2022-2023學(xué)年江西省上饒市普通高校對(duì)口單招數(shù)學(xué)自考真題(含答案)_第1頁(yè)
2022-2023學(xué)年江西省上饒市普通高校對(duì)口單招數(shù)學(xué)自考真題(含答案)_第2頁(yè)
2022-2023學(xué)年江西省上饒市普通高校對(duì)口單招數(shù)學(xué)自考真題(含答案)_第3頁(yè)
2022-2023學(xué)年江西省上饒市普通高校對(duì)口單招數(shù)學(xué)自考真題(含答案)_第4頁(yè)
2022-2023學(xué)年江西省上饒市普通高校對(duì)口單招數(shù)學(xué)自考真題(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩27頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年江西省上饒市普通高校對(duì)口單招數(shù)學(xué)自考真題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(22題)1.已知點(diǎn)A(1,-3)B(-1,3),則直線AB的斜率是()A.

B.-3

C.

D.3

2.若向量A.(4,6)B.(-4,-6)C.(-2,-2)D.(2,2)

3.不等式-2x2+x+3<0的解集是()A.{x|x<-1}B.{x|x>3/2}C.{x|-1<x<3/2}D.{x|x<-1或x>3/2}

4.A.B.C.D.

5.直線4x+2y-7=0和直線3x-y+5=0的夾角是()A.30°B.45°C.60°D.90°

6.A.

B.

C.

7.已知直線L過(guò)點(diǎn)(0,7),且與直線y=-4x+2平行,則直線L的方程為()A.y=-4x-7B.y=4x—7C.y=-4x+7D.y=4x+7

8.直線以互相平行的一個(gè)充分條件為()A.以都平行于同一個(gè)平面

B.與同一平面所成角相等

C.平行于所在平面

D.都垂直于同一平面

9.圓(x+2)2+y2=4與圓(x-2)2+(y-1)2=9的位置關(guān)系為()A.內(nèi)切B.相交C.外切D.相離

10.下列結(jié)論中,正確的是A.{0}是空集

B.C.D.

11.設(shè)Sn為等差數(shù)列{an}的前n項(xiàng)和,S8=4a3,a7=-2,則a9等于()A.-6B.-4C.-2D.2

12.若函數(shù)f(x)=x2+ax+3在(-∞,1]上單調(diào)遞減,則實(shí)數(shù)a的取值范圍是()A.(-∞,1]B.[―1,+∞)C.(―∞,-2]D.(-2,+∞)

13.設(shè)集合,則A與B的關(guān)系是()A.

B.

C.

D.

14.設(shè)l表示一條直線,α,β,γ表示三個(gè)不同的平面,下列命題正確的是()A.若l//α,α//β,則l//β

B.若l//α,l//β,則α//β

C.若α//β,β//γ,則α//γ

D.若α//β,β//γ,則α//γ

15.己知|x-3|<a的解集是{x|-3<x<9},則a=()A.-6B.6C.±6D.0

16.一條線段AB是它在平面a上的射景的倍,則B與平面a所成角為()A.30°B.45°C.60°D.不能確定

17.若sinα與cosα同號(hào),則α屬于()A.第一象限角B.第二象限角C.第一、二象限角D.第一、三象限角

18.A.

B.

C.

19.設(shè)x∈R,則“x>1”是“x3>1”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件

20.A.-1B.-4C.4D.2

21.不等式組的解集是()A.{x|0<x<2}

B.{x|0<x<2.5}

C.{x|0<x<}

D.{x|0<x<3}

22.由數(shù)字0,1,2,3,4,5組成沒(méi)有重復(fù)數(shù)字的六位數(shù),其中個(gè)位數(shù)小于十位數(shù)的共有()A.210B.360C.464D.600

二、填空題(10題)23.已知i為虛數(shù)單位,則|3+2i|=______.

24.若,則_____.

25.若lgx>3,則x的取值范圍為_(kāi)___.

26.若事件A與事件ā互為對(duì)立事件,且P(ā)=P(A),則P(ā)=

27.不等式的解集為_(kāi)____.

28.

29.Ig0.01+log216=______.

30.已知直線l1:ax-y+2a+1=0和直線l2:2x-(a-l)y+2=0(a∈R)則l1⊥l2的充要條件是a=______.

31.

32.圓x2+y2-4x-6y+4=0的半徑是_____.

三、計(jì)算題(10題)33.己知直線l與直線y=2x+5平行,且直線l過(guò)點(diǎn)(3,2).(1)求直線l的方程;(2)求直線l在y軸上的截距.

34.有語(yǔ)文書(shū)3本,數(shù)學(xué)書(shū)4本,英語(yǔ)書(shū)5本,書(shū)都各不相同,要把這些書(shū)隨機(jī)排在書(shū)架上.(1)求三種書(shū)各自都必須排在一起的排法有多少種?(2)求英語(yǔ)書(shū)不挨著排的概率P。

35.已知函數(shù)y=cos2x+3sin2x,x∈R求:(1)函數(shù)的值域;(2)函數(shù)的最小正周期。

36.從含有2件次品的7件產(chǎn)品中,任取2件產(chǎn)品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2

.

37.求焦點(diǎn)x軸上,實(shí)半軸長(zhǎng)為4,且離心率為3/2的雙曲線方程.

38.己知{an}為等差數(shù)列,其前n項(xiàng)和為Sn,若a3=6,S3=12,求公差d.

39.(1)求函數(shù)f(x)的定義域;(2)判斷函數(shù)f(x)的奇偶性,并說(shuō)明理由。

40.已知函數(shù)f(x)的定義域?yàn)閧x|x≠0},且滿(mǎn)足.(1)求函數(shù)f(x)的解析式;(2)判斷函數(shù)f(x)的奇偶性,并簡(jiǎn)單說(shuō)明理由.

41.近年來(lái),某市為了促進(jìn)生活垃圾的分類(lèi)處理,將生活垃圾分為“廚余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四類(lèi),并分別垛置了相應(yīng)的垃圾箱,為調(diào)查居民生活垃圾的正確分類(lèi)投放情況,現(xiàn)隨機(jī)抽取了該市四類(lèi)垃圾箱總計(jì)100噸生活垃圾,數(shù)據(jù)統(tǒng)計(jì)如下(單位:噸):(1)試估計(jì)“可回收垃圾”投放正確的概率;(2)試估計(jì)生活垃圾投放錯(cuò)誤的概率。

42.設(shè)函數(shù)f(x)既是R上的減函數(shù),也是R上的奇函數(shù),且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范圍.

四、簡(jiǎn)答題(10題)43.解關(guān)于x的不等式

44.已知等差數(shù)列的前n項(xiàng)和是求:(1)通項(xiàng)公式(2)a1+a3+a5+…+a25的值

45.在1,2,3三個(gè)數(shù)字組成無(wú)重復(fù)數(shù)字的所有三位數(shù)中,隨機(jī)抽取一個(gè)數(shù),求:(1)此三位數(shù)是偶數(shù)的概率;(2)此三位數(shù)中奇數(shù)相鄰的概率.

46.如圖:在長(zhǎng)方體從中,E,F(xiàn)分別為和AB和中點(diǎn)。(1)求證:AF//平面。(2)求與底面ABCD所成角的正切值。

47.以點(diǎn)(0,3)為頂點(diǎn),以y軸為對(duì)稱(chēng)軸的拋物線的準(zhǔn)線與雙曲線3x2-y2+12=0的一條準(zhǔn)線重合,求拋物線的方程。

48.已知拋物線y2=4x與直線y=2x+b相交與A,B兩點(diǎn),弦長(zhǎng)為,求b的值。

49.求到兩定點(diǎn)A(-2,0)(1,0)的距離比等于2的點(diǎn)的軌跡方程

50.某中學(xué)試驗(yàn)班有同學(xué)50名,其中女生30人,男生20人,現(xiàn)在從中選取2人取參加校際活動(dòng),求(1)選出的2人都是女生的概率。(2)選出的2人是1男1女的概率。

51.解不等式組

52.某籃球運(yùn)動(dòng)員進(jìn)行投籃測(cè)驗(yàn),每次投中的概率是0.9,假設(shè)每次投籃之間沒(méi)有影響(1)求該運(yùn)動(dòng)員投籃三次都投中的概率(2)求該運(yùn)動(dòng)員投籃三次至少一次投中的概率

五、解答題(10題)53.已知橢圓的兩焦點(diǎn)為F1(-1,0),F2(1,0),P為橢圓上的一點(diǎn),且2|F1F2|PF1|+|PF2|.(1)求此橢圓的標(biāo)準(zhǔn)方程;(2)若點(diǎn)P在第二象限,∠F2F1P=120°,求△PF1F2的面積.

54.已知A,B分別是橢圓的左右兩個(gè)焦點(diǎn),o為坐標(biāo)的原點(diǎn),點(diǎn)P(-1,)在橢圓上,線段PB與y軸的焦點(diǎn)M為線段PB的中心點(diǎn),求橢圓的標(biāo)準(zhǔn)方程

55.已知橢圓C的重心在坐標(biāo)原點(diǎn),兩個(gè)焦點(diǎn)的坐標(biāo)分別為F1(4,0),F(xiàn)2(-4,0),且橢圓C上任一點(diǎn)到兩焦點(diǎn)的距離和等于10.求:(1)橢圓C的標(biāo)準(zhǔn)方程;(2)設(shè)橢圓C上一點(diǎn)M使得直線F1M與直線F2M垂直,求點(diǎn)M的坐標(biāo).

56.李經(jīng)理按照市場(chǎng)價(jià)格10元/千克在本市收購(gòu)了2000千克香菇存放人冷庫(kù)中.據(jù)預(yù)測(cè),香菇的市場(chǎng)價(jià)格每天每千克將上漲0.5元,但冷庫(kù)存放這批香菇時(shí)每天需要支出費(fèi)用合計(jì)340元,而且香菇在冷庫(kù)中最多保存110天,同時(shí),平均每天有6千克的香菇損壞不能出售.(1)若存放x天后,將這批香菇一次性出售,設(shè)這批香菇的銷(xiāo)售總金額為y元,試寫(xiě)出y與x之間的函數(shù)關(guān)系式;(2)李經(jīng)理如果想獲得利潤(rùn)22500元,需將這批香菇存放多少天后出售?(提示:利潤(rùn)=銷(xiāo)售總金額一收購(gòu)成本一各種費(fèi)用)(3)李經(jīng)理將這批香菇存放多少天后出售可獲得最大利潤(rùn)?最大利潤(rùn)是多少?

57.如圖,在正方體ABCD-A1B1C1D1中,E,F(xiàn)分別為DD1,CC1的中點(diǎn).求證:(1)AC⊥BD1;(2)AE//平面BFD1.

58.已知數(shù)列{an}是公差不為0的等差數(shù)列a1=2,且a2,a3,a4+1成等比數(shù)列.(1)求數(shù)列{an}的通項(xiàng)公式;(2)設(shè)bn=2/n(an+2),求數(shù)列{bn}的前n項(xiàng)和Sn.

59.在銳角△ABC中,內(nèi)角A,B,C所對(duì)的邊分別是a,b,c(1)求c的值;(2)求sinA的值.

60.

61.為了解某地區(qū)的中小學(xué)生的視力情況,擬從該地區(qū)的中小學(xué)生中抽取部分學(xué)生進(jìn)行調(diào)查,事先已了解到該地區(qū)小學(xué)、初中、高中三個(gè)學(xué)段學(xué)生的視力情況有較大差異,而男女生視力情況差異不大,在下面的抽樣方法中,最合理的抽樣方法是().A.簡(jiǎn)單隨機(jī)抽樣B.按性別分層抽樣C.按學(xué)段分層抽樣D.系統(tǒng)抽樣

62.

六、單選題(0題)63.A.0

B.C.1

D.-1

參考答案

1.B

2.A向量的運(yùn)算.=(l,2)+(3,4)=(4,6).

3.D一元二次不等式方程的計(jì)算.-2x2+x+3<0,2x2-x-3>0即(2x-3)(x+1)>0,x>3/2或x<-1.

4.C

5.B

6.C

7.C直線的點(diǎn)斜式方程∵直線l與直線y=-4x+2平行,∴直線l的斜率為-4,又直線l過(guò)點(diǎn)(0,7),∴直線l的方程為y-7=-4(x-0),即y=-4x+7.

8.D根據(jù)直線與平面垂直的性質(zhì)定理,D正確。

9.B圓與圓的位置關(guān)系,兩圓相交

10.B

11.A等差數(shù)列的性質(zhì).由S8=4a3知:S8=a1+a2+a3+...+a8=4(a1+a8)=4(a3+a6)=4a3.a6=0,所以a7-a6=d=-2.所以a9=a7+2d=-2-4=-6.

12.C二次函數(shù)圖像的性質(zhì).根據(jù)二次函數(shù)圖象的對(duì)稱(chēng)性有-a/2≥1,得a≤-2.

13.A

14.C

15.B

16.B根據(jù)線面角的定義,可得AB與平面a所成角的正切值為1,所以所成角為45°。

17.D

18.B

19.C充分條件,必要條件,充要條件的判斷.由x>1知,x3>1;由x3>1可推出x>1.

20.C

21.C由不等式組可得,所以或,由①可得,求得;由②可得,求得,綜上可得。

22.B

23.

復(fù)數(shù)模的計(jì)算.|3+2i|=

24.27

25.x>1000對(duì)數(shù)有意義的條件

26.0.5由于兩個(gè)事件是對(duì)立事件,因此兩者的概率之和為1,又兩個(gè)事件的概率相等,因此概率均為0.5.

27.-1<X<4,

28.-1

29.2對(duì)數(shù)的運(yùn)算.lg0.01+lg216=lg1/100+㏒224=-2+4=2.

30.1/3充要條件及直線的斜率.l1⊥l2→2a/a-1=-1→(2a)+(a-1)=0,解得A=1/3

31.外心

32.3,

33.解:(1)設(shè)所求直線l的方程為:2x-y+c=0∵直線l過(guò)點(diǎn)(3,2)∴6-2+c=0即c=-4∴所求直線l的方程為:2x-y-4=0(2)∵當(dāng)x=0時(shí),y=-4∴直線l在y軸上的截距為-4

34.

35.

36.

37.解:實(shí)半軸長(zhǎng)為4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20雙曲線方程為

38.

39.

40.

41.

42.解:(1)因?yàn)閒(x)=在R上是奇函數(shù)所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因?yàn)閒(x)=在R上是減函數(shù),t2-3t+1<-1所以1<t<2

43.

44.

45.1,2,3三個(gè)數(shù)字組成無(wú)重復(fù)數(shù)字的所有三位數(shù)共有(1)其中偶數(shù)有,故所求概率為(2)其中奇數(shù)相鄰的三位數(shù)有個(gè)故所求概率為

46.

47.由題意可設(shè)所求拋物線的方程為準(zhǔn)線方程為則y=-3代入得:p=12所求拋物線方程為x2=24(y-3)

48.

49.

50.(1)2人都是女生的概率P=C(2,30)/C(2,50)=30*29/(50*49)=0.35510

(2)2人都是男生的概率P=C(2,20)/C(2,50)=20*19/(50*49)=0.15510

選出的一男一女的概率P=C(1,20)*C(1,30)/C(2,50)=20*30/((50*49)/2)=0.4897

51.x2-6x+8>0,∴x>4,x<2(1)(2)聯(lián)系(1)(2)得不等式組的解集為

52.(1)P=0.9×0.9×0.9=0.729(2)P=1-0.1×0.1×0.1=0.999

53.

54.點(diǎn)M是線段PB的中點(diǎn)又∵OM丄AB,∴PA丄AB則c=1+=1,a2=b2+c2解得,a2=2,b2=1,c2=1因此橢圓的標(biāo)準(zhǔn)方程為

55.

56.(1)由題意,y與x之間的函數(shù)關(guān)系式為y=(10+0.5x)(2000-6x)=-3x2+940x+20000(l≤x≤110).(2)由題(-3x2+940x+20000)-(10×2000+340x)=22500;化簡(jiǎn)得,x2-20

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論