版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年高考數(shù)學(xué)模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知三棱錐P﹣ABC的頂點(diǎn)都在球O的球面上,PA,PB,AB=4,CA=CB,面PAB⊥面ABC,則球O的表面積為()A. B. C. D.2.將一塊邊長(zhǎng)為的正方形薄鐵皮按如圖(1)所示的陰影部分裁下,然后用余下的四個(gè)全等的等腰三角形加工成一個(gè)正四棱錐形容器,將該容器按如圖(2)放置,若其正視圖為等腰直角三角形,且該容器的容積為,則的值為()A.6 B.8 C.10 D.123.已知集合,,則A. B.C. D.4.正方形的邊長(zhǎng)為,是正方形內(nèi)部(不包括正方形的邊)一點(diǎn),且,則的最小值為()A. B. C. D.5.如圖是國(guó)家統(tǒng)計(jì)局公布的年入境游客(單位:萬(wàn)人次)的變化情況,則下列結(jié)論錯(cuò)誤的是()A.2014年我國(guó)入境游客萬(wàn)人次最少B.后4年我國(guó)入境游客萬(wàn)人次呈逐漸增加趨勢(shì)C.這6年我國(guó)入境游客萬(wàn)人次的中位數(shù)大于13340萬(wàn)人次D.前3年我國(guó)入境游客萬(wàn)人次數(shù)據(jù)的方差小于后3年我國(guó)入境游客萬(wàn)人次數(shù)據(jù)的方差6.天干地支,簡(jiǎn)稱為干支,源自中國(guó)遠(yuǎn)古時(shí)代對(duì)天象的觀測(cè).“甲、乙、丙、丁、戊、己、庚、辛、壬、癸”稱為十天干,“子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥”稱為十二地支.干支紀(jì)年法是天干和地支依次按固定的順序相互配合組成,以此往復(fù),60年為一個(gè)輪回.現(xiàn)從農(nóng)歷2000年至2019年共20個(gè)年份中任取2個(gè)年份,則這2個(gè)年份的天干或地支相同的概率為()A. B. C. D.7.如圖,正三棱柱各條棱的長(zhǎng)度均相等,為的中點(diǎn),分別是線段和線段的動(dòng)點(diǎn)(含端點(diǎn)),且滿足,當(dāng)運(yùn)動(dòng)時(shí),下列結(jié)論中不正確的是A.在內(nèi)總存在與平面平行的線段B.平面平面C.三棱錐的體積為定值D.可能為直角三角形8.已知下列命題:①“”的否定是“”;②已知為兩個(gè)命題,若“”為假命題,則“”為真命題;③“”是“”的充分不必要條件;④“若,則且”的逆否命題為真命題.其中真命題的序號(hào)為()A.③④ B.①② C.①③ D.②④9.若實(shí)數(shù)、滿足,則的最小值是()A. B. C. D.10.若直線與圓相交所得弦長(zhǎng)為,則()A.1 B.2 C. D.311.下列與的終邊相同的角的表達(dá)式中正確的是()A.2kπ+45°(k∈Z) B.k·360°+π(k∈Z)C.k·360°-315°(k∈Z) D.kπ+(k∈Z)12.若,滿足約束條件,則的取值范圍為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.能說(shuō)明“在數(shù)列中,若對(duì)于任意的,,則為遞增數(shù)列”為假命題的一個(gè)等差數(shù)列是______.(寫出數(shù)列的通項(xiàng)公式)14.在平面直角坐標(biāo)系中,已知點(diǎn),,若圓上有且僅有一對(duì)點(diǎn),使得的面積是的面積的2倍,則的值為_(kāi)______.15.已知復(fù)數(shù),其中是虛數(shù)單位.若的實(shí)部與虛部相等,則實(shí)數(shù)的值為_(kāi)_________.16.某地區(qū)教育主管部門為了對(duì)該地區(qū)模擬考試成績(jī)進(jìn)行分析,隨機(jī)抽取了150分到450分之間的1000名學(xué)生的成績(jī),并根據(jù)這1000名學(xué)生的成績(jī)畫出樣本的頻率分布直方圖(如圖),則成績(jī)?cè)赱250,400)內(nèi)的學(xué)生共有____人.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若c=2a,bsinB﹣asinA=asinC.(Ⅰ)求sinB的值;(Ⅱ)求sin(2B+)的值.18.(12分)設(shè)首項(xiàng)為1的正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列的前n項(xiàng)和為Tn,且,其中p為常數(shù).(1)求p的值;(2)求證:數(shù)列{an}為等比數(shù)列;(3)證明:“數(shù)列an,2xan+1,2yan+2成等差數(shù)列,其中x、y均為整數(shù)”的充要條件是“x=1,且y=2”.19.(12分)已知函數(shù)(),是的導(dǎo)數(shù).(1)當(dāng)時(shí),令,為的導(dǎo)數(shù).證明:在區(qū)間存在唯一的極小值點(diǎn);(2)已知函數(shù)在上單調(diào)遞減,求的取值范圍.20.(12分)如圖,在矩形中,,,點(diǎn)分別是線段的中點(diǎn),分別將沿折起,沿折起,使得重合于點(diǎn),連結(jié).(Ⅰ)求證:平面平面;(Ⅱ)求直線與平面所成角的正弦值.21.(12分)已知函數(shù),.(1)討論的單調(diào)性;(2)若存在兩個(gè)極值點(diǎn),,證明:.22.(10分)某校為了解校園安全教育系列活動(dòng)的成效,對(duì)全校學(xué)生進(jìn)行了一次安全意識(shí)測(cè)試,根據(jù)測(cè)試成績(jī)?cè)u(píng)定“合格”“不合格”兩個(gè)等級(jí),同時(shí)對(duì)相應(yīng)等級(jí)進(jìn)行量化:“合格”記5分,“不合格”記0分.現(xiàn)隨機(jī)抽取部分學(xué)生的答卷,統(tǒng)計(jì)結(jié)果及對(duì)應(yīng)的頻率分布直方圖如下:等級(jí)不合格合格得分頻數(shù)624(1)由該題中頻率分布直方圖求測(cè)試成績(jī)的平均數(shù)和中位數(shù);(2)其他條件不變,在評(píng)定等級(jí)為“合格”的學(xué)生中依次抽取2人進(jìn)行座談,每次抽取1人,求在第1次抽取的測(cè)試得分低于80分的前提下,第2次抽取的測(cè)試得分仍低于80分的概率;(3)用分層抽樣的方法,從評(píng)定等級(jí)為“合格”和“不合格”的學(xué)生中抽取10人進(jìn)行座談.現(xiàn)再?gòu)倪@10人中任選4人,記所選4人的量化總分為,求的數(shù)學(xué)期望.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
由題意畫出圖形,找出△PAB外接圓的圓心及三棱錐P﹣BCD的外接球心O,通過(guò)求解三角形求出三棱錐P﹣BCD的外接球的半徑,則答案可求.【詳解】如圖;設(shè)AB的中點(diǎn)為D;∵PA,PB,AB=4,∴△PAB為直角三角形,且斜邊為AB,故其外接圓半徑為:rAB=AD=2;設(shè)外接球球心為O;∵CA=CB,面PAB⊥面ABC,∴CD⊥AB可得CD⊥面PAB;且DC.∴O在CD上;故有:AO2=OD2+AD2?R2=(R)2+r2?R;∴球O的表面積為:4πR2=4π.故選:D.【點(diǎn)睛】本題考查多面體外接球表面積的求法,考查數(shù)形結(jié)合的解題思想方法,考查思維能力與計(jì)算能力,屬于中檔題.2、D【解析】
推導(dǎo)出,且,,,設(shè)中點(diǎn)為,則平面,由此能表示出該容器的體積,從而求出參數(shù)的值.【詳解】解:如圖(4),為該四棱錐的正視圖,由圖(3)可知,,且,由為等腰直角三角形可知,,設(shè)中點(diǎn)為,則平面,∴,∴,解得.故選:D【點(diǎn)睛】本題考查三視圖和錐體的體積計(jì)算公式的應(yīng)用,屬于中檔題.3、D【解析】
因?yàn)?,所以,,故選D.4、C【解析】
分別以直線為軸,直線為軸建立平面直角坐標(biāo)系,設(shè),根據(jù),可求,而,化簡(jiǎn)求解.【詳解】解:建立以為原點(diǎn),以直線為軸,直線為軸的平面直角坐標(biāo)系.設(shè),,,則,,由,即,得.所以=,所以當(dāng)時(shí),的最小值為.故選:C.【點(diǎn)睛】本題考查向量的數(shù)量積的坐標(biāo)表示,屬于基礎(chǔ)題.5、D【解析】
ABD可通過(guò)統(tǒng)計(jì)圖直接分析得出結(jié)論,C可通過(guò)計(jì)算中位數(shù)判斷選項(xiàng)是否正確.【詳解】A.由統(tǒng)計(jì)圖可知:2014年入境游客萬(wàn)人次最少,故正確;B.由統(tǒng)計(jì)圖可知:后4年我國(guó)入境游客萬(wàn)人次呈逐漸增加趨勢(shì),故正確;C.入境游客萬(wàn)人次的中位數(shù)應(yīng)為與的平均數(shù),大于萬(wàn)次,故正確;D.由統(tǒng)計(jì)圖可知:前年的入境游客萬(wàn)人次相比于后年的波動(dòng)更大,所以對(duì)應(yīng)的方差更大,故錯(cuò)誤.故選:D.【點(diǎn)睛】本題考查統(tǒng)計(jì)圖表信息的讀取以及對(duì)中位數(shù)和方差的理解,難度較易.處理問(wèn)題的關(guān)鍵是能通過(guò)所給統(tǒng)計(jì)圖,分析出對(duì)應(yīng)的信息,對(duì)學(xué)生分析問(wèn)題的能力有一定要求.6、B【解析】
利用古典概型概率計(jì)算方法分析出符合題意的基本事件個(gè)數(shù),結(jié)合組合數(shù)的計(jì)算即可出求得概率.【詳解】20個(gè)年份中天干相同的有10組(每組2個(gè)),地支相同的年份有8組(每組2個(gè)),從這20個(gè)年份中任取2個(gè)年份,則這2個(gè)年份的天干或地支相同的概率.故選:B.【點(diǎn)睛】本小題主要考查古典概型的計(jì)算,考查組合數(shù)的計(jì)算,考查學(xué)生分析問(wèn)題的能力,難度較易.7、D【解析】
A項(xiàng)用平行于平面ABC的平面與平面MDN相交,則交線與平面ABC平行;B項(xiàng)利用線面垂直的判定定理;C項(xiàng)三棱錐與三棱錐體積相等,三棱錐的底面積是定值,高也是定值,則體積是定值;D項(xiàng)用反證法說(shuō)明三角形DMN不可能是直角三角形.【詳解】A項(xiàng),用平行于平面ABC的平面截平面MND,則交線平行于平面ABC,故正確;B項(xiàng),如圖:當(dāng)M、N分別在BB1、CC1上運(yùn)動(dòng)時(shí),若滿足BM=CN,則線段MN必過(guò)正方形BCC1B1的中心O,由DO垂直于平面BCC1B1可得平面平面,故正確;C項(xiàng),當(dāng)M、N分別在BB1、CC1上運(yùn)動(dòng)時(shí),△A1DM的面積不變,N到平面A1DM的距離不變,所以棱錐N-A1DM的體積不變,即三棱錐A1-DMN的體積為定值,故正確;D項(xiàng),若△DMN為直角三角形,則必是以∠MDN為直角的直角三角形,但MN的最大值為BC1,而此時(shí)DM,DN的長(zhǎng)大于BB1,所以△DMN不可能為直角三角形,故錯(cuò)誤.故選D【點(diǎn)睛】本題考查了命題真假判斷、棱柱的結(jié)構(gòu)特征、空間想象力和思維能力,意在考查對(duì)線面、面面平行、垂直的判定和性質(zhì)的應(yīng)用,是中檔題.8、B【解析】
由命題的否定,復(fù)合命題的真假,充分必要條件,四種命題的關(guān)系對(duì)每個(gè)命題進(jìn)行判斷.【詳解】“”的否定是“”,正確;已知為兩個(gè)命題,若“”為假命題,則“”為真命題,正確;“”是“”的必要不充分條件,錯(cuò)誤;“若,則且”是假命題,則它的逆否命題為假命題,錯(cuò)誤.故選:B.【點(diǎn)睛】本題考查命題真假判斷,掌握四種命題的關(guān)系,復(fù)合命題的真假判斷,充分必要條件等概念是解題基礎(chǔ).9、D【解析】
根據(jù)約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,求出最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案【詳解】作出不等式組所表示的可行域如下圖所示:聯(lián)立,得,可得點(diǎn),由得,平移直線,當(dāng)該直線經(jīng)過(guò)可行域的頂點(diǎn)時(shí),該直線在軸上的截距最小,此時(shí)取最小值,即.故選:D.【點(diǎn)睛】本題考查簡(jiǎn)單的線性規(guī)劃,考查數(shù)形結(jié)合的解題思想方法,是基礎(chǔ)題.10、A【解析】
將圓的方程化簡(jiǎn)成標(biāo)準(zhǔn)方程,再根據(jù)垂徑定理求解即可.【詳解】圓的標(biāo)準(zhǔn)方程,圓心坐標(biāo)為,半徑為,因?yàn)橹本€與圓相交所得弦長(zhǎng)為,所以直線過(guò)圓心,得,即.故選:A【點(diǎn)睛】本題考查了根據(jù)垂徑定理求解直線中參數(shù)的方法,屬于基礎(chǔ)題.11、C【解析】
利用終邊相同的角的公式判斷即得正確答案.【詳解】與的終邊相同的角可以寫成2kπ+(k∈Z),但是角度制與弧度制不能混用,所以只有答案C正確.故答案為C【點(diǎn)睛】(1)本題主要考查終邊相同的角的公式,意在考查學(xué)生對(duì)該知識(shí)的掌握水平和分析推理能力.(2)與終邊相同的角=+其中.12、B【解析】
根據(jù)約束條件作出可行域,找到使直線的截距取最值得點(diǎn),相應(yīng)坐標(biāo)代入即可求得取值范圍.【詳解】畫出可行域,如圖所示:由圖可知,當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí),取得最小值-5;經(jīng)過(guò)點(diǎn)時(shí),取得最大值5,故.故選:B【點(diǎn)睛】本題考查根據(jù)線性規(guī)劃求范圍,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、答案不唯一,如【解析】
根據(jù)等差數(shù)列的性質(zhì)可得到滿足條件的數(shù)列.【詳解】由題意知,不妨設(shè),則,很明顯為遞減數(shù)列,說(shuō)明原命題是假命題.所以,答案不唯一,符合條件即可.【點(diǎn)睛】本題考查對(duì)等差數(shù)列的概念和性質(zhì)的理解,關(guān)鍵是假設(shè)出一個(gè)遞減的數(shù)列,還需檢驗(yàn)是否滿足命題中的條件,屬基礎(chǔ)題.14、【解析】
寫出所在直線方程,求出圓心到直線的距離,結(jié)合題意可得關(guān)于的等式,求解得答案.【詳解】解:直線的方程為,即.圓的圓心到直線的距離,由的面積是的面積的2倍的點(diǎn),有且僅有一對(duì),可得點(diǎn)到的距離是點(diǎn)到直線的距離的2倍,可得過(guò)圓的圓心,如圖:由,解得.故答案為:.【點(diǎn)睛】本題考查直線和圓的位置關(guān)系以及點(diǎn)到直線的距離公式應(yīng)用,考查數(shù)形結(jié)合的解題思想方法,屬于中檔題.15、【解析】
直接由復(fù)數(shù)代數(shù)形式的乘法運(yùn)算化簡(jiǎn),結(jié)合已知條件即可求出實(shí)數(shù)的值.【詳解】解:的實(shí)部與虛部相等,所以,計(jì)算得出.故答案為:【點(diǎn)睛】本題考查復(fù)數(shù)的乘法運(yùn)算和復(fù)數(shù)的概念,屬于基礎(chǔ)題.16、750【解析】因?yàn)?.001+0.001+0.004+a+0.005+0.003×50=1,得a=0.006所以1000×0.004+0.006+0.005三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)根據(jù)條件由正弦定理得,又c=2a,所以,由余弦定理算出,進(jìn)而算出;(Ⅱ)由二倍角公式算出,代入兩角和的正弦公式計(jì)算即可.【詳解】(Ⅰ)bsinB﹣asinA=asinC,所以由正弦定理得,又c=2a,所以,由余弦定理得:,又,所以;(Ⅱ),.【點(diǎn)睛】本題主要考查了正余弦定理的應(yīng)用,運(yùn)用二倍角公式和兩角和的正弦公式求值,考查了學(xué)生的運(yùn)算求解能力.18、(1)p=2;(2)見(jiàn)解析(3)見(jiàn)解析【解析】
(1)取n=1時(shí),由得p=0或2,計(jì)算排除p=0的情況得到答案.(2),則,相減得到3an+1=4﹣Sn+1﹣Sn,再化簡(jiǎn)得到,得到證明.(3)分別證明充分性和必要性,假設(shè)an,2xan+1,2yan+2成等差數(shù)列,其中x、y均為整數(shù),計(jì)算化簡(jiǎn)得2x﹣2y﹣2=1,設(shè)k=x﹣(y﹣2),計(jì)算得到k=1,得到答案.【詳解】(1)n=1時(shí),由得p=0或2,若p=0時(shí),,當(dāng)n=2時(shí),,解得a2=0或,而an>0,所以p=0不符合題意,故p=2;(2)當(dāng)p=2時(shí),①,則②,②﹣①并化簡(jiǎn)得3an+1=4﹣Sn+1﹣Sn③,則3an+2=4﹣Sn+2﹣Sn+1④,④﹣③得(n∈N*),又因?yàn)椋詳?shù)列{an}是等比數(shù)列,且;(3)充分性:若x=1,y=2,由知an,2xan+1,2yan+2依次為,,,滿足,即an,2xan+1,2yan+2成等差數(shù)列;必要性:假設(shè)an,2xan+1,2yan+2成等差數(shù)列,其中x、y均為整數(shù),又,所以,化簡(jiǎn)得2x﹣2y﹣2=1,顯然x>y﹣2,設(shè)k=x﹣(y﹣2),因?yàn)閤、y均為整數(shù),所以當(dāng)k≥2時(shí),2x﹣2y﹣2>1或2x﹣2y﹣2<1,故當(dāng)k=1,且當(dāng)x=1,且y﹣2=0時(shí)上式成立,即證.【點(diǎn)睛】本題考查了根據(jù)數(shù)列求參數(shù),證明等比數(shù)列,充要條件,意在考查學(xué)生的綜合應(yīng)用能力.19、(1)見(jiàn)解析;(2)【解析】
(1)設(shè),,注意到在上單增,再利用零點(diǎn)存在性定理即可解決;(2)函數(shù)在上單調(diào)遞減,則在恒成立,即在上恒成立,構(gòu)造函數(shù),求導(dǎo)討論的最值即可.【詳解】(1)由已知,,所以,設(shè),,當(dāng)時(shí),單調(diào)遞增,而,,且在上圖象連續(xù)不斷.所以在上有唯一零點(diǎn),當(dāng)時(shí),;當(dāng)時(shí),;∴在單調(diào)遞減,在單調(diào)遞增,故在區(qū)間上存在唯一的極小值點(diǎn),即在區(qū)間上存在唯一的極小值點(diǎn);(2)設(shè),,,∴在單調(diào)遞增,,即,從而,因?yàn)楹瘮?shù)在上單調(diào)遞減,∴在上恒成立,令,∵,∴,在上單調(diào)遞減,,當(dāng)時(shí),,則在上單調(diào)遞減,,符合題意.當(dāng)時(shí),在上單調(diào)遞減,所以一定存在,當(dāng)時(shí),,在上單調(diào)遞增,與題意不符,舍去.綜上,的取值范圍是【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的極值點(diǎn)、不等式恒成立問(wèn)題,在處理恒成立問(wèn)題時(shí),通常是構(gòu)造函數(shù),轉(zhuǎn)化成函數(shù)的最值來(lái)處理,本題是一道較難的題.20、(Ⅰ)詳見(jiàn)解析;(Ⅱ).【解析】
(Ⅰ)根據(jù),,可得平面,故而平面平面.(Ⅱ)過(guò)作于,則可證平面,故為所求角,在中利用余弦定理計(jì)算,再計(jì)算.【詳解】解:(Ⅰ)因?yàn)椋?,,平面,平面所以平面,又平面,所以平面平面;(Ⅱ)過(guò)作于,則由平面,且平面知,所以平面,從而是直線與平面所成角.因?yàn)?,,,所以,從?【點(diǎn)睛】本題考查了面面垂直的判定,考查直線與平面所成角的計(jì)算,屬于中檔題.21、(1)見(jiàn)解析;(2)見(jiàn)解析【解析】
(1)求得的導(dǎo)函數(shù),對(duì)分成兩種情況,討論的
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- LS/T 1235-2024糧食倉(cāng)房分類分級(jí)
- 2025-2030年中國(guó)高硬脆材料加工行業(yè)開(kāi)拓第二增長(zhǎng)曲線戰(zhàn)略制定與實(shí)施研究報(bào)告
- 2025-2030年中國(guó)全鋼子午胎行業(yè)開(kāi)拓第二增長(zhǎng)曲線戰(zhàn)略制定與實(shí)施研究報(bào)告
- 在2024年歲末年初安全生產(chǎn)工作會(huì)議上的講話
- 2020-2025年中國(guó)物流自動(dòng)化行業(yè)市場(chǎng)前景預(yù)測(cè)及投資方向研究報(bào)告
- 廣東省深圳市鹽田區(qū)2023-2024學(xué)年五年級(jí)上學(xué)期英語(yǔ)期末試卷
- 五年級(jí)數(shù)學(xué)(小數(shù)除法)計(jì)算題專項(xiàng)練習(xí)及答案匯編
- 應(yīng)急移動(dòng)雷達(dá)塔 5米玻璃鋼接閃桿 CMCE電場(chǎng)補(bǔ)償器避雷針
- 快易冷儲(chǔ)罐知識(shí)培訓(xùn)課件
- 2025年人教版英語(yǔ)五年級(jí)下冊(cè)教學(xué)進(jìn)度安排表
- 2024-2025學(xué)年北京房山區(qū)初三(上)期末英語(yǔ)試卷
- 2024年三年級(jí)英語(yǔ)教學(xué)工作總結(jié)(修改)
- 咖啡廳店面轉(zhuǎn)讓協(xié)議書
- 期末(試題)-2024-2025學(xué)年人教PEP版英語(yǔ)六年級(jí)上冊(cè)
- 鮮奶購(gòu)銷合同模板
- 申論公務(wù)員考試試題與參考答案(2024年)
- DB4101T 9.1-2023 反恐怖防范管理規(guī)范 第1部分:通則
- 2024-2030年中國(guó)公安信息化建設(shè)與IT應(yīng)用行業(yè)競(jìng)爭(zhēng)策略及投資模式分析報(bào)告
- 2024年加油站場(chǎng)地出租協(xié)議
- 南寧房地產(chǎn)市場(chǎng)月報(bào)2024年08月
- 2024年金融理財(cái)-擔(dān)保公司考試近5年真題附答案
評(píng)論
0/150
提交評(píng)論