高二數(shù)學(xué)書下冊復(fù)習(xí)必記知識點(diǎn)_第1頁
高二數(shù)學(xué)書下冊復(fù)習(xí)必記知識點(diǎn)_第2頁
高二數(shù)學(xué)書下冊復(fù)習(xí)必記知識點(diǎn)_第3頁
高二數(shù)學(xué)書下冊復(fù)習(xí)必記知識點(diǎn)_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

高二數(shù)學(xué)書下冊復(fù)習(xí)必記知識點(diǎn)愛迪生曾經(jīng)說過:“天才等于百分之九十九的汗水加百分之一的靈感?!彼麄冎钥梢苑Q之為天才,是應(yīng)為他們有正確的學(xué)習(xí)方法。以下是小編給大家整理的高二數(shù)學(xué)書下冊復(fù)習(xí)必記知識點(diǎn),希望能幫助到你!高二數(shù)學(xué)書下冊復(fù)習(xí)必記知識點(diǎn)11、圓的定義:平面內(nèi)到一定點(diǎn)的距離等于定長的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長為圓的半徑.2、圓的方程(1)標(biāo)準(zhǔn)方程,圓心,半徑為r;(2)一般方程當(dāng)時,方程表示圓,此時圓心為,半徑為當(dāng)時,表示一個點(diǎn);當(dāng)時,方程不表示任何圖形.(3)求圓方程的方法:一般都采用待定系數(shù)法:先設(shè)后求.確定一個圓需要三個獨(dú)立條件,若利用圓的標(biāo)準(zhǔn)方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點(diǎn),以此來確定圓心的位置.3、高中數(shù)學(xué)必修二知識點(diǎn)總結(jié):直線與圓的位置關(guān)系:直線與圓的位置關(guān)系有相離,相切,相交三種情況:(2)過圓外一點(diǎn)的切線:k不存在,驗(yàn)證是否成立k存在,設(shè)點(diǎn)斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】(3)過圓上一點(diǎn)的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點(diǎn)為(x0,y0),則過此點(diǎn)的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r24、圓與圓的位置關(guān)系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.設(shè)圓,兩圓的位置關(guān)系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.當(dāng)時兩圓外離,此時有公切線四條;當(dāng)時兩圓外切,連心線過切點(diǎn),有外公切線兩條,內(nèi)公切線一條;當(dāng)時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;當(dāng)時,兩圓內(nèi)切,連心線經(jīng)過切點(diǎn),只有一條公切線;當(dāng)時,兩圓內(nèi)含;當(dāng)時,為同心圓.注意:已知圓上兩點(diǎn),圓心必在中垂線上;已知兩圓相切,兩圓心與切點(diǎn)共線5、空間點(diǎn)、直線、平面的位置關(guān)系公理1:如果一條直線的兩點(diǎn)在一個平面內(nèi),那么這條直線是所有的點(diǎn)都在這個平面內(nèi).應(yīng)用:判斷直線是否在平面內(nèi)用符號語言表示公理1:公理2:如果兩個不重合的平面有一個公共點(diǎn),那么它們有且只有一條過該點(diǎn)的公共直線符號語言:它是判定兩個平面相交的方法.它說明兩個平面的交線與兩個平面公共點(diǎn)之間的關(guān)系:交線公共點(diǎn).它可以判斷點(diǎn)在直線上,即證若干個點(diǎn)共線的重要依據(jù).公理3:經(jīng)過不在同一條直線上的三點(diǎn),有且只有一個平面.推論:一直線和直線外一點(diǎn)確定一平面;兩相交直線確定一平面;兩平行直線確定一平面.公理3及其推論作用:它是空間內(nèi)確定平面的依據(jù)它是證明平面重合的依據(jù)公理4:平行于同一條直線的兩條直線互相平行高二數(shù)學(xué)書下冊復(fù)習(xí)必記知識點(diǎn)2直線與圓:1、直線的傾斜角的范圍是在平面直角坐標(biāo)系中,對于一條與軸相交的直線,如果把軸繞著交點(diǎn)按逆時針方向轉(zhuǎn)到和直線重合時所轉(zhuǎn)的最小正角記為,就叫做直線的傾斜角。當(dāng)直線與軸重合或平行時,規(guī)定傾斜角為0;2、斜率:已知直線的傾斜角為α,且α≠90°,則斜率k=tanα.過兩點(diǎn)(x1,y1),(x2,y2)的直線的斜率k=(y2-y1)/(x2-x1),另外切線的斜率用求導(dǎo)的方法。3、直線方程:⑴點(diǎn)斜式:直線過點(diǎn)斜率為,則直線方程為,⑵斜截式:直線在軸上的截距為和斜率,則直線方程為4、直線與直線的位置關(guān)系:(1)平行A1/A2=B1/B2注意檢驗(yàn)(2)垂直A1A2+B1B2=05、點(diǎn)到直線的距離公式;兩條平行線與的距離是6、圓的標(biāo)準(zhǔn)方程:.⑵圓的一般方程:注意能將標(biāo)準(zhǔn)方程化為一般方程7、過圓外一點(diǎn)作圓的切線,一定有兩條,如果只求出了一條,那么另外一條就是與軸垂直的直線.8、直線與圓的位置關(guān)系,通常轉(zhuǎn)化為圓心距與半徑的關(guān)系,或者利用垂徑定理,構(gòu)造直角三角形解決弦長問題.①相離②相切③相交9、解決直線與圓的關(guān)系問題時,要充分發(fā)揮圓的平面幾何性質(zhì)的作用(如半徑、半弦長、弦心距構(gòu)成直角三角形)直線與圓相交所得弦長高二數(shù)學(xué)書下冊復(fù)習(xí)必記知識點(diǎn)3極值的定義:(1)極大值:一般地,設(shè)函數(shù)f(x)在點(diǎn)x0附近有定義,如果對x0附近的所有的點(diǎn),都有f(x)(2)極小值:一般地,設(shè)函數(shù)f(x)在x0附近有定義,如果對x0附近的所有的點(diǎn),都有f(x)>f(x0),就說f(x0)是函數(shù)f(x)的一個極小值,記作y極小值=f(x0),x0是極小值點(diǎn)。極值的性質(zhì):(1)極值是一個局部概念,由定義知道,極值只是某個點(diǎn)的函數(shù)值與它附近點(diǎn)的函數(shù)值比較是或最小,并不意味著它在函數(shù)的整個的定義域內(nèi)或最小;(2)函數(shù)的極值不是的,即一個函數(shù)在某區(qū)間上或定義域內(nèi)極大值或極小值(3)極大值與極小值之間無確定的大小關(guān)系,即一個函數(shù)的極大值未必大于極小值;(4)函數(shù)的極值點(diǎn)一定出現(xiàn)在區(qū)間的內(nèi)部,區(qū)間的端點(diǎn)不能成為極值點(diǎn),而使函數(shù)取得值、最小值的點(diǎn)可能在區(qū)間的內(nèi)部,也可能在區(qū)間的端點(diǎn)。求函數(shù)f(x)的極值的步驟:(1)確定函數(shù)的定義區(qū)間,求導(dǎo)數(shù)f′(x);(3)用函數(shù)的導(dǎo)數(shù)為0的點(diǎn),順次將函數(shù)的定義區(qū)間分成若干小開區(qū)間,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論