentoftheresultantforce,thenthepressurecentermustbelocateddownstreamoftheleadingedgeIftheangleofattackissmall,,thusItiscleartoseethatasliftapproachestozero,thecenterofpressuremovestoinfinity.So,thecenterofpressureisnotalwaysaconvenientconceptinaerodynamics.Thereareotherwaystodefinetheforce-and-momentsystemonanairfoil1.7Dimensionalanalysis:TheBuchinghamPItheorem(量綱分析:PI定理)※Whatphysicalquantitiesdeterminethevariationoftheaerodynamicforcesandmoments?Onaphysical,intuitivebasis,weexpectRisdependon:1.Freestreamvelocity2.Freestreamdensity3.Viscosityofthefluid4.Thesizeofthebody5.Thecompressibilityofthefluid※

Howtofindaprecisefunctionalrelationfortheequationabove?Executehugeamountofwindtunnelexperimentmightbeoneway.Isthereanyotherwaycandomoreeffectively?Methodofdimensionalanalysis※AnobviousfactforthedimensionalanalysisAllthetermsinthisphysicalrelationmusthavethesamedimensions※BuckinghamPItheorem1.LetKtobethenumberoffundamentaldimensionsrequiredtodescribethephysicalvariables2.LetrepresentNphysicalvariablesinthephysicalrelation3.Thenthephysicalrelationcanbereexpressedasarelationof(N-K)dimensionlessproducts.4.EveryproductisadimensionlessproductofasetofK

physicalvariablesplusoneotherphysicalvariable.5.iscalledrepeatingvariables.Thesevariablesshouldincludeall

theKdimensionsusedintheproblem.※Aerodynamicforceonagivenbodyatagivenangleofattack.1.Eq.(1.23)canbeexpressedas2.FollowingBuckinghamtheoremandourphysicalintuition,thefundamentaldimensionsarem,landt.Hence,

K=33.Thephysicalvariablesandtheirdimensionsareand

N=64.AsexplainedbyBuckinghamtheorem,Eq.(1.27)canbereexpressedintermsofN-K=3

dimensionlessproducts,thatis5.Now,wechoseasrepeatingvariables,fromEq.(1.26),theseproductsare5.Assume

indimensionalform6.Asisdimensionless,then7.TheaboveEquationsgived=-1,b=-2,ande=-2,thenwehaveor

whereS

isdefinedasreferencearea8.Inthesameway,wecanobtaintheremainingproductsasfollowsReynoldsNumber雷諾數(shù)

isaforcecoefficient,definedasMachNumber馬赫數(shù)9.InsertingalltheproductsintoEq.(1.28)

oror10.Importantconclusion:Inthegeneralfunctionform,RisexpressedwithfiveindependentphysicalvariablesAfterourdimensionalanalysis,Rcanbeexpressedwithonly

twoindependentvariables

RcanbeexpressedintermsofadimensionlessforcecoefficientisafunctionofonlyReand11.ImportantapplicationsofReand.

similarityparameters

12.Asliftanddragarecomponentsoftheresultantforce,thentheliftanddragcoefficientsarealsofunctionsofonlyRe

and.Moreover,arelationsimilartoaerodynamicforcesholdsforaerodynamicmoments,anddimensionanalysisyields13.Iftheangleofattackisallowedtovary,then,thelift,dragandmomentcoefficientswillingeneraldependonthevalueof.14.Othersimilarityparametersassociatedwiththermodynamicsandheattransfer.Physicalvariablesshouldbeaddedtemperature,specificheat,thermalconductivity,temperatureofthebodysurfaceFundamentaldimensionshouldbeaddedunitofthetemperature(K)Similarityparameterscreated1.8Flowsimilarity(流動(dòng)相似)※DefinitionofflowsimilarityDifferentflowsaredynamicallysimilarif:Thestreamlinepatternsaregeometricallysimilar2.Thedistributionsofetc.,throughouttheflowfieldarethesamewhenplottedagainstcommonnondimensionalcoordinates.3.Theforcecoefficientsarethesame※CriteriatoensureflowsimilarityThebodiesandanyothersolidboundariesaregeometricallysimilarforbothflows.2.Thesimilarityparametersareidenticalforbothflows.3.ReynoldsandMachnumberarethemostdominantsimilarityparametersformanyaerodynamicproblems.※Examples1.4and1.51.9FluidStatics:BuoyancyForce

(流體靜力學(xué):浮力)Skippedover1.10TypesofFlow(流動(dòng)類型)1.Thepurposeforcategorizingdifferenttypesofflow.2.Thestrategytosimplifytheflowproblems.3.Itemizationandcomparisonofdifferenttypesofflow,andbriefdescriptionoftheirmostimportantphysicalphenomena.1.10.1Continuumversusfreemoleculeflow1.Definitionofmean-free

path.2.Continuumflow.3.Freemoleculeflow4.Inmostaerodynamicproblems,wewillalwaystreatthefluidascontinuumflow.1.10.2Inviscidversusviscousflow1.Therandommotionofthemoleculewilltransporttheirmass,momentum,andenergyfromonelocationtoanotherinthefluid.Thistransportonamoleculescalegivesrisetothephenomenaofmassdiffusion,viscosity,andthermalconduction.Allrealflowsexhibittheeffectofthesetransportphenomena;suchflowsarecallviscousflows.2.Aflowthatisassumedfreewithallthesephenomenaaboveiscalledinviscidflow.3.InviscidflowisapproachedinthelimitastheReynoldsnumbergoestoinfinity.4.TheflowwithhighReynoldsnumber,canbeassumedtobeinviscid.Andtheinfluenceof

friction,thermalconduction,anddiffusionislimitedintheboundarylayer.5.Theinviscidtheorycanbeusedtopredictsthepressuredistributionandlift.However,itcannotpredictstotaldrag.6.Flowsdominatedbyviscouseffects.

FlowaroundairfoilathighangleofattackFlowaroundbluntbody7.Noinviscidtheorycanindependentlypredicttheaerodynamicsofsuchflows.

1.10.3IncompressibleversuscompressibleFlowsAflowinwhichthedensityisconstantiscalledincompressible.Incontrast,aflowwherethedensityisvariableiscalledcompressible.

2.Alltheflowsarecompressible,moreorless3.Thereareanumberofaerodynamicproblemsthatcanbemodeled

asbeingincompressible

withoutanydetrimentallossofaccuracy.4.Inmanycases,whetherthecompressibilityshouldbeconsideredornot,ismanlybasedon

theMachnumberoftheflow.1.10.4MachnumberregimesLocaldefinitionSubsonicifSonicif

Supersonicif

WhereisthelocalMachnumberatanarbitrarypointinaflowfield.2.Definitionforwholeflowfield3.Blockdiagramcategorizingthetypesofaerodynamicflows1.11Appliedaerodynamics:Theaerodynamiccoefficients—TheirmagnitudeandvariationsDifferencebetweenthefundamentals

andapplicationsofaerodynamics.

2.Aerodynamiccoefficients,suchaslift,drag,andmomentcoefficients,aretheprimarylanguageofapplicationexternalaerodynamics.3.Typicalvaluesfortheaerodynamiccoefficientsforsomecommonaerodynamicshapesandit’svariationwithMachnumberandReynoldsnumber.4.Sometypicaldragcoefficientsforvariousaerodynamicconfigurationsinlowspeedflows.

Comparisonthroughcaseatoc:

theReynoldsnumbersforallthesethreecasesarethesamebasedond(diameter).thewakesaregettingsmallerinsizefromatoc

alsobecomessmallerfromcase

atoc

Comparisonbetweencasebandd:

theReynoldsnumberincaseb:theReynoldsnumberincased

:isthesameforcasebtod

foracircularcylinderisrelativelyindependentofReynoldsnumberbetweenRe=andComparisonbetweencasebtoe:

theReynoldsnumberincaseb:theReynoldsnumberincasee:incaseeis0.6

smallerwakebehindthecylinderincasee

comparedtothatincase

b.Note:Withbasedonthefrontalprojectedarea(S=d(1)perunitspan),thevalueofrangefromamaximum2tonumbersaslowas0.12.MagnitudeofReynoldsnumberofaflowaroundacircularcylinderatstandardsealevel,where,

Th

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔