版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023高考數學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設,滿足約束條件,則的最大值是()A. B. C. D.2.已知中,角、所對的邊分別是,,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.既不充分也不必要條件 D.充分必要條件3.已知函數,關于x的方程f(x)=a存在四個不同實數根,則實數a的取值范圍是()A.(0,1)∪(1,e) B.C. D.(0,1)4.如圖,已知平面,,、是直線上的兩點,、是平面內的兩點,且,,,,.是平面上的一動點,且直線,與平面所成角相等,則二面角的余弦值的最小值是()A. B. C. D.5.劉徽(約公元225年-295年),魏晉期間偉大的數學家,中國古典數學理論的奠基人之一他在割圓術中提出的,“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”,這可視為中國古代極限觀念的佳作,割圓術的核心思想是將一個圓的內接正n邊形等分成n個等腰三角形(如圖所示),當n變得很大時,這n個等腰三角形的面積之和近似等于圓的面積,運用割圓術的思想,得到的近似值為()A. B. C. D.6.已知向量與向量平行,,且,則()A. B.C. D.7.如圖,在中,,是上的一點,若,則實數的值為()A. B. C. D.8.若時,,則的取值范圍為()A. B. C. D.9.已知各項都為正的等差數列中,,若,,成等比數列,則()A. B. C. D.10.已知數列的前n項和為,,且對于任意,滿足,則()A. B. C. D.11.在長方體中,,則直線與平面所成角的余弦值為()A. B. C. D.12.已知集合A={﹣2,﹣1,0,1,2},B={x|x2﹣4x﹣5<0},則A∩B=()A.{﹣2,﹣1,0} B.{﹣1,0,1,2} C.{﹣1,0,1} D.{0,1,2}二、填空題:本題共4小題,每小題5分,共20分。13.滿足約束條件的目標函數的最小值是.14.《九章算術》是中國古代的數學名著,其中《方田》一章給出了弧田面積的計算公式.如圖所示,弧田是由圓弧AB和其所對弦AB圍成的圖形,若弧田的弧AB長為4π,弧所在的圓的半徑為6,則弧田的弦AB長是__________,弧田的面積是__________.15.的二項展開式中,含項的系數為__________.16.的展開式中項的系數為_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)的內角所對的邊分別是,且,.(1)求;(2)若邊上的中線,求的面積.18.(12分)2018年9月,臺風“山竹”在我國多個省市登陸,造成直接經濟損失達52億元.某青年志愿者組織調查了某地區(qū)的50個農戶在該次臺風中造成的直接經濟損失,將收集的數據分成五組:,,,,(單位:元),得到如圖所示的頻率分布直方圖.(1)試根據頻率分布直方圖估計該地區(qū)每個農戶的平均損失(同一組中的數據用該組區(qū)間的中點值代表);(2)臺風后該青年志愿者與當地政府向社會發(fā)出倡議,為該地區(qū)的農戶捐款幫扶,現從這50戶并且損失超過4000元的農戶中隨機抽取2戶進行重點幫扶,設抽出損失超過8000元的農戶數為,求的分布列和數學期望.19.(12分)已知直線的參數方程為(為參數),以坐標原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標系,曲線的極坐標方程為.(1)求直線的普通方程及曲線的直角坐標方程;(2)設點,直線與曲線交于兩點,求的值.20.(12分)已知數列為公差不為零的等差數列,是數列的前項和,且、、成等比數列,.設數列的前項和為,且滿足.(1)求數列、的通項公式;(2)令,證明:.21.(12分)已知函數.(1)求函數的單調區(qū)間;(2)當時,如果方程有兩個不等實根,求實數t的取值范圍,并證明.22.(10分)設為等差數列的前項和,且,.(1)求數列的通項公式;(2)若滿足不等式的正整數恰有個,求正實數的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
作出不等式對應的平面區(qū)域,由目標函數的幾何意義,通過平移即可求z的最大值.【詳解】作出不等式組的可行域,如圖陰影部分,作直線:在可行域內平移當過點時,取得最大值.由得:,故選:D【點睛】本題主要考查線性規(guī)劃的應用,利用數形結合是解決線性規(guī)劃題目的常用方法,屬于基礎題.2.D【解析】
由大邊對大角定理結合充分條件和必要條件的定義判斷即可.【詳解】中,角、所對的邊分別是、,由大邊對大角定理知“”“”,“”“”.因此,“”是“”的充分必要條件.故選:D.【點睛】本題考查充分條件、必要條件的判斷,考查三角形的性質等基礎知識,考查邏輯推理能力,是基礎題.3.D【解析】
原問題轉化為有四個不同的實根,換元處理令t,對g(t)進行零點個數討論.【詳解】由題意,a>2,令t,則f(x)=a????.記g(t).當t<2時,g(t)=2ln(﹣t)(t)單調遞減,且g(﹣2)=2,又g(2)=2,∴只需g(t)=2在(2,+∞)上有兩個不等于2的不等根.則?,記h(t)(t>2且t≠2),則h′(t).令φ(t),則φ′(t)2.∵φ(2)=2,∴φ(t)在(2,2)大于2,在(2,+∞)上小于2.∴h′(t)在(2,2)上大于2,在(2,+∞)上小于2,則h(t)在(2,2)上單調遞增,在(2,+∞)上單調遞減.由,可得,即a<2.∴實數a的取值范圍是(2,2).故選:D.【點睛】此題考查方程的根與函數零點問題,關鍵在于等價轉化,將問題轉化為通過導函數討論函數單調性解決問題.4.B【解析】
為所求的二面角的平面角,由得出,求出在內的軌跡,根據軌跡的特點求出的最大值對應的余弦值【詳解】,,,,同理為直線與平面所成的角,為直線與平面所成的角,又,在平面內,以為軸,以的中垂線為軸建立平面直角坐標系則,設,整理可得:在內的軌跡為為圓心,以為半徑的上半圓平面平面,,為二面角的平面角,當與圓相切時,最大,取得最小值此時故選【點睛】本題主要考查了二面角的平面角及其求法,方法有:定義法、三垂線定理及其逆定理、找公垂面法、射影公式、向量法等,依據題目選擇方法求出結果.5.A【解析】
設圓的半徑為,每個等腰三角形的頂角為,則每個等腰三角形的面積為,由割圓術可得圓的面積為,整理可得,當時即可為所求.【詳解】由割圓術可知當n變得很大時,這n個等腰三角形的面積之和近似等于圓的面積,設圓的半徑為,每個等腰三角形的頂角為,所以每個等腰三角形的面積為,所以圓的面積為,即,所以當時,可得,故選:A【點睛】本題考查三角形面積公式的應用,考查閱讀分析能力.6.B【解析】
設,根據題意得出關于、的方程組,解出這兩個未知數的值,即可得出向量的坐標.【詳解】設,且,,由得,即,①,由,②,所以,解得,因此,.故選:B.【點睛】本題考查向量坐標的求解,涉及共線向量的坐標表示和向量數量積的坐標運算,考查計算能力,屬于中等題.7.B【解析】
變形為,由得,轉化在中,利用三點共線可得.【詳解】解:依題:,又三點共線,,解得.故選:.【點睛】本題考查平面向量基本定理及用向量共線定理求參數.思路是(1)先選擇一組基底,并運用該基底將條件和結論表示成向量的形式,再通過向量的運算來解決.利用向量共線定理及向量相等的條件列方程(組)求參數的值.(2)直線的向量式參數方程:三點共線?(為平面內任一點,)8.D【解析】
由題得對恒成立,令,然后分別求出即可得的取值范圍.【詳解】由題得對恒成立,令,在單調遞減,且,在上單調遞增,在上單調遞減,,又在單調遞增,,的取值范圍為.故選:D【點睛】本題主要考查了不等式恒成立問題,導數的綜合應用,考查了轉化與化歸的思想.求解不等式恒成立問題,可采用參變量分離法去求解.9.A【解析】試題分析:設公差為或(舍),故選A.考點:等差數列及其性質.10.D【解析】
利用數列的遞推關系式判斷求解數列的通項公式,然后求解數列的和,判斷選項的正誤即可.【詳解】當時,.所以數列從第2項起為等差數列,,所以,,.,,.故選:.【點睛】本題考查數列的遞推關系式的應用、數列求和以及數列的通項公式的求法,考查轉化思想以及計算能力,是中檔題.11.C【解析】
在長方體中,得與平面交于,過做于,可證平面,可得為所求解的角,解,即可求出結論.【詳解】在長方體中,平面即為平面,過做于,平面,平面,平面,為與平面所成角,在,,直線與平面所成角的余弦值為.故選:C.【點睛】本題考查直線與平面所成的角,定義法求空間角要體現“做”“證”“算”,三步驟缺一不可,屬于基礎題.12.D【解析】
解一元二次不等式化簡集合,再由集合的交集運算可得選項.【詳解】因為集合,故選:D.【點睛】本題考查集合的交集運算,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.-2【解析】
可行域是如圖的菱形ABCD,代入計算,知為最小.14.612π﹣9【解析】
過作,交于,先求得圓心角的弧度數,然后解解三角形求得的長.利用扇形面積減去三角形的面積,求得弧田的面積.【詳解】∵如圖,弧田的弧AB長為4π,弧所在的圓的半徑為6,過作,交于,根據圓的幾何性質可知,垂直平分.∴α=∠AOB==,可得∠AOD=,OA=6,∴AB=2AD=2OAsin=2×=6,∴弧田的面積S=S扇形OAB﹣S△OAB=4π×6﹣=12π﹣9.故答案為:6,12π﹣9.【點睛】本小題主要考查弓形弦長和弓形面積的計算,考查中國古代數學文化,屬于中檔題.15.【解析】
寫出二項展開式的通項,然后取的指數為求得的值,則項的系數可求得.【詳解】,由,可得.含項的系數為.故答案為:【點睛】本題考查了二項式定理展開式、需熟記二項式展開式的通項公式,屬于基礎題.16.40【解析】
根據二項定理展開式,求得r的值,進而求得系數.【詳解】根據二項定理展開式的通項式得所以,解得所以系數【點睛】本題考查了二項式定理的簡單應用,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1),(2)【解析】
(1)先由正弦定理,得到,進而可得,再由,即可得出結果;(2)先由余弦定理得,,再根據題中數據,可得,從而可求出,得到,進而可求出結果.【詳解】(1)由正弦定理得,所以,因為,所以,即,所以,又因為,所以,.(2)在和中,由余弦定理得,.因為,,,,又因為,即,所以,所以,又因為,所以.所以的面積.【點睛】本題主要考查解三角形,靈活運用正弦定理和余弦定理即可,屬于常考題型.18.(1)3360元;(2)見解析【解析】
(1)根據頻率分布直方圖計算每個農戶的平均損失;(2)根據頻率分布直方圖計算隨機變量X的可能取值,再求X的分布列和數學期望值.【詳解】(1)記每個農戶的平均損失為元,則;(2)由頻率分布直方圖,可得損失超過1000元的農戶共有(0.00009+0.00003+0.00003)×2000×50=15(戶),損失超過8000元的農戶共有0.00003×2000×50=3(戶),隨機抽取2戶,則X的可能取值為0,1,2;計算P(X=0)==,P(X=1)==,P(X=2)==,所以X的分布列為;X012P數學期望為E(X)=0×+1×+2×=.【點睛】本題考查了頻率分布直方圖與離散型隨機變量的分布列與數學期望計算問題,屬于中檔題.19.(1);(2)【解析】
(1)直接利用轉換關系的應用,把參數方程極坐標方程和直角坐標方程之間進行轉換.(2)利用(1)的結論,進一步利用一元二次方程根和系數的關系式的應用求出結果.【詳解】解:(1)直線的參數方程為(為參數),轉換為直角坐標方程為.曲線的極坐標方程為.轉換為,轉換為直角坐標方程為.(2)直線的參數方程為(為參數),轉換為標準式為(為參數),代入圓的直角坐標方程整理得,所以,..【點睛】本題屬于基礎本題考查的知識要點:主要考查極坐標,參數方程與普通方程互化,及求三角形面積.需要熟記極坐標系與參數方程的公式,及與解析幾何相關的直線與曲線位置關系的一些解題思路.20.(1),(2)證明見解析【解析】
(1)利用首項和公差構成方程組,從而求解出的通項公式;由的通項公式求解出的表達式,根據以及,求解出的通項公式;(2)利用錯位相減法求解出的前項和,根據不等關系證明即可.【詳解】(1)設首項為,公差為.由題意,得,解得,∴,∴,∴當時,∴,.當時,滿足上式.∴(2),令數列的前項和為.兩式相減得∴恒成立,得證.【點睛】本題考查等差數列、等比數列的綜合應用,難度一般.(1)當用求解的通項公式時,一定要注意驗證是否成立;(2)當一個數列符合等差乘以等比的形式,優(yōu)先考慮采用錯位相減法進行求和,同時注意對于錯位的理解.21.(1)當時,的單調遞增區(qū)間是,單調遞減區(qū)間是;當時,的單調遞增區(qū)間是,單調遞減區(qū)間是;(2),證明見解析.【解析】
(1)求出,對分類討論,分別求出的解,即可得出結論;(2)由(1)得出有兩解時的范圍,以及關系,將,等價轉化為證明,不妨設,令,則,即證,構造函
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度白酒品牌形象授權與購銷合同2篇
- 二零二五年度代理記賬委托協(xié)議合同書(財務顧問服務)3篇
- 2025年度床品質量檢測與認證服務合同4篇
- 2025年度新能源產業(yè)錄用合同范本4篇
- 2025版出租車合資購買及品牌使用權合同3篇
- 2025年度大廈化妝品柜臺出租及品牌銷售培訓合同4篇
- 2025年水利工程水土保持監(jiān)測與治理合同3篇
- 2025年度高科技產品廣告投放與技術創(chuàng)新合同4篇
- 二零二五版風力發(fā)電項目建設工程擔保服務合同2篇
- 2025版醫(yī)療行業(yè)全面完善管理制度合同3篇
- 安徽省淮南四中2025屆高二上數學期末統(tǒng)考模擬試題含解析
- 保險專題課件教學課件
- 牛津上海版小學英語一年級上冊同步練習試題(全冊)
- 室上性心動過速-醫(yī)學課件
- 建設工程法規(guī)及相關知識試題附答案
- 中小學心理健康教育課程標準
- 四年級上冊脫式計算400題及答案
- 新課標人教版小學數學六年級下冊集體備課教學案全冊表格式
- 人教精通版三年級英語上冊各單元知識點匯總
- 教案:第三章 公共管理職能(《公共管理學》課程)
- 諾和關懷俱樂部對外介紹
評論
0/150
提交評論