版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
PARTIFUNDAMENTALPRINCIPLES(基本原理)InpartI,wecoversomeofthebasicprinciplesthatapplytoaerodynamicsingeneral.ThesearethepillarsonwhichallofaerodynamicsisbasedChapter1Aerodynamics:SomeIntroductoryThoughtsTheterm“aerodynamics”isgenerallyusedforproblemsarisingfromflightandothertopicsinvolvingtheflowofair.LudwigPrandtl,1949Aerodynamics:Thedynamicsofgases,especiallyofatmosphericinteractionswithmovingobjects.TheAmericanHeritageDictionaryofEnglishLanguage,19691.1ImportanceofAerodynamics:
HistoricalExamplesSeabattlebetweenEnglishfleetandSpanishfleet,Englishchannel,8-8-1588(英國與西班牙海戰(zhàn),英吉利海峽)FirstflightofWrightbrothers,12-27-1903(懷特兄弟首次飛行)MinimizingofaerodynamicheatingofICBMs(洲際彈道導(dǎo)彈氣動(dòng)熱降低問題)Impetustothestudyoffluidmechnics(流體力學(xué)研究的推動(dòng)力)1.Newton’ssine-squarelaw2.ExperimentscarriedoutbyD’Alembert3.Euler’sdescriptionoftheflowmodel1.Newton’ssine-squarelawa)Newtonconsideredafluidflowasauniform,rectilinearstreamofparticles,muchlikeacloudofpelletsfromashotgunblast.b)Newtonassumedthatuponstrikingasurfaceinclinedataangletothestream,theparticleswouldtransfertheirnormalmomentumtothesurfacebuttheirtangentialmomentumwouldbepreserved.Hence,aftercollisionwiththesurface,theparticleswouldthenmovealongthesurface.Thisledtoanexpressionforthehydrodynamicsforceonthesurfacewhichvariesas2.D’Alembert
Theexperimentresultsshow:therulethatforobliqueresistancevarieswiththesinesquareoftheangleoftheincidenceholdsgoodonlyforanglebetween50and90degandmustbeabandonedforlesserangles3.Eulernoted
Thefluidmovingtowardabody“beforereachingthelatter,bendsitsdirectionanditsvelocitysothatwhenitreachesthebodyitflowspassitalongthesurface,andexercisenootherforceonthebodyexceptthepressurecorrespondingtothesinglepointsofthecontact.”4.Realcaseforfluidapproachingabody
Allthefluidparticlesareinrandommotion,andhasaaveragevelocity.Duringtheirmotion,theycollidewitheachother.
Themoleculesstrikeontothesolidsurfacewillberebounded,andthesereboundedmoleculeswillmakecollisiontoothermolecules.
Thisprocesstransfersthemessageoftheexistenceofthebody,andmostoftheparticleswillgootherround.Afterthecollisionbetweenfluidparticlesandsolidsurface,the
momentumchangeoftheparticlesisintheperpendiculardirectionofthesurface.FirstflightofWrightbrothersDec.17,1903WilburandOrvilleWright'sWrightFlyerwasthefirstsuccessfulairplane.OnDecember17,1903,atKittyHawk,NorthCarolina,OrvilleWrightflewthefirstheavier-than-airmachineinapowered,controlled,andsustainedflight.TheFlyer,constructedofwood,wire,andmuslin,wentadistanceof120feetin12seconds.Itwasatremendoussuccess,comingfromalongseriesofaeronauticsexperimentsthattheWrightBrothersstartedin1899withakite.Attherearofthe1903WrightFlyeronefindsapairofpusherpropellers.Thepropellersarelong,thin,twistedpiecesofwoodwhicharespunathighspeed.Controlofroll:WINGWARPOverviewofWrightBrothersDiscoveriesAerodynamicheatingofthereentryvehicle
ICBMsreentrytheatmosphereatthespeedsoffrom6to6.7km/s.Theaerodynamicheatingofthereentryvehiclesbecomessevere,thecoverofthewarheadwillbeheatedupto10,000K.Bluntreentrybodydesigncanminimizetheaerodynamicheatingproblem.1.2Aerodynamics:ClassificationandPracticalObjectives
(空氣動(dòng)力學(xué):分類和應(yīng)用目標(biāo))Distinctionofsolids,liquids,andgasesPracticalapplicationsinengineeringSolids,liquids,andgasesinacontainerThesolidobjectwillnotchange:itsshapeandboundarieswillremindthesame.Theliquidwillchangeitsshapetoconformtothatofthecontainerandwilltaketakeonthesameboundariesasthecontaineruptothemaximumdepthoftheliquid.Thegaswillcompletelyfillthecontainer,takingonthesameboundariesasthecontainer.Solidand“fluid”(aliquidoragas)underatangentialforce==deformation固體和流體在受到剪應(yīng)力時(shí),各自形狀所發(fā)生的變化方式截然不同。Underaforceappliedtangentiallytothesurfaceofasolidbody,thesolidbodywillundergoafinitedeformation,andthetangentialforceperunitarea—theshearstress—willusuallybeproportionaltotheamountofdeformation.Ifthecasehappensforafluid,then,thefluidwillexperienceacontinuouslyincreasingdeformationandtheshearstresswillusuallybeproportionaltotherateofthedeformation.Solid:fluid:Shearstress剪應(yīng)力Deformation變形Rateofdeformation變形率Mechanicsdistinctionofsolids,liquids,andgasesDistinctionofsolids,liquids,andgasesrespectstotheintermolecularforcesFluiddynamicsissubdividedintothreeareas:
Hydrodynamics---flowofliquidsGasdynamics---flowofgases
Aerodynamics---flowofairPracticalobjectivesofAerodynamics1.Thepredictionofforcesandmomentsonandheattransferto,bodiesmovingthroughafluid.2.Determinationofflowsmovinginternallythroughducts3.Externalaerodynamics4.Internalaerodynamics1.3RoadMapofthischapterWhat’stheusageoftheroadmapAtthebeginningofeachchapter,roadmapgiveyouthesenseforyougettoknowwhereyouare,whereyouaregoing,andhowcanyougetthereShowtheinterrelationshipofthematerialsinthechapterAttheendofthechapter,afteryoulookbackovertheroadmap,youwillseewhereyoustarted,whereyouarenow,andwhatyoulearnedinbetween.1.4SomefundamentalAerodynamicVariablesAerodynamicvariablesaresomethingliketechnicalvocabularyforthephysicalscienceandengineeringunderstandingFirstintroducedaerodynamicvariables:
pressure,density,temperature,andflowvelocityThevelocitydescriptionofafluidisquitedifferenttothatofasolidbody.VelocityofaflowinggasatanyfixedpointBinspaceisthevelocityofasmallfluidelementasitsweepsthroughB.1.5AerodynamicforcesandmomentsAerodynamicforcesandmomentsonamovingbodyareduetoonlytwobasicsources:1.Pressuredistributionoverthebodysurface2.ShearstressdistributionoverthebodysurfaceBothpressureandshearstresshavedimensionsofforceperunitarea.
pressureactsnormaltothebodysurface.shearstressactstangentialtothesurface.TheneteffectofthepressureandshearstressdistributionresultsinaaerodynamicforceRandmomentMonthebody.TheresultantforceRcanbesplitintocomponentsL=lift:componentofRperpendiculartoD=drag:componentsofRparallelto(windsystem)N=normalforce:componentofRperpendiculartoc
A=axialforce:componentsofRparalleltoc
(bodysystem)Afterthe
pressureandshearstress
distributionsbeingdefined,andthegeometryshapeofthebodybeingknown,theresultantaerodynamicforcecanbeobtainedbytheintegrationofthepressureandshearstress
distributionsalongthesurfaceofthebody.FromEqs.(1.7),(1.8)and(1.11),wecanseeclearly,thatthesourcesoftheaerodynamiclift,drag,andmomentsonabodyarethepressureandshearstressdistributionintegratedoverthebody.Thebasictaskoftheoreticalaerodynamicsistocalculatep(s)andτ(s)foragivenbodyshapeandfreestreamconditions,andthenobtaintheaerodynamicforcesandmomentswiththeuseofEqs.(1.7),(1.8)and(1.11)Dimensionlessaerodynamicforceandmomentcoefficientsareevenmoreimportantthantheaerodynamicforcesandmoments.Definitionofanddensityandvelocityinthefreestream,whichisfaraheadofthebody.Definitionofdynamicpressure
ThedynamicpressurehastheunitofpressureDefinitionofdimensionlessforceandmomentcoefficientsLiftcoefficient:
Dragcoefficient:
Normalforcecoefficient:
Axialforcecoefficient:Momentcoefficient:
:reference
area:reference
length
Definitionofandmaybedifferentfordifferentshapesofthebodybeingconcerned.Thesymbolsincapitalletters,suchasrepresentstheforceandmomentcoefficientsforathree-dimensionalbody.Thesymbolsinlowercaselettersdenotetheforceandmomentcoefficientsforatwo-dimensionalbody
areforceandmomentsperunitspanTwoadditionaldimensionlessquantitiesofimmediateusearePressurecoefficientSkinfrictioncoefficientWhereisthe
freestreampressure1.6Centerofpressure(壓力中心)Thecenterofthepressureisapointonthebodyaboutwhichtheaerodynamicmomentcontributedbythepressureandshearstressdistributionsisequaltozero.Ifisdefinedasthemomentgeneratedbythedistributedloads,andisthecomponentoftheresultantforce,thenthepressurecentermustbelocateddownstreamoftheleadingedgeIftheangleofattackissmall,,thusItiscleartoseethatasliftapproachestozero,thecenterofpressuremovestoinfinity.So,thecenterofpressureisnotalwaysaconvenientconceptinaerodynamics.Thereareotherwaystodefinetheforce-and-momentsystemonanairfoil1.7Dimensionalanalysis:TheBuchinghamPItheorem(量綱分析:PI定理)※Whatphysicalquantitiesdeterminethevariationoftheaerodynamicforcesandmoments?Onaphysical,intuitivebasis,weexpectRisdependon:1.Freestreamvelocity2.Freestreamdensity3.Viscosityofthefluid4.Thesizeofthebody5.Thecompressibilityofthefluid※
Howtofindaprecisefunctionalrelationfortheequationabove?Executehugeamountofwindtunnelexperimentmightbeoneway.Isthereanyotherwaycandomoreeffectively?Methodofdimensionalanalysis※AnobviousfactforthedimensionalanalysisAllthetermsinthisphysicalrelationmusthavethesamedimensions※BuckinghamPItheorem1.LetKtobethenumberoffundamentaldimensionsrequiredtodescribethephysicalvariables2.LetrepresentNphysicalvariablesinthephysicalrelation3.Thenthephysicalrelationcanbereexpressedasarelationof(N-K)dimensionlessproducts.4.EveryproductisadimensionlessproductofasetofK
physicalvariablesplusoneotherphysicalvariable.5.iscalledrepeatingvariables.Thesevariablesshouldincludeall
theKdimensionsusedintheproblem.※Aerodynamicforceonagivenbodyatagivenangleofattack.1.Eq.(1.23)canbeexpressedas2.FollowingBuckinghamtheoremandourphysicalintuition,thefundamentaldimensionsarem,landt.Hence,
K=33.Thephysicalvariablesandtheirdimensionsareand
N=64.AsexplainedbyBuckinghamtheorem,Eq.(1.27)canbereexpressedintermsofN-K=3
dimensionlessproducts,thatis5.Now,wechoseasrepeatingvariables,fromEq.(1.26),theseproductsare5.Assume
indimensionalform6.Asisdimensionless,then7.TheaboveEquationsgived=-1,b=-2,ande=-2,thenwehaveor
whereS
isdefinedasreferencearea8.Inthesameway,wecanobtaintheremainingproductsasfollowsReynoldsNumber雷諾數(shù)
isaforcecoefficient,definedasMachNumber馬赫數(shù)9.InsertingalltheproductsintoEq.(1.28)
oror10.Importantconclusion:Inthegeneralfunctionform,RisexpressedwithfiveindependentphysicalvariablesAfterourdimensionalanalysis,Rcanbeexpressedwithonly
twoindependentvariables
RcanbeexpressedintermsofadimensionlessforcecoefficientisafunctionofonlyReand11.ImportantapplicationsofReand.
similarityparameters
12.Asliftanddragarecomponentsoftheresultantforce,thentheliftanddragcoefficientsarealsofunctionsofonlyRe
and.Moreover,arelationsimilartoaerodynamicforcesholdsforaerodynamicmoments,anddimensionanalysisyields13.Iftheangleofattackisallowedtovary,then,thelift,dragandmomentcoefficientswillingeneraldependonthevalueof.14.Othersimilarityparametersassociatedwiththermodynamicsandheattransfer.Physicalvariablesshouldbeaddedtemperature,specificheat,thermalconductivity,temperatureofthebodysurfaceFundamentaldimensionshouldbeaddedunitofthetemperature(K)Similarityparameterscreated1.8Flowsimilarity(流動(dòng)相似)※DefinitionofflowsimilarityDifferentflowsaredynamicallysimilarif:Thestreamlinepatternsaregeometricallysimilar2.Thedistributionsofetc.,throughouttheflowfieldarethesamewhenplottedagainstcommonnondimensionalcoordinates.3.Theforcecoefficientsarethesame※CriteriatoensureflowsimilarityThebodiesandanyothersolidboundariesaregeometricallysimilarforbothflows.2.Thesimilarityparametersareidenticalforbothflows.3.ReynoldsandMachnumberarethemostdominantsimilarityparametersformanyaerodynamicproblems.※Examples1.4and1.51.9FluidStatics:BuoyancyForce
(流體靜力學(xué):浮力)Skippedover1.10TypesofFlow(流動(dòng)類型)1.Thepurposeforcategorizingdifferenttypesofflow.2.Thestrategytosimplifytheflowproblems.3.Itemizationandcomparisonofdifferenttypesofflow,andbriefdescriptionoftheirmostimportantphysicalphenomena.1.10.1Continuumversusfreemoleculeflow1.Definitionofmean-free
path.2.Continuumflow.3.Freemoleculeflow4.Inmostaerodynamicproblems,wewillalwaystreatthefluidascontinuumflow.1.10.2Inviscidversusviscousflow1.Therandommotionofthemoleculewilltransporttheirmass,momentum,andenergyfromonelocationtoanotherinthefluid.Thistransportonamoleculescalegivesrisetothephenomenaofmassdiffusion,viscosity,andthermalconduction.Allrealflowsexhibittheeffectofthesetransportphenomena;suchflowsarecallviscousflows.2.Aflowthatisassumedfreewithallthesephenomenaaboveiscalledinviscidflow.3.InviscidflowisapproachedinthelimitastheReynoldsnumbergoestoinfinity.4.TheflowwithhighReynoldsnumber,canbeassumedtobeinviscid.Andtheinfluenceof
friction,thermalconduction,anddiffusionislimitedintheboundarylayer.5.Theinviscidtheorycanbeusedtopredictsthepressuredistributionandlift.However,itcannotpredictstotaldrag.6.Flowsdominatedbyviscouseffects.
FlowaroundairfoilathighangleofattackFlowaroundbluntbody7.Noinviscidtheorycanindependentlypredicttheaerodynamicsofsuchflows.
1.10.3IncompressibleversuscompressibleFlowsAflowinwhichthedensityisconstantiscalledincompressible.Incontrast,aflowwherethedensityisvariableiscalledcompressible.
2.Alltheflowsarecompressible,moreorless3.Thereareanumberofaerodynamicproblemsthatcanbemodeled
asbeingincompressible
withoutanydetrimentallossofaccuracy.4.Inmanycases,whetherthecompressibilityshouldbeconsideredornot,ismanlybasedon
theMachnumberoftheflow.1.10.4MachnumberregimesLocaldefinitionSubsonicifSonicif
Supersonicif
WhereisthelocalMachnumberatanarbitrarypointinaflowfield.2.Definitionforwholeflowfield3.Blockdiagramcategorizingthetypesofaerodynamicflows1.11Appliedaerodynamics:Theaerodynamiccoefficients—TheirmagnitudeandvariationsDifferencebetweenthefundamentals
andapplicationsofaerodynamics.
2.Aerodynamiccoefficients,suchaslift,drag,andmomentcoefficients,aretheprimarylanguageofapplicationexternalaerodynamics.3.Typicalvaluesfortheaerodynamiccoefficientsforsomecommonaerodynamicshapesandit’svariationwithMachnumberandReynoldsnumber.4.Sometypicaldragcoefficientsforvariousaerodynamicconfigurationsinlowspeedflows.
Comparisonthroughcaseatoc:
theReynoldsnumbersforallthesethreecasesarethesamebasedond(diameter).thewakesaregettingsmallerinsizefromatoc
alsobecomessmallerfromcase
atoc
Comparisonbetweencasebandd:
theReynoldsnumberincaseb:theReynoldsnumberincased
:isthesameforcasebtod
foracircularcylinderisrelativelyindependentofReynoldsnumberbetweenRe=andComparisonbetweencasebtoe:
theReynoldsnumberincaseb:theReynoldsnumberincasee:incaseeis0.6
smallerwakebehindthecylinderincasee
comparedtothatincase
b.Note:Withbasedonthefrontalprojectedarea(S=d(1)perunitspan),thevalueofrangefromamaximum2tonumbersaslowas0.12.MagnitudeofReynoldsnumberofaflowaroundacircularcylinderatstandardsealevel,where,
Th
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 上海科創(chuàng)職業(yè)技術(shù)學(xué)院《交通工程概論》2023-2024學(xué)年第一學(xué)期期末試卷
- 上海健康醫(yī)學(xué)院《園藝學(xué)概論》2023-2024學(xué)年第一學(xué)期期末試卷
- 上海建橋?qū)W院《固體廢棄物處理與處置實(shí)驗(yàn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 上海行健職業(yè)學(xué)院《音視頻節(jié)目制作實(shí)驗(yàn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年中國火結(jié)磚市場(chǎng)調(diào)查研究報(bào)告
- 2024年中國滌棉牛仔面料市場(chǎng)調(diào)查研究報(bào)告
- 上海工藝美術(shù)職業(yè)學(xué)院《化學(xué)教師職業(yè)技能訓(xùn)練》2023-2024學(xué)年第一學(xué)期期末試卷
- 上海工會(huì)管理職業(yè)學(xué)院《信息安全導(dǎo)論》2023-2024學(xué)年第一學(xué)期期末試卷
- 上海工程技術(shù)大學(xué)《智能制造前沿》2023-2024學(xué)年第一學(xué)期期末試卷
- 圍草地(教學(xué)實(shí)錄)-2024-2025學(xué)年一年級(jí)上冊(cè)數(shù)學(xué)蘇教版
- 強(qiáng)夯安全技術(shù)交底
- 儲(chǔ)能業(yè)務(wù)培訓(xùn)
- 2024年四川省水電投資經(jīng)營集團(tuán)普格電力有限公司招聘筆試參考題庫含答案解析
- 2024屆新高考物理沖刺復(fù)習(xí):“正則動(dòng)量”解決帶電粒子在磁場(chǎng)中的運(yùn)動(dòng)問題
- PLC控制Y-△降壓?jiǎn)?dòng)控制設(shè)計(jì)
- 義務(wù)教育音樂(2022版)新課程標(biāo)準(zhǔn)考試測(cè)試題及答案5套
- 財(cái)產(chǎn)損害賠償起訴狀范本
- 創(chuàng)業(yè)管理(上海財(cái)經(jīng)大學(xué))智慧樹知到期末考試答案2024年
- 【安徽山鷹紙業(yè)股份有限公司盈利能力探析(任務(wù)書+開題報(bào)告)3000字】
- 人教版九年級(jí)化學(xué)上冊(cè)期末試卷及答案免費(fèi)
-
評(píng)論
0/150
提交評(píng)論