初中數(shù)學(xué)北師大版九年級(jí)下冊(cè)第三章圓7切線(xiàn)長(zhǎng)定理 全市一等獎(jiǎng)_第1頁(yè)
初中數(shù)學(xué)北師大版九年級(jí)下冊(cè)第三章圓7切線(xiàn)長(zhǎng)定理 全市一等獎(jiǎng)_第2頁(yè)
初中數(shù)學(xué)北師大版九年級(jí)下冊(cè)第三章圓7切線(xiàn)長(zhǎng)定理 全市一等獎(jiǎng)_第3頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

*切線(xiàn)長(zhǎng)定理1.理解切線(xiàn)長(zhǎng)的定義;(重點(diǎn))2.掌握切線(xiàn)長(zhǎng)定理并能運(yùn)用切線(xiàn)長(zhǎng)定理解決問(wèn)題.(難點(diǎn))一、情境導(dǎo)入如圖①,PA為⊙O的一條切線(xiàn),點(diǎn)A為切點(diǎn).如圖②所示,沿著直線(xiàn)PO將紙對(duì)折,由于直線(xiàn)PO經(jīng)過(guò)圓心O,所以PO是圓的一條對(duì)稱(chēng)軸,兩半圓重合.設(shè)與點(diǎn)A重合的點(diǎn)為點(diǎn)B,這里,OB是⊙O的一條半徑,PB是⊙O的一條切線(xiàn).圖中PA與PB、∠APO與∠BPO有什么關(guān)系?二、合作探究探究點(diǎn):切線(xiàn)長(zhǎng)定理【類(lèi)型一】利用切線(xiàn)長(zhǎng)定理求線(xiàn)段的長(zhǎng)如圖,從⊙O外一點(diǎn)P引圓的兩條切線(xiàn)PA、PB,切點(diǎn)分別是點(diǎn)A和點(diǎn)B,如果∠APB=60°,線(xiàn)段PA=10,那么弦AB的長(zhǎng)是()A.10B.12C.5eq\r(3)D.10eq\r(3)解析:∵PA、PB都是⊙O的切線(xiàn),∴PA=PB.∵∠APB=60°,∴△PAB是等邊三角形,∴AB=PA=10.故選A.方法總結(jié):切線(xiàn)長(zhǎng)定理是在圓中判斷線(xiàn)段相等的主要依據(jù),經(jīng)常用到.變式訓(xùn)練:見(jiàn)《學(xué)練優(yōu)》本課時(shí)練習(xí)“課堂達(dá)標(biāo)訓(xùn)練”第4題【類(lèi)型二】利用切線(xiàn)長(zhǎng)定理求角的度數(shù)如圖,PA、PB是⊙O的切線(xiàn),切點(diǎn)分別為A、B,點(diǎn)C在⊙O上,如果∠ACB=70°,那么∠OPA的度數(shù)是________度.解析:如圖所示,連接OA、OB.∵PA、PB是⊙O的切線(xiàn),切點(diǎn)分別為A、B,∴OA⊥PA,OB⊥PB,∴∠OAP=∠OBP=90°.又∵∠AOB=2∠ACB=140°,∴∠APB=360°-∠PAO-∠AOB-∠OBP=360°-90°-140°-90°=40°.易證△POA≌△POB,∴∠OPA=eq\f(1,2)∠APB=20°.故答案為20.方法總結(jié):由公共點(diǎn)引出的兩條切線(xiàn),可以運(yùn)用切線(xiàn)長(zhǎng)定理得到等腰三角形.另外根據(jù)全等的判定,可得到PO平分∠APB.變式訓(xùn)練:見(jiàn)《學(xué)練優(yōu)》本課時(shí)練習(xí)“課堂達(dá)標(biāo)訓(xùn)練”第3題【類(lèi)型三】利用切線(xiàn)長(zhǎng)定理求三角形的周長(zhǎng)如圖,PA、PB、DE是⊙O的切線(xiàn),切點(diǎn)分別為A、B、F,已知PO=13cm,⊙O的半徑為5cm,求△PDE的周長(zhǎng).解析:連接OA,根據(jù)切線(xiàn)的性質(zhì)定理,得OA⊥PA.根據(jù)勾股定理,得PA=12,再根據(jù)切線(xiàn)長(zhǎng)定理即可求得△PDE的周長(zhǎng).解:連接OA,則OA⊥PA.在Rt△APO中,PO=13cm,OA=5cm,根據(jù)勾股定理,得AP=12cm.∵PA、PB、DE是⊙O的切線(xiàn),∴PA=PB,DA=DF,EF=EB,∴△PDE的周長(zhǎng)PD+DE+PE=PD+DF+FE+PE=PD+DA+EB+PE=PA+PB=2PA=24cm.方法總結(jié):從圓外一點(diǎn)引圓的兩條切線(xiàn),它們的切線(xiàn)長(zhǎng)相等,圓心和這一點(diǎn)的連線(xiàn),平分兩條切線(xiàn)的夾角.變式訓(xùn)練:見(jiàn)《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升”第4題【類(lèi)型四】利用切線(xiàn)長(zhǎng)定理解決圓外切四邊形的問(wèn)題如圖,四邊形ABCD的邊與圓O分別相切于點(diǎn)E、F、G、H,判斷AB、BC、CD、DA之間有怎樣的數(shù)量關(guān)系,并說(shuō)明理由.解析:直接利用切線(xiàn)長(zhǎng)定理解答即可.解:AD+BC=CD+AB,理由如下:∵四邊形ABCD的邊與圓O分別相切于點(diǎn)E、F、G、H,∴DH=DG,CG=CF,BE=BF,AE=AH,∴AH+DH+CF+BF=DG+GC+AE+BE,即AD+BC=CD+AB.方法總結(jié):由切線(xiàn)長(zhǎng)定理可以得到一些相等的線(xiàn)段,一定要明確這些相等線(xiàn)段.記住“圓外切四邊形的對(duì)邊之和相等”,對(duì)我們以后解決問(wèn)題有很大幫助.變式訓(xùn)練:見(jiàn)《學(xué)練優(yōu)》本課時(shí)練習(xí)“課堂達(dá)標(biāo)訓(xùn)練”第4題【類(lèi)型五】切線(xiàn)長(zhǎng)定理與三角形內(nèi)切圓的綜合如圖,在△ABC中,AB=AC,⊙O是△ABC的內(nèi)切圓,它與AB、BC、CA分別相切于點(diǎn)D、E、F.(1)求證:BE=CE;(2)若∠A=90°,AB=AC=2,求⊙O的半徑.解析:(1)利用切線(xiàn)長(zhǎng)定理得出AD=AF,BD=BE,CE=CF,進(jìn)而得出BD=CF,即可得出答案;(2)首先連接OD、OE、OF,進(jìn)而利用切線(xiàn)的性質(zhì)得出∠ODA=∠OFA=∠A=90°,進(jìn)而得出四邊形ODAF是正方形,再利用勾股定理求出⊙O的半徑.(1)證明:∵⊙O是△ABC的內(nèi)切圓,∴AD=AF,BD=BE,CE=CF.∵AB=AC,∴AB-AD=AC-AF,即BD=CF,∴BE=CE;(2)解:連接OD、OE、OF,∵⊙O是△ABC的內(nèi)切圓,切點(diǎn)為D、E、F,∴∠ODA=∠OFA=∠A=90°.又∵OD=OF,∴四邊形ODAF是正方形.設(shè)OD=AD=AF=r,則BE=BD=CF=CE=2-r.在△ABC中,∠A=90°,∴BC=eq\r(AB2+AC2)=2eq\r(2).又∵BC=BE+CE,∴(2-r)+(2-r)=2eq\r(2),得r=2-eq\r(2),∴⊙O的半徑是2-eq\r(2).方法總結(jié):本題綜合考查了正方形的判定以及切線(xiàn)長(zhǎng)定理和勾股定理等知識(shí),解決問(wèn)題的關(guān)鍵是得出四邊形ODAF是正方形.【類(lèi)型六】利用切線(xiàn)長(zhǎng)定理解決存在性問(wèn)題如圖①,已知正方形ABCD的邊長(zhǎng)為2eq\r(3),點(diǎn)M是AD的中點(diǎn),P是線(xiàn)段MD上的一動(dòng)點(diǎn)(P不與M,D重合),以AB為直徑作⊙O,過(guò)點(diǎn)P作⊙O的切線(xiàn)交BC于點(diǎn)F,切點(diǎn)為E.(1)除正方形ABCD的四邊和⊙O中的半徑外,圖中還有哪些相等的線(xiàn)段(不能添加字母和輔助線(xiàn))?(2)求四邊形CDPF的周長(zhǎng);(3)延長(zhǎng)CD,F(xiàn)P相交于點(diǎn)G,如圖②所示.是否存在點(diǎn)P,使BF·FG=CF·OF?如果存在,試求此時(shí)AP的長(zhǎng);如果不存在,請(qǐng)說(shuō)明理由.解析:(1)根據(jù)切線(xiàn)長(zhǎng)定理得到FB=FE,PE=PA;(2)根據(jù)切線(xiàn)長(zhǎng)定理,發(fā)現(xiàn)該四邊形的周長(zhǎng)等于正方形的三邊之和;(3)若要滿(mǎn)足結(jié)論,則∠BFO=∠GFC,根據(jù)切線(xiàn)長(zhǎng)定理得∠BFO=∠EFO,從而得到這三個(gè)角應(yīng)是60°,然后結(jié)合已知的正方形的邊長(zhǎng),也是圓的直徑,利用30°的直角三角形的知識(shí)進(jìn)行計(jì)算.解:(1)FB=FE,PE=PA;(2)四邊形CDPF的周長(zhǎng)為FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=2eq\r(3)×3=6eq\r(3);(3)假設(shè)存在點(diǎn)P,使BF·FG=CF·OF.∴eq\f(BF,OF)=eq\f(CF,FG).∵cos∠OFB=eq\f(BF,OF),cos∠GFC=eq\f(CF,FG),∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=eq\f(OB,tan∠OFB)=eq\f(OB,tan60°)=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(2eq\r(3)-1)×eq\r(3)=6-eq\r(3),∴DG=CG-CD=6-3eq\r(3),∴DP=DG·tan∠PGD=DG·tan30°=2eq\r(3)-3,∴AP=AD-DP=2eq\r(3)-(2eq\r(3)-3)=3.方法總結(jié):由于存在性問(wèn)題的結(jié)論有兩種可能,所以具有開(kāi)放的特征,在假設(shè)存在性以后進(jìn)行的推理或計(jì)算.一般思路是:假設(shè)存在——推理論證——得出結(jié)論.若能導(dǎo)出合理的結(jié)果,就做出“存在”的判斷,若導(dǎo)出矛盾,就做出“不存在”的判斷.三、板書(shū)設(shè)計(jì)切線(xiàn)長(zhǎng)定理1.切線(xiàn)長(zhǎng)的概念2.切線(xiàn)長(zhǎng)定理3.切線(xiàn)長(zhǎng)定理的應(yīng)用在教學(xué)過(guò)程中,通過(guò)安排實(shí)踐操作活動(dòng),使學(xué)生提高了探究的興趣.首先教師突出操作要求,學(xué)生操作并思考回答問(wèn)題,教

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論