2019年數(shù)學(xué)復(fù)習(xí)課時(shí)分層訓(xùn)練22解三角形應(yīng)用舉例文_第1頁(yè)
2019年數(shù)學(xué)復(fù)習(xí)課時(shí)分層訓(xùn)練22解三角形應(yīng)用舉例文_第2頁(yè)
2019年數(shù)學(xué)復(fù)習(xí)課時(shí)分層訓(xùn)練22解三角形應(yīng)用舉例文_第3頁(yè)
2019年數(shù)學(xué)復(fù)習(xí)課時(shí)分層訓(xùn)練22解三角形應(yīng)用舉例文_第4頁(yè)
2019年數(shù)學(xué)復(fù)習(xí)課時(shí)分層訓(xùn)練22解三角形應(yīng)用舉例文_第5頁(yè)
已閱讀5頁(yè),還剩2頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

學(xué)必求其心得,業(yè)必貴于專(zhuān)精學(xué)必求其心得,業(yè)必貴于專(zhuān)精PAGEPAGE7學(xué)必求其心得,業(yè)必貴于專(zhuān)精課時(shí)分層訓(xùn)練(二十二)解三角形應(yīng)用舉例A組基礎(chǔ)達(dá)標(biāo)(建議用時(shí):30分鐘)一、選擇題1.如圖3-7。9所示,已知兩座燈塔A和B與海洋觀察站C的距離都等于akm,燈塔A在觀察站C的北偏東20°,燈塔B在觀察站C的南偏東40°,則燈塔A與燈塔B的距離為()【導(dǎo)學(xué)號(hào):00090119】圖3。7.9A.a(chǎn)km B.eq\r(3)akmC.eq\r(2)akm D.2akmB[在△ABC中,AC=BC=a,∠ACB=120°,∴AB2=a2+a2-2a2cos120°=3a2,AB=eq\r(3)A.]2.如圖3.7。10,兩座燈塔A和B與海岸觀察站C的距離相等,燈塔A在觀察站南偏西40°,燈塔B在觀察站南偏東60°,則燈塔A在燈塔B的()圖3-7。10A.北偏東10°B.北偏西10°C.南偏東80°D.南偏西80°D[由條件及題圖可知,∠A=∠B=40°,又∠BCD=60°,所以∠CBD=30°,所以∠DBA=10°,因此燈塔A在燈塔B南偏西80°.]3.(2018·重慶模擬)一艘海輪從A處出發(fā),以每小時(shí)40海里的速度沿南偏東40°的方向直線航行,30分鐘后到達(dá)B處,在C處有一座燈塔,海輪在A處觀察燈塔,其方向是南偏東70°,在B處觀察燈塔,其方向是北偏東65°,那么B,C兩點(diǎn)間的距離是()A.10eq\r(2)海里 B.10eq\r(3)海里C.20eq\r(3)海里 D.20eq\r(2)海里A[如圖所示,易知,在△ABC中,AB=20海里,∠CAB=30°,∠ACB=45°,根據(jù)正弦定理得eq\f(BC,sin30°)=eq\f(AB,sin45°),解得BC=10eq\r(2)(海里).]4.(2018·贛州模擬)如圖3。7。11所示,為了測(cè)量A,B處島嶼的距離,小明在D處觀測(cè),A,B分別在D處的北偏西15°、北偏東45°方向,再往正東方向行駛40海里至C處,觀測(cè)B在C處的正北方向,A在C處的北偏西60°方向,則A,B兩處島嶼間的距離為()【導(dǎo)學(xué)號(hào):00090120】圖3.7。11A.20eq\r(6)海里 B.40eq\r(6)海里C.20(1+eq\r(3))海里 D.40海里A[連接AB,由題意可知CD=40,∠ADC=105°,∠BDC=45°,∠BCD=90°,∠ACD=30°,∴∠CAD=45°,∠ADB=60°,在△ACD中,由正弦定理得eq\f(AD,sin30°)=eq\f(40,sin45°),∴AD=20eq\r(2),在Rt△BCD中,∵∠BDC=45°,∠BCD=90°,∴BD=eq\r(2)CD=40eq\r(2)。在△ABD中,由余弦定理得AB=eq\r(800+3200-2×20\r(2)×40\r(2)×cos60°)=20eq\r(6)。故選A.]5.如圖3.7。12,兩座相距60m的建筑物AB,CD的高度分別為20m、50m,BD為水平面,則從建筑物AB的頂端A看建筑物CD的張角為()圖3-7。12A.30° B.45°C.60° D.75°B[依題意可得AD=20eq\r(10)(m),AC=30eq\r(5)(m),又CD=50(m),所以在△ACD中,由余弦定理得cos∠CAD=eq\f(AC2+AD2-CD2,2AC·AD)=eq\f(30\r(5)2+20\r(10)2-502,2×30\r(5)×20\r(10))=eq\f(6000,6000\r(2))=eq\f(\r(2),2),又0°<∠CAD〈180°,所以∠CAD=45°,所以從頂端A看建筑物CD的張角為45°。]二、填空題6.(2018·揚(yáng)州模擬)如圖3。7.13,為測(cè)量山高M(jìn)N,選擇A和另一座山的山頂C為測(cè)量觀測(cè)點(diǎn).從A點(diǎn)測(cè)得∠NAM=60°,∠CAB=45°以及∠MAC=75°;從C點(diǎn)測(cè)得∠MCA=60°;已知山高BC=300米,則山高M(jìn)N=________米.圖3。7。13450[在Rt△ABC中,∵BC=300,∠CAB=45°,∴AC=300eq\r(2),在△AMC中,∠AMC=180°-75°-60°=45°,由正弦定理得:eq\f(AC,sin∠AMC)=eq\f(AM,sin∠ACM),∴AM=eq\f(ACsin∠ACM,sin∠AMC)=eq\f(300\r(2)×\f(\r(3),2),\f(\r(2),2))=300eq\r(3),∴MN=AM·sin∠MAN=300eq\r(3)×eq\f(\r(3),2)=450。]7.如圖3。7。14,為測(cè)得河對(duì)岸塔AB的高,先在河岸上選一點(diǎn)C,使C在塔底B的正東方向上,測(cè)得點(diǎn)A的仰角為60°,再由點(diǎn)C沿北偏東15°方向走10米到位置D,測(cè)得∠BDC=45°,則塔AB的高是________米.圖3。7。1410eq\r(6)[在△BCD中,CD=10,∠BDC=45°,∠BCD=15°+90°=105°,∠DBC=30°,eq\f(BC,sin45°)=eq\f(CD,sin30°),BC=eq\f(CDsin45°,sin30°)=10eq\r(2)。在Rt△ABC中,tan60°=eq\f(AB,BC),AB=BCtan60°=10eq\r(6)(米).]8.如圖3-7。15所示,一艘海輪從A處出發(fā),測(cè)得燈塔在海輪的北偏東15°方向,與海輪相距20海里的B處,海輪按北偏西60°的方向航行了30分鐘后到達(dá)C處,又測(cè)得燈塔在海輪的北偏東75°的方向,則海輪的速度為_(kāi)_______海里/分鐘.【導(dǎo)學(xué)號(hào):00090121】圖3.7-15eq\f(\r(6),3)[由已知得∠ACB=45°,∠B=60°,由正弦定理得eq\f(AC,sinB)=eq\f(AB,sin∠ACB),所以AC=eq\f(AB·sinB,sin∠ACB)=eq\f(20×sin60°,sin45°)=10eq\r(6),所以海輪航行的速度為eq\f(10\r(6),30)=eq\f(\r(6),3)(海里/分鐘).]三、解答題9.某航模興趣小組的同學(xué),為了測(cè)定在湖面上航模航行的速度,采用如下辦法:在岸邊設(shè)置兩個(gè)觀察點(diǎn)A,B,且AB長(zhǎng)為80米,當(dāng)航模在C處時(shí),測(cè)得∠ABC=105°和∠BAC=30°,經(jīng)過(guò)20秒后,航模直線航行到D處,測(cè)得∠BAD=90°和∠ABD=45°.請(qǐng)你根據(jù)以上條件求出航模的速度.(答案可保留根號(hào))圖3-7。16[解]在△ABD中,∵∠BAD=90°,∠ABD=45°,∴∠ADB=45°,∴AD=AB=80,∴BD=80eq\r(2). 3分在△ABC中,eq\f(BC,sin30°)=eq\f(AB,sin45°),∴BC=eq\f(ABsin30°,sin45°)=eq\f(80×\f(1,2),\f(\r(2),2))=40eq\r(2). 6分在△DBC中,DC2=DB2+BC2-2DB·BCcos60°=(80eq\r(2))2+(40eq\r(2))2-2×80eq\r(2)×40eq\r(2)×eq\f(1,2)=9600?!郉C=40eq\r(6),航模的速度v=eq\f(40\r(6),20)=2eq\r(6)米/秒. 12分10.如圖3-7.17,漁船甲位于島嶼A的南偏西60°方向的B處,且與島嶼A相距12海里,漁船乙以10海里/小時(shí)的速度從島嶼A出發(fā)沿正北方向航行,若漁船甲同時(shí)從B處出發(fā)沿北偏東α的方向追趕漁船乙,剛好用2小時(shí)追上.圖3。7.17(1)求漁船甲的速度;(2)求sinα的值.[解](1)依題意知,∠BAC=120°,AB=12,AC=10×2=20,∠BCA=α. 3分在△ABC中,由余弦定理,得BC2=AB2+AC2-2AB·AC·cos∠BAC=122+202-2×12×20×cos120°=784,解得BC=28.所以漁船甲的速度為eq\f(BC,2)=14海里/小時(shí). 7分(2)在△ABC中,因?yàn)锳B=12,∠BAC=120°,BC=28,∠BCA=α,由正弦定理,得eq\f(AB,sinα)=eq\f(BC,sin120°), 9分即sinα=eq\f(ABsin120°,BC)=eq\f(12×\f(\r(3),2),28)=eq\f(3\r(3),14)。 12分B組能力提升(建議用時(shí):15分鐘)1.(2018·六安模擬)一個(gè)大型噴水池的中央有一個(gè)強(qiáng)力噴水柱,為了測(cè)量噴水柱噴出的水柱的高度,某人在噴水柱正西方向的點(diǎn)A測(cè)得水柱頂端的仰角為45°,沿點(diǎn)A向北偏東30°前進(jìn)100m到達(dá)點(diǎn)B,在B點(diǎn)測(cè)得水柱頂端的仰角為30°,則水柱的高度是()A.50m B.100mC.120m D.150mA[設(shè)水柱高度是hm,水柱底端為C,則在△ABC中,A=60°,AC=h,AB=100,BC=eq\r(3)h,根據(jù)余弦定理得,(eq\r(3)h)2=h2+1002-2·h·100·cos60°,即h2+50h-5000=0,即(h-50)(h+100)=0,即h=50,故水柱的高度是50m.]2.(2014·全國(guó)卷Ⅰ)如圖3.7-18,為測(cè)量山高M(jìn)N,選擇A和另一座山的山頂C為測(cè)量觀測(cè)點(diǎn).從A點(diǎn)測(cè)得M點(diǎn)的仰角∠MAN=60°,C點(diǎn)的仰角∠CAB=45°以及∠MAC=75°;從C點(diǎn)測(cè)得∠MCA=60°。已知山高BC=100m,則山高M(jìn)N=________m。圖3。7-18150[根據(jù)圖示,AC=100eq\r(2)m。在△MAC中,∠CMA=180°-75°-60°=45°.由正弦定理得eq\f(AC,sin45°)=eq\f(AM,sin60°)?AM=100eq\r(3)m.在△AMN中,eq\f(MN,AM)=sin60°,∴MN=100eq\r(3)×eq\f(\r(3),2)=150(m).]3.(2018·大連模擬)如圖3-7.19,一條巡邏船由南向北行駛,在A處測(cè)得山頂P在北偏東15°(∠BAC=15°)方向上,勻速向北航行20分鐘到達(dá)B處,測(cè)得山頂P位于北偏東60°方向上,此時(shí)測(cè)得山頂P的仰角60°,若山高為2eq\r(3)千米.(1)船的航行速度是每小時(shí)多少千米?(2)若該船繼續(xù)航行10分鐘到達(dá)D處,問(wèn)此時(shí)山頂位于D處的南偏東什么方向?圖3。7。19[解](1)在△BCP中,tan∠PBC=eq\f(PC,BC)?BC=2。在△ABC中,由正弦定理得:eq\f(BC,sin∠BAC)=eq\f(AB,sin∠BCA)?eq\f(2,sin15°)=eq\f(AB,sin45°),所以AB=2(

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論