2021全國(guó)高考真題數(shù)學(xué)匯編:空間向量與立體幾何章節(jié)綜合_第1頁(yè)
2021全國(guó)高考真題數(shù)學(xué)匯編:空間向量與立體幾何章節(jié)綜合_第2頁(yè)
2021全國(guó)高考真題數(shù)學(xué)匯編:空間向量與立體幾何章節(jié)綜合_第3頁(yè)
2021全國(guó)高考真題數(shù)學(xué)匯編:空間向量與立體幾何章節(jié)綜合_第4頁(yè)
2021全國(guó)高考真題數(shù)學(xué)匯編:空間向量與立體幾何章節(jié)綜合_第5頁(yè)
已閱讀5頁(yè),還剩19頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

24/242021全國(guó)高考真題數(shù)學(xué)匯編空間向量與立體幾何章節(jié)綜合一、單選題1.(2021·全國(guó)·高考真題(理))已如A,B,C是半徑為1的球O的球面上的三個(gè)點(diǎn),且,則三棱錐的體積為()A. B. C. D.2.(2021·全國(guó)·高考真題(理))在正方體中,P為的中點(diǎn),則直線與所成的角為()A. B. C. D.3.(2021·全國(guó)·高考真題)已知圓錐的底面半徑為,其側(cè)面展開(kāi)圖為一個(gè)半圓,則該圓錐的母線長(zhǎng)為()A. B. C. D.4.(2021·全國(guó)·高考真題)正四棱臺(tái)的上?下底面的邊長(zhǎng)分別為2,4,側(cè)棱長(zhǎng)為2,則其體積為()A. B. C. D.5.(2021·全國(guó)·高考真題)北斗三號(hào)全球衛(wèi)星導(dǎo)航系統(tǒng)是我國(guó)航天事業(yè)的重要成果.在衛(wèi)星導(dǎo)航系統(tǒng)中,地球靜止同步衛(wèi)星的軌道位于地球赤道所在平面,軌道高度為(軌道高度是指衛(wèi)星到地球表面的距離).將地球看作是一個(gè)球心為O,半徑r為的球,其上點(diǎn)A的緯度是指與赤道平面所成角的度數(shù).地球表面上能直接觀測(cè)到一顆地球靜止同步軌道衛(wèi)星點(diǎn)的緯度最大值為,記衛(wèi)星信號(hào)覆蓋地球表面的表面積為(單位:),則S占地球表面積的百分比約為()A.26% B.34% C.42% D.50%6.(2021·全國(guó)·高考真題(文))在一個(gè)正方體中,過(guò)頂點(diǎn)A的三條棱的中點(diǎn)分別為E,F(xiàn),G.該正方體截去三棱錐后,所得多面體的三視圖中,正視圖如圖所示,則相應(yīng)的側(cè)視圖是()A. B. C. D.二、多選題7.(2021·全國(guó)·高考真題)在正三棱柱中,,點(diǎn)滿(mǎn)足,其中,,則()A.當(dāng)時(shí),的周長(zhǎng)為定值B.當(dāng)時(shí),三棱錐的體積為定值C.當(dāng)時(shí),有且僅有一個(gè)點(diǎn),使得D.當(dāng)時(shí),有且僅有一個(gè)點(diǎn),使得平面8.(2021·全國(guó)·高考真題)如圖,在正方體中,O為底面的中心,P為所在棱的中點(diǎn),M,N為正方體的頂點(diǎn).則滿(mǎn)足的是()A. B.C. D.三、填空題9.(2021·全國(guó)·高考真題(理))以圖①為正視圖,在圖②③④⑤中選兩個(gè)分別作為側(cè)視圖和俯視圖,組成某個(gè)三棱錐的三視圖,則所選側(cè)視圖和俯視圖的編號(hào)依次為_(kāi)________(寫(xiě)出符合要求的一組答案即可).10.(2021·全國(guó)·高考真題(文))已知一個(gè)圓錐的底面半徑為6,其體積為則該圓錐的側(cè)面積為_(kāi)_______.四、解答題11.(2021·全國(guó)·高考真題)如圖,在三棱錐中,平面平面,,為的中點(diǎn).(1)證明:;(2)若是邊長(zhǎng)為1的等邊三角形,點(diǎn)在棱上,,且二面角的大小為,求三棱錐的體積.12.(2021·全國(guó)·高考真題(理))已知直三棱柱中,側(cè)面為正方形,,E,F(xiàn)分別為和的中點(diǎn),D為棱上的點(diǎn).(1)證明:;(2)當(dāng)為何值時(shí),面與面所成的二面角的正弦值最小?13.(2021·全國(guó)·高考真題(理))如圖,四棱錐P?ABCD的底面是矩形,PD⊥底面ABCD,PD=DC=1,M為BC的中點(diǎn),且PB⊥AM.(1)求BC;(2)求二面角A?PM?B的正弦值.14.(2021·全國(guó)·高考真題(文))已知直三棱柱中,側(cè)面為正方形,,E,F(xiàn)分別為和的中點(diǎn),.(1)求三棱錐的體積;(2)已知D為棱上的點(diǎn),證明:.15.(2021·全國(guó)·高考真題)在四棱錐中,底面是正方形,若.(1)證明:平面平面;(2)求二面角的平面角的余弦值.16.(2021·全國(guó)·高考真題(文))如圖,四棱錐的底面是矩形,底面,M為的中點(diǎn),且.(1)證明:平面平面;(2)若,求四棱錐的體積.

參考答案1.A【分析】由題可得為等腰直角三角形,得出外接圓的半徑,則可求得到平面的距離,進(jìn)而求得體積.【詳解】,為等腰直角三角形,,則外接圓的半徑為,又球的半徑為1,設(shè)到平面的距離為,則,所以.故選:A.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:本題考查球內(nèi)幾何體問(wèn)題,解題的關(guān)鍵是正確利用截面圓半徑、球半徑、球心到截面距離的勾股關(guān)系求解.2.D【分析】平移直線至,將直線與所成的角轉(zhuǎn)化為與所成的角,解三角形即可.【詳解】如圖,連接,因?yàn)椤?,所以或其補(bǔ)角為直線與所成的角,因?yàn)槠矫?,所以,又,,所以平面,所以,設(shè)正方體棱長(zhǎng)為2,則,,所以.故選:D3.B【分析】設(shè)圓錐的母線長(zhǎng)為,根據(jù)圓錐底面圓的周長(zhǎng)等于扇形的弧長(zhǎng)可求得的值,即為所求.【詳解】設(shè)圓錐的母線長(zhǎng)為,由于圓錐底面圓的周長(zhǎng)等于扇形的弧長(zhǎng),則,解得.故選:B.4.D【分析】由四棱臺(tái)的幾何特征算出該幾何體的高及上下底面面積,再由棱臺(tái)的體積公式即可得解.【詳解】作出圖形,連接該正四棱臺(tái)上下底面的中心,如圖,因?yàn)樵撍睦馀_(tái)上下底面邊長(zhǎng)分別為2,4,側(cè)棱長(zhǎng)為2,所以該棱臺(tái)的高,下底面面積,上底面面積,所以該棱臺(tái)的體積.故選:D.5.C【分析】由題意結(jié)合所給的表面積公式和球的表面積公式整理計(jì)算即可求得最終結(jié)果.【詳解】由題意可得,S占地球表面積的百分比約為:.故選:C.6.D【分析】根據(jù)題意及題目所給的正視圖還原出幾何體的直觀圖,結(jié)合直觀圖進(jìn)行判斷.【詳解】由題意及正視圖可得幾何體的直觀圖,如圖所示,所以其側(cè)視圖為故選:D7.BD【分析】對(duì)于A,由于等價(jià)向量關(guān)系,聯(lián)系到一個(gè)三角形內(nèi),進(jìn)而確定點(diǎn)的坐標(biāo);對(duì)于B,將點(diǎn)的運(yùn)動(dòng)軌跡考慮到一個(gè)三角形內(nèi),確定路線,進(jìn)而考慮體積是否為定值;對(duì)于C,考慮借助向量的平移將點(diǎn)軌跡確定,進(jìn)而考慮建立合適的直角坐標(biāo)系來(lái)求解點(diǎn)的個(gè)數(shù);對(duì)于D,考慮借助向量的平移將點(diǎn)軌跡確定,進(jìn)而考慮建立合適的直角坐標(biāo)系來(lái)求解點(diǎn)的個(gè)數(shù).【詳解】易知,點(diǎn)在矩形內(nèi)部(含邊界).對(duì)于A,當(dāng)時(shí),,即此時(shí)線段,周長(zhǎng)不是定值,故A錯(cuò)誤;對(duì)于B,當(dāng)時(shí),,故此時(shí)點(diǎn)軌跡為線段,而,平面,則有到平面的距離為定值,所以其體積為定值,故B正確.對(duì)于C,當(dāng)時(shí),,取,中點(diǎn)分別為,,則,所以點(diǎn)軌跡為線段,不妨建系解決,建立空間直角坐標(biāo)系如圖,,,,則,,,所以或.故均滿(mǎn)足,故C錯(cuò)誤;對(duì)于D,當(dāng)時(shí),,取,中點(diǎn)為.,所以點(diǎn)軌跡為線段.設(shè),因?yàn)?,所以,,所以,此時(shí)與重合,故D正確.故選:BD.【點(diǎn)睛】本題主要考查向量的等價(jià)替換,關(guān)鍵之處在于所求點(diǎn)的坐標(biāo)放在三角形內(nèi).8.BC【分析】根據(jù)線面垂直的判定定理可得BC的正誤,平移直線構(gòu)造所考慮的線線角后可判斷AD的正誤.【詳解】設(shè)正方體的棱長(zhǎng)為,對(duì)于A,如圖(1)所示,連接,則,故(或其補(bǔ)角)為異面直線所成的角,在直角三角形,,,故,故不成立,故A錯(cuò)誤.對(duì)于B,如圖(2)所示,取的中點(diǎn)為,連接,,則,,由正方體可得平面,而平面,故,而,故平面,又平面,,而,所以平面,而平面,故,故B正確.對(duì)于C,如圖(3),連接,則,由B的判斷可得,故,故C正確.對(duì)于D,如圖(4),取的中點(diǎn),的中點(diǎn),連接,則,因?yàn)?,故,故,所以或其補(bǔ)角為異面直線所成的角,因?yàn)檎襟w的棱長(zhǎng)為2,故,,,,故不是直角,故不垂直,故D錯(cuò)誤.故選:BC.9.③④(答案不唯一)【分析】由題意結(jié)合所給的圖形確定一組三視圖的組合即可.【詳解】選擇側(cè)視圖為③,俯視圖為④,如圖所示,長(zhǎng)方體中,,分別為棱的中點(diǎn),則正視圖①,側(cè)視圖③,俯視圖④對(duì)應(yīng)的幾何體為三棱錐.故答案為:③④.【點(diǎn)睛】三視圖問(wèn)題解決的關(guān)鍵之處是由三視圖確定直觀圖的形狀以及直觀圖中線面的位置關(guān)系和數(shù)量關(guān)系.10.【分析】利用體積公式求出圓錐的高,進(jìn)一步求出母線長(zhǎng),最終利用側(cè)面積公式求出答案.【詳解】∵∴∴∴.故答案為:.11.(1)詳見(jiàn)解析(2)【分析】(1)根據(jù)面面垂直性質(zhì)定理得AO⊥平面BCD,即可證得結(jié)果;(2)先作出二面角平面角,再求得高,最后根據(jù)體積公式得結(jié)果.【詳解】(1)因?yàn)锳B=AD,O為BD中點(diǎn),所以AO⊥BD因?yàn)槠矫鍭BD平面BCD,平面ABD⊥平面BCD,平面ABD,因此AO⊥平面BCD,因?yàn)槠矫鍮CD,所以AO⊥CD(2)作EF⊥BD于F,作FM⊥BC于M,連EM因?yàn)锳O⊥平面BCD,所以AO⊥BD,AO⊥CD所以EF⊥BD,EF⊥CD,,因此EF⊥平面BCD,即EF⊥BC因?yàn)镕M⊥BC,,所以BC⊥平面EFM,即BC⊥ME則為二面角E-BC-D的平面角,因?yàn)?為正三角形,所以為直角三角形因?yàn)?從而EF=FM=平面BCD,所以【點(diǎn)睛】二面角的求法:一是定義法,二是三垂線定理法,三是垂面法,四是投影法.12.(1)證明見(jiàn)解析;(2)【分析】(1)法一:作出輔助線,證明線面垂直進(jìn)而證明出異面直線垂直;法二:通過(guò)已知條件,確定三條互相垂直的直線,建立合適的空間直角坐標(biāo)系,借助空間向量證明線線垂直;法三:利用空間向量加減法則及數(shù)量積的定義運(yùn)算進(jìn)行證明.(2)法一:建立空間直角坐標(biāo)系,利用空間向量求出二面角的平面角的余弦值最大,進(jìn)而可以確定出答案;法二:利用空間線面關(guān)系找到,面與面所成的二面角,并求出其正弦值的最小值;法三:利用面在面上的投影三角形的面積與面積之比即為面與面所成的二面角的余弦值,求出余弦值的最小值,進(jìn)而求出二面角的正弦值最?。驹斀狻縖法一]因?yàn)?,所以.又因?yàn)?,,所以平面.又因?yàn)?,?gòu)造正方體,如圖所示,過(guò)E作的平行線分別與交于其中點(diǎn),連接,因?yàn)镋,F(xiàn)分別為和的中點(diǎn),所以是BC的中點(diǎn),易證,則.又因?yàn)?,所以.又因?yàn)?,所以平面.又因?yàn)槠矫?,所以.[法二]【最優(yōu)解】因?yàn)槿庵侵比庵?,所以底面,所以因?yàn)?,,所以,又,所以平面.所以?xún)蓛纱怪保詾樽鴺?biāo)原點(diǎn),分別以所在直線為軸建立空間直角坐標(biāo)系,如圖.所以,.由題設(shè)().因?yàn)椋?,所以.[法三]因?yàn)?,,所以,故,,所以,所以.?)[法一]【最優(yōu)解】設(shè)平面的法向量為,因?yàn)?,所以,即.令,則因?yàn)槠矫娴姆ㄏ蛄繛?,設(shè)平面與平面的二面角的平面角為,則.當(dāng)時(shí),取最小值為,此時(shí)取最大值為.所以,此時(shí).[法二]如圖所示,延長(zhǎng)交的延長(zhǎng)線于點(diǎn)S,聯(lián)結(jié)交于點(diǎn)T,則平面平面.作,垂足為H,因?yàn)槠矫?,?lián)結(jié),則為平面與平面所成二面角的平面角.設(shè),過(guò)作交于點(diǎn)G.由得.又,即,所以.又,即,所以.所以.則,所以,當(dāng)時(shí),.[法三]如圖,聯(lián)結(jié),在平面的投影為,記面與面所成的二面角的平面角為,則.設(shè),在中,.在中,,過(guò)D作的平行線交于點(diǎn)Q.在中,.在中,由余弦定理得,,,,,當(dāng),即,面與面所成的二面角的正弦值最小,最小值為.【整體點(diǎn)評(píng)】第一問(wèn),法一為常規(guī)方法,不過(guò)這道題常規(guī)方法較為復(fù)雜,法二建立合適的空間直角坐標(biāo)系,借助空間向量求解是最簡(jiǎn)單,也是最優(yōu)解;法三利用空間向量加減法則及數(shù)量積的定義運(yùn)算進(jìn)行證明不常用,不過(guò)這道題用這種方法過(guò)程也很簡(jiǎn)單,可以開(kāi)拓學(xué)生的思維.第二問(wèn):法一建立空間直角坐標(biāo)系,利用空間向量求出二面角的平面角是最常規(guī)的方法,也是最優(yōu)方法;法二:利用空間線面關(guān)系找到,面與面所成的二面角,并求出其正弦值的最小值,不是很容易找到;法三:利用面在面上的投影三角形的面積與面積之比即為面與面所成的二面角的余弦值,求出余弦值的最小值,進(jìn)而求出二面角的正弦值最小,非常好的方法,開(kāi)闊學(xué)生的思維.13.(1)2;(2)70【分析】(1)以點(diǎn)D為坐標(biāo)原點(diǎn),DA、DC、DP所在直線分別為x、y、z軸建立空間直角坐標(biāo)系,設(shè)BC=2a,由已知條件得出PB?AM=0,求出a(2)求出平面PAM、PBM的法向量,利用空間向量法結(jié)合同角三角函數(shù)的基本關(guān)系可求得結(jié)果.【詳解】(1)[方法一]:空間坐標(biāo)系+空間向量法∵PD⊥平面ABCD,四邊形ABCD為矩形,不妨以點(diǎn)D為坐標(biāo)原點(diǎn),DA、DC、DP所在直線分別為x、y、z軸建立如下圖所示的空間直角坐標(biāo)系D?xyz,設(shè)BC=2a,則D0,0,0、P0,0,1、B2a,則PB=2a,1,?1,∵PB⊥AM,則PB?AM=?2a2[方法二]【最優(yōu)解】:幾何法+相似三角形法如圖,聯(lián)結(jié)BD.因?yàn)镻D⊥底面AB?CD,且AM?底面ABCD,所以PD⊥AM.又因?yàn)镻B⊥AM,PB∩PD=P,所以AM⊥平面PBD.又BD?平面PBD,所以AM⊥BD.從而∠ADB+∠DAM=90°.因?yàn)椤螹AB+∠DAM=90°,所以∠MAB=∠ADB.所以△ADB∽△BAM,于是ADAB所以12BC[方法三]:幾何法+三角形面積法如圖,聯(lián)結(jié)BD交AM于點(diǎn)N.由[方法二]知AM⊥DB.在矩形ABCD中,有△DAN∽△BMN,所以ANMN=DA令BC=2t(t>0),因?yàn)镸為BC的中點(diǎn),則BM=t,DB=4t2由S△DAB=12DA?AB=12(2)[方法一]【最優(yōu)解】:空間坐標(biāo)系+空間向量法設(shè)平面PAM的法向量為m=x1,y由m?AM=?22設(shè)平面PBM的法向量為n=x2,y由n?BM=?22cos<所以,sin<因此,二面角A?PM?B的正弦值為7014[方法二]:構(gòu)造長(zhǎng)方體法+等體積法如圖,構(gòu)造長(zhǎng)方體ABCD?A1B1C1D1,聯(lián)結(jié)AB1,A1B,交點(diǎn)記為H,由于聯(lián)結(jié)AG,由三垂線定理可知AG⊥D故∠AGH為二面角A?PM?B的平面角.易證四邊形A1BCD1是邊長(zhǎng)為2的正方形,聯(lián)結(jié)S△由等積法解得HG=3在Rt△AHG中,AH=22,HG=所以,sin∠AGH=AHAG=70【整體點(diǎn)評(píng)】(1)方法一利用空坐標(biāo)系和空間向量的坐標(biāo)運(yùn)算求解;方法二利用線面垂直的判定定理,結(jié)合三角形相似進(jìn)行計(jì)算求解,運(yùn)算簡(jiǎn)潔,為最優(yōu)解;方法三主要是在幾何證明的基礎(chǔ)上,利用三角形等面積方法求得.(2)方法一,利用空間坐標(biāo)系和空間向量方法計(jì)算求解二面角問(wèn)題是常用的方法,思路清晰,運(yùn)算簡(jiǎn)潔,為最優(yōu)解;方法二采用構(gòu)造長(zhǎng)方體方法+等體積轉(zhuǎn)化法,技巧性較強(qiáng),需注意進(jìn)行嚴(yán)格的論證.14.(1);(2)證明見(jiàn)解析.【分析】(1)首先求得AC的長(zhǎng)度,然后利用體積公式可得三棱錐的體積;(2)將所給的幾何體進(jìn)行補(bǔ)形,從而把線線垂直的問(wèn)題轉(zhuǎn)化為證明線面垂直,然后再由線面垂直可得題中的結(jié)論.【詳解】(1)如圖所示,連結(jié)AF,由題意可得:,由于AB⊥BB1,BC⊥AB,,故平面,而平面,故,從而有,從而,則,為等腰直角三角形,,.(2)由(1)的結(jié)論可將幾何體補(bǔ)形為一個(gè)棱長(zhǎng)為2的正方體,如圖所示,取棱的中點(diǎn),連結(jié),正方形中,為中點(diǎn),則,又,故平面,而平面,從而.【點(diǎn)睛】求三棱錐的體積時(shí)要注意三棱錐的每個(gè)面都可以作為底面,例如三棱錐的三條側(cè)棱兩兩垂直,我們就選擇其中的一個(gè)側(cè)面作為底面,另一條側(cè)棱作為高來(lái)求體積.對(duì)于空間中垂直關(guān)系(線線、線面、面面)的證明經(jīng)常進(jìn)行等價(jià)轉(zhuǎn)化.15.(1)證明見(jiàn)解析;(2).【分析】(1)取的中點(diǎn)為,連接,可證平面,從而得到面面.(2)在平面內(nèi),過(guò)作,交于,則,建如圖所示的空間坐標(biāo)系,求出平面、平面的法向量后可求二面角的余弦值.【詳解】(1)取的中點(diǎn)為,連接.因?yàn)?/p>

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論