版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學年山東省臨沂市普通高校對口單招數(shù)學自考測試卷(含答案)學校:________班級:________姓名:________考號:________
一、單選題(22題)1.設(shè)平面向量a(3,5),b(-2,1),則a-2b的坐標是()A.(7,3)B.(-7,-3)C.(-7,3)D.(7,-3)
2.下列各組數(shù)中,表示同一函數(shù)的是()A.
B.
C.
D.
3.已知A={x|x+1>0},B{-2,-1,0,1},則(CRA)∩B=()A.{-2,-1}B.{-2}C.{-1,0,1}D.{0,1}
4.已知的值()A.
B.
C.
D.
5.設(shè)復數(shù)z滿足z+i=3-i,則=()A.-1+2iB.1-2iC.3+2iD.3-2i
6.若sinα=-3cosα,則tanα=()A.-3B.3C.-1D.1
7.函數(shù)y=log2x的圖象大致是()A.
B.
C.
D.
8.A.第一象限角B.第二象限角C.第三象限角D.第四象限角
9.已知平面向量a=(1,3),b(-1,1),則ab=A.(0,4)B.(-1,3)C.0D.2
10.不等式-2x22+x+3<0的解集是()A.{x|x<-1}B.{x|x>3/2}C.{x|-1<x<3/2}D.{x|x<-1或x>3/2}
11.A.(1,2)B.(3,4)C.(0,1)D.(5,6)
12.橢圓x2/4+y2/2=1的焦距()A.4
B.2
C.2
D.2
13.已知集合A={x|x>2},B={x|1<x<3},則A∩B=()A.{x|x>2}B.{x|x>1}C.{x|2<x<3}D.{x|1<x<3}
14.5人排成一排,甲必須在乙之后的排法是()A.120B.60C.24D.12
15.已知集合,則等于()A.
B.
C.
D.
16.若a<b<0,則下列結(jié)論正確的是()A.a2<b2
B.a3<b<b3</b
C.|a|<|b|
D.a/b<1
17.(X-2)6的展開式中X2的系數(shù)是D()A.96B.-240C.-96D.240
18.A.B.C.D.R
19.A.B.C.D.
20.直線3x+4y=b與圓x2+y2-2x-2y+1=0相切,則b的值是()A.-2或12B.2或-12C.-2或-12D.2或12
21.已知向量a=(1,1),b=(2,x),若a+b與4b-2a平行,則實數(shù)x的值是()A.-2B.0C.2D.1
22.已知{<an}為等差數(shù)列,a3+a8=22,a6=7,則a5=()</aA.20B.25C.10D.15
二、填空題(10題)23.
24.若集合,則x=_____.
25.長方體中,具有公共頂點A的三個面的對角線長分別是2,4,6,那么這個長方體的對角線的長是_____.
26.
27.(x+2)6的展開式中x3的系數(shù)為
。
28.
29.若長方體的長、寬、高分別為1,2,3,則其對角線長為
。
30.己知兩點A(-3,4)和B(1,1),則=
。
31.不等式的解集為_____.
32.在ABC中,A=45°,b=4,c=,那么a=_____.
三、計算題(10題)33.求焦點x軸上,實半軸長為4,且離心率為3/2的雙曲線方程.
34.有語文書3本,數(shù)學書4本,英語書5本,書都各不相同,要把這些書隨機排在書架上.(1)求三種書各自都必須排在一起的排法有多少種?(2)求英語書不挨著排的概率P。
35.某小組有6名男生與4名女生,任選3個人去參觀某展覽,求(1)3個人都是男生的概率;(2)至少有兩個男生的概率.
36.設(shè)函數(shù)f(x)既是R上的減函數(shù),也是R上的奇函數(shù),且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范圍.
37.在等差數(shù)列{an}中,前n項和為Sn
,且S4
=-62,S6=-75,求等差數(shù)列{an}的通項公式an.
38.己知直線l與直線y=2x+5平行,且直線l過點(3,2).(1)求直線l的方程;(2)求直線l在y軸上的截距.
39.(1)求函數(shù)f(x)的定義域;(2)判斷函數(shù)f(x)的奇偶性,并說明理由。
40.有四個數(shù),前三個數(shù)成等差數(shù)列,公差為10,后三個數(shù)成等比數(shù)列,公比為3,求這四個數(shù).
41.近年來,某市為了促進生活垃圾的分類處理,將生活垃圾分為“廚余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四類,并分別垛置了相應的垃圾箱,為調(diào)查居民生活垃圾的正確分類投放情況,現(xiàn)隨機抽取了該市四類垃圾箱總計100噸生活垃圾,數(shù)據(jù)統(tǒng)計如下(單位:噸):(1)試估計“可回收垃圾”投放正確的概率;(2)試估計生活垃圾投放錯誤的概率。
42.從含有2件次品的7件產(chǎn)品中,任取2件產(chǎn)品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2
.
四、簡答題(10題)43.證明:函數(shù)是奇函數(shù)
44.已知函數(shù):,求x的取值范圍。
45.以點(0,3)為頂點,以y軸為對稱軸的拋物線的準線與雙曲線3x2-y2+12=0的一條準線重合,求拋物線的方程。
46.已知拋物線的焦點到準線L的距離為2。(1)求拋物線的方程及焦點下的坐標。(2)過點P(4,0)的直線交拋物線AB兩點,求的值。
47.已知拋物線y2=4x與直線y=2x+b相交與A,B兩點,弦長為,求b的值。
48.在ABC中,AC丄BC,ABC=45°,D是BC上的點且ADC=60°,BD=20,求AC的長
49.化簡
50.求到兩定點A(-2,0)(1,0)的距離比等于2的點的軌跡方程
51.拋物線的頂點在原點,焦點為橢圓的左焦點,過點M(-1,-1)引拋物線的弦使M為弦的中點,求弦長
52.某商場經(jīng)銷某種商品,顧客可采用一次性付款或分期付款購買,根據(jù)以往資料統(tǒng)計,顧客采用一次性付款的概率是0.6,求3為顧客中至少有1為采用一次性付款的概率。
五、解答題(10題)53.已知f(x)=x3+3ax2+bx+a2(a>1)在x=—1時有極值0.(1)求常數(shù)a,b的值;(2)求f(x)的單調(diào)區(qū)間.
54.甲、乙兩人進行投籃訓練,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且兩人投球命中與否相互之間沒有影響.(1)若兩人各投球1次,求恰有1人命中的概率;(2)若兩人各投球2次,求這4次投球中至少有1次命中的概率.
55.組成等差數(shù)列的三個正數(shù)的和等于15,并且這三個數(shù)列分別加上1、3、5后又成等比數(shù)列,求這三個數(shù)
56.
57.
58.
59.已知圓X2+y2=5與直線2x-y-m=0相交于不同的A,B兩點,O為坐標原點.(1)求m的取值范圍;(2)若OA丄OB,求實數(shù)m的值.
60.設(shè)橢圓x2/a2+y2/b2的方程為點O為坐標原點,點A的坐標為(a,0),點B的坐標為(0,b),點M在線段AB上,滿足|BM|=2|MA|直線OM的斜率為.(1)求E的離心率e(2)設(shè)點C的坐標為(0,-b),N為線段AC的中點,證明:MN丄AB
61.已知A,B分別是橢圓的左右兩個焦點,o為坐標的原點,點P(-1,)在橢圓上,線段PB與y軸的焦點M為線段PB的中心點,求橢圓的標準方程
62.成等差數(shù)列的三個正數(shù)的和等于15,并且這三個數(shù)分別加上2,5,13后成為等比數(shù)列{bn}中的b3,b4,b5(1)求數(shù)列{bn}的通項公式;(2)數(shù)列{bn}的前n項和為Sn,求證:數(shù)列{Sn+5/4}是等比數(shù)列
六、單選題(0題)63.設(shè)m>n>1且0<a<1,則下列不等式成立的是()A.am<an
B.an<am
C.a-m<a-n
D.ma<na
參考答案
1.A由題可知,a-2b=(3,5)-2(-2,1)=(7,3)。
2.B
3.A交集
4.A
5.C復數(shù)的運算.由z+i=3-i,得z=3-2i,∴z=3+2i.
6.A同角三角函數(shù)的變換.若cosα=0,則sinα=0,顯然不成立,所以cosα≠0,所以sinα/cosα=tanα=-3.
7.C對數(shù)函數(shù)的圖象和基本性質(zhì).
8.B
9.D
10.D不等式的計算.-2x2+x+3<0,2x2-x-3>0即(2x-3)(x+1)>0,x>3/2或x<-1.
11.A
12.D橢圓的定義.由a2=b2+c2,c2=4-2=2,所以c=,橢圓焦距長度為2c=2
13.C集合的運算.由已知條件得,A∩B={x|x>2}∩{x|1<x<3}={x|2<x<3}
14.C
15.B由函數(shù)的換算性質(zhì)可知,f-1(x)=-1/x.
16.B
17.D
18.B
19.A
20.D圓的切線方程的性質(zhì).圓方程可化為C(x-l)2+(y-1)2=1,∴該圓是以(1,1)為圓心,以1為半徑的圓,∵直線3x+4y=
21.C
22.D由等差數(shù)列的性質(zhì)可得a3+a8=a5+a6,∴a5=22-7=15,
23.75
24.
,AB為A和B的合集,因此有x2=3或x2=x且x不等于1,所以x=
25.
26.{-1,0,1,2}
27.160
28.5
29.
,
30.
31.-1<X<4,
32.
33.解:實半軸長為4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20雙曲線方程為
34.
35.
36.解:(1)因為f(x)=在R上是奇函數(shù)所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因為f(x)=在R上是減函數(shù),t2-3t+1<-1所以1<t<2
37.解:設(shè)首項為a1、公差為d,依題意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23
38.解:(1)設(shè)所求直線l的方程為:2x-y+c=0∵直線l過點(3,2)∴6-2+c=0即c=-4∴所求直線l的方程為:2x-y-4=0(2)∵當x=0時,y=-4∴直線l在y軸上的截距為-4
39.
40.
41.
42.
43.證明:∵∴則,此函數(shù)為奇函數(shù)
44.
X>4
45.由題意可設(shè)所求拋物線的方程為準線方程為則y=-3代入得:p=12所求拋物線方程為x2=24(y-3)
46.(1)拋物線焦點F(,0),準線L:x=-,∴焦點到準線的距離p=2∴拋物線的方程為y2=4x,焦點為F(1,0)(2)直線AB與x軸不平行,故可設(shè)它的方程為x=my+4,得y2-4m-16=0由設(shè)A(x1,x2),B(y1,y2),則y1y2=-16∴
47.
48.在指數(shù)△ABC中,∠ABC=45°,AC=BC在直角△ADC中,∠ADC=60°,CD=ACCD=BC-BD,BD=20則,則
49.sinα
50.
51.
52.
53.(1)f(x)=3x2+6ax+b,由題知:
54.
55.
56.
57.
58.
59.
60.
61.點M是線段PB的中點又∵OM丄AB,∴PA丄AB則c=1+=1,a2=b2+c2解得,a2=2,b2=1,c2=1因此橢圓的標準方程為
62.(1)設(shè)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度公益慈善晚會活動策劃與實施合同4篇
- 2025年度互聯(lián)網(wǎng)內(nèi)容提供商ICP證年審全權(quán)委托服務(wù)合同3篇
- 二零二五年度生物科技研發(fā)農(nóng)民工就業(yè)服務(wù)合同4篇
- 電子商務(wù)平臺消費者權(quán)益保護2025年度國際協(xié)調(diào)合同2篇
- 2025年度牛肝菌有機認證與市場拓展合同
- 二零二五版昆明滇池度假區(qū)酒店管理合同3篇
- 二零二五年度農(nóng)業(yè)種植勞務(wù)作業(yè)承包合同范本3篇
- 2025年度塑料管材國際貿(mào)易爭端解決合同
- 2025年度私立學校校長任期教育科研成果轉(zhuǎn)化合同
- 二零二五年度企業(yè)員工期權(quán)激勵合同范本
- 廣東省佛山市2025屆高三高中教學質(zhì)量檢測 (一)化學試題(含答案)
- 人教版【初中數(shù)學】知識點總結(jié)-全面+九年級上冊數(shù)學全冊教案
- 四川省成都市青羊區(qū)成都市石室聯(lián)合中學2023-2024學年七上期末數(shù)學試題(解析版)
- 2024-2025學年人教版七年級英語上冊各單元重點句子
- 2025新人教版英語七年級下單詞表
- 公司結(jié)算資金管理制度
- 2024年小學語文教師基本功測試卷(有答案)
- 未成年入職免責協(xié)議書
- 項目可行性研究報告評估咨詢管理服務(wù)方案1
- 5歲幼兒數(shù)學練習題
- 2024年全國體育單招英語考卷和答案
評論
0/150
提交評論