初中數(shù)學(xué)冀教版八年級(jí)上冊(cè)第十三章全等三角形單元復(fù)習(xí) 市賽獲獎(jiǎng)_第1頁(yè)
初中數(shù)學(xué)冀教版八年級(jí)上冊(cè)第十三章全等三角形單元復(fù)習(xí) 市賽獲獎(jiǎng)_第2頁(yè)
初中數(shù)學(xué)冀教版八年級(jí)上冊(cè)第十三章全等三角形單元復(fù)習(xí) 市賽獲獎(jiǎng)_第3頁(yè)
初中數(shù)學(xué)冀教版八年級(jí)上冊(cè)第十三章全等三角形單元復(fù)習(xí) 市賽獲獎(jiǎng)_第4頁(yè)
初中數(shù)學(xué)冀教版八年級(jí)上冊(cè)第十三章全等三角形單元復(fù)習(xí) 市賽獲獎(jiǎng)_第5頁(yè)
已閱讀5頁(yè),還剩5頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

全章熱門(mén)考點(diǎn)整合應(yīng)用名師點(diǎn)金:本章主要學(xué)習(xí)了命題與證明、全等三角形的性質(zhì)與判定及三角形的尺規(guī)作圖,三角形全等主要考查利用全等三角形證明線段或角的等量關(guān)系,以及判斷位置關(guān)系等.三個(gè)概念概念1:命題1.下列說(shuō)法正確的是()A.每一個(gè)命題都有逆命題B.每一個(gè)定理都有逆定理C.真命題的逆命題一定是真命題D.真命題的逆命題一定是假命題2.已知下列命題:①若a>b,則c-a<c-b;②若a>0,則|a|=a;③兩直線平行,內(nèi)錯(cuò)角相等;④對(duì)頂角相等.其中原命題與逆命題均為真命題的有()A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)概念2:全等形3.如圖,將標(biāo)號(hào)為A,B,C,D的正方形沿圖中的虛線剪開(kāi)后,得到標(biāo)號(hào)為N,Q,M,P的四個(gè)圖形,填空:A與________對(duì)應(yīng);B與________對(duì)應(yīng);C與________對(duì)應(yīng);D與________對(duì)應(yīng).(第3題)概念3:全等三角形4.如圖,已知△ABE與△ADC全等,∠1=∠2,∠B=∠C,指出全等三角形中的對(duì)應(yīng)邊和對(duì)應(yīng)角.(第4題)5.如圖所示,已知△ABD≌△ACD,且B,D,C在同一條直線上,那么AD與BC有怎樣的位置關(guān)系?為什么?(第5題)一個(gè)性質(zhì)——全等三角形的性質(zhì)6.如圖,已知△ABC≌△ADE,BC的延長(zhǎng)線交AD于點(diǎn)M,交DE于點(diǎn)F.若∠D=25°,∠AED=105°,∠DAC=10°,求∠DFB的度數(shù).(第6題)一個(gè)判定——全等三角形的判定7.課間,小明拿著老師的等腰三角板玩,不小心掉到兩堆磚塊之間,如圖所示.(1)求證:△ADC≌△CEB;(2)已知DE=35cm,請(qǐng)你幫小明求出磚塊的厚度a的大小(每塊磚的厚度相等).(第7題)三個(gè)技巧技巧1:構(gòu)造三角形法8.如圖,∠BAC是鈍角,AB=AC,D,E分別在AB,AC上,且CD=BE.求證:∠AEB=∠ADC.(第8題)9.如圖,AB=DC,∠A=∠D,求證:∠ABC=∠DCB.(第9題)技巧2:截長(zhǎng)補(bǔ)短法10.如圖,AB∥CD,CE,BE分別平分∠BCD和∠CBA,點(diǎn)E在AD上,求證:BC=AB+CD.(第10題)技巧3:倍長(zhǎng)中線法11.如圖,CE,CB分別是△ABC,△ADC的中線,且∠ACB=∠ABC.求證:CD=2CE.(第11題)兩種思想思想1:建模思想12.如圖,某段河流的兩岸是平行的,數(shù)學(xué)興趣小組在老師的帶領(lǐng)下不用涉水過(guò)河就測(cè)到了河的寬度,他們是這樣做的:①在河流的一條岸邊B點(diǎn),選對(duì)岸正對(duì)的一棵樹(shù)A;②沿河岸直走20步有一棵樹(shù)C,繼續(xù)前行20步到達(dá)D處;③從D處沿岸垂直的方向行走,當(dāng)?shù)竭_(dá)A樹(shù)正好被C樹(shù)遮擋住的E處停止行走;④測(cè)得DE的長(zhǎng)就是河寬AB.【導(dǎo)學(xué)號(hào):42282026】請(qǐng)你證明他們做法的正確性.(第12題)思想2:轉(zhuǎn)化思想13.如圖,已知AB=AE,∠C=∠D,BC=ED,點(diǎn)F是CD的中點(diǎn),則AF平分∠BAE,為什么?(第13題)一個(gè)作圖——三角形的尺規(guī)作圖14.如圖所示,已知線段a,∠α,求作△ABC,使AB=2a,∠A=α,∠B=2∠α.不寫(xiě)作法,但要保留作圖痕跡.(第14題)答案1.A2.C點(diǎn)撥:①原命題是真命題,逆命題:若c-a<c-b,則a>b也是真命題;②原命題是真命題,逆命題:若|a|=a,則a>0,是假命題;③原命題是真命題,逆命題:內(nèi)錯(cuò)角相等,兩直線平行,逆命題是真命題;④原命題是真命題,逆命題:相等的角是對(duì)頂角,是假命題.3.M;N;Q;P4.解:AB與AC,AE與AD,BE與CD是對(duì)應(yīng)邊;∠B與∠C,∠2與∠1,∠BAE與∠CAD是對(duì)應(yīng)角.5.解:AD⊥BC.理由如下:∵△ABD≌△ACD,∴∠ADB=∠ADC.又∵點(diǎn)B,D,C在同一條直線上,∴∠BDC=180°,即∠ADB+∠ADC=180°,∴∠ADB=∠ADC=90°,∴AD⊥BC.6.解:∵∠D=25°,∠AED=105°,∴∠DAE=50°.又∵△ABC≌△ADE,∴∠B=∠D=25°,∠BAC=∠DAE=50°.∵∠DAC=10°,∴∠BAD=60°,∵∠AMF=∠BAD+∠B=60°+25°=85°,∴∠DFB=∠AMF-∠D=85°-25°=60°.7.(1)證明:由題意得AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∠ACD+∠BCE=90°,∴∠ACD+∠CAD=90°,∴∠BCE=∠CAD.在△ADC和△CEB中,eq\b\lc\{(\a\vs4\al\co1(∠ADC=∠CEB,,∠CAD=∠BCE,,AC=BC,))∴△ADC≌△CEB(AAS).(2)解:由題意得AD=4a,BE=3a.由(1)得△ADC≌△CEB,∴DC=BE=3a,CE=AD=4a,∴DE=DC+CE=7a.∵DE=35cm,∴a=5cm.答:磚塊的厚度為5cm.8.證明:過(guò)點(diǎn)B,C分別作CA,BA延長(zhǎng)線的垂線,垂足分別為F,G.在△ABF和△ACG中,eq\b\lc\{(\a\vs4\al\co1(∠AFB=∠AGC=90°,,∠FAB=∠GAC,,AB=AC,))∴△ABF≌△ACG(AAS).∴BF=CG.又∵CD=BE,∴此時(shí)△BEF可看作是由△CDG翻折得到的,即△CDG經(jīng)翻折后可與△BEF重合.∴∠AEB=∠ADC.點(diǎn)撥:判定兩個(gè)三角形全等時(shí),先根據(jù)已知條件或求證的結(jié)論確定三角形,再根據(jù)三角形全等的判定方法,看缺什么條件,再去證什么條件.9.證明:分別取AD,BC的中點(diǎn)N,M,連接BN,CN,MN,則有AN=ND,BM=MC.在△ABN和△DCN中,eq\b\lc\{(\a\vs4\al\co1(AN=DN,,∠A=∠D,,AB=DC,))∴△ABN≌△DCN(SAS).∴∠ABN=∠DCN,NB=NC.在△NBM和△NCM中,eq\b\lc\{(\a\vs4\al\co1(NB=NC,,BM=CM,,NM=NM,))∴△NBM≌△NCM(SSS).∴∠NBC=∠NCB.∴∠NBC+∠ABN=∠NCB+∠DCN,即∠ABC=∠DCB.點(diǎn)撥:證明三角形全等時(shí)常需添加適當(dāng)?shù)妮o助線,輔助線的添加以能創(chuàng)造已知條件為上策,如本題取AD,BC的中點(diǎn)就是把中點(diǎn)作為了已知條件.分散證明,也是幾何證明中的一種常用技巧.10.證明:(方法一——截長(zhǎng)法)如圖(1),在BC上取一點(diǎn)F,使BF=BA.連接EF,∵CE,BE分別平分∠BCD,∠CBA,∴∠3=∠4,∠1=∠2.在△ABE和△FBE中,eq\b\lc\{(\a\vs4\al\co1(BA=BF,,∠1=∠2,,BE=BE,))∴△ABE≌△FBE(SAS).∴∠A=∠5.∵AB∥CD,∴∠A+∠D=180°,而∠5+∠6=180°,∴∠6=∠D.在△EFC和△EDC中,eq\b\lc\{(\a\vs4\al\co1(∠6=∠D,,∠3=∠4,,EC=EC,))∴△EFC≌△EDC(AAS),∴FC=CD,∴BC=BF+CF=AB+CD.(方法二——補(bǔ)短法)如圖(2),延長(zhǎng)BA至點(diǎn)F,使BF=BC,連接EF,∵CE,BE分別平分∠BCD,∠CBA,∴∠1=∠2=eq\f(1,2)∠ABC,∠3=∠4=eq\f(1,2)∠BCD.在△BEF和△BEC中,eq\b\lc\{(\a\vs4\al\co1(BF=BC,,∠1=∠2,,BE=BE,))∴△BEF≌△BEC(SAS).∴EF=EC,∠F=∠3=∠4.∵AB∥CD,∴∠5=∠D.在△AEF和△DEC中,eq\b\lc\{(\a\vs4\al\co1(∠5=∠D,,∠F=∠4,,EF=EC.))∴△AEF≌△DEC(AAS),∴AF=CD.∵BC=BF=BA+AF,∴BC=BA+CD.(第10題)11.解:如圖,延長(zhǎng)CE到點(diǎn)F,使EF=CE,連接FB,則CF=2CE.∵CE是△ABC的中線,∴AE=BE.在△BEF和△AEC,eq\b\lc\{(\a\vs4\al\co1(BE=AE,,∠BEF=∠AEC,,EF=EC,))∴△BEF≌△AEC(SAS).∴∠EBF=∠EAC,BF=AC.過(guò)點(diǎn)A作AG⊥BC于點(diǎn)G,則∠AGC=∠AGB=90°.∵∠ACB=∠ABC,AG=AG,∴△AGC≌△AGB.∴AC=AB.又∵∠ABC=∠ACB.∴∠CBD=∠BAC+∠ACB=∠EBF+∠ABC=∠CBF.∵CB是△ADC的中線,∴AB=BD.又∵AB=AC,AC=BF,∴BF=BD.在△CBF和△CBD中,eq\b\lc\{(\a\vs4\al\co1(CB=CB,,∠CBF=∠CBD,,BF=BD,))∴△CBF≌△CBD(SAS).∴CF=CD.∴CD=2CE.(第11題)12.證明:由做法知:在△ABC和△EDC中,eq\b\lc\{(\a\vs4\al\co1(∠ABC=∠EDC=90°,,BC=DC,,∠ACB=∠ECD,))∴△ABC≌△EDC(ASA).∴AB=ED,即他們的做法是正確的.13.解:連接BF,EF.∵點(diǎn)F是CD的中點(diǎn),∴CF=DF.在△BCF和

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論