版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023年黑龍江省大興安嶺地區(qū)普通高校對口單招數(shù)學(xué)自考預(yù)測試題(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(20題)1.焦點(diǎn)在y軸的負(fù)半軸上且焦點(diǎn)到準(zhǔn)線的距離是2的拋物線的標(biāo)準(zhǔn)方程是()A.y2=-2x
B.x2=-2y
C.y2=-4x
D.x2=-4y
2.實(shí)數(shù)4與16的等比中項(xiàng)為A.-8
B.C.8
3.為A.23B.24C.25D.26
4.若ln2=m,ln5=n,則,em+2n的值是()A.2B.5C.50D.20
5.A.第一象限角B.第二象限角C.第三象限角D.第四象限角
6.若將函數(shù):y=2sin(2x+π/6)的圖象向右平移1/4個(gè)周期后,所得圖象對應(yīng)的函數(shù)為()A.y=2sin(2x+π/4)
B.y=2sin(2x+π/3)
C.3;=2sin(2x-π/4)
D.3;=2sin(2x-π/3)
7.計(jì)算sin75°cos15°-cos75°sin15°的值等于()A.0
B.1/2
C.
D.
8.袋中有大小相同的三個(gè)白球和兩個(gè)黑球,從中任取兩個(gè)球,兩球同色的概率為()A.1/5B.2/5C.3/5D.4/5
9.已知,則點(diǎn)P(sina,tana)所在的象限是()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限
10.已知等差數(shù)列中{an}中,a3=4,a11=16,則a7=()A.18B.8C.10D.12
11.直線x-y=0,被圓x2+y2=1截得的弦長為()A.
B.1
C.4
D.2
12.若函數(shù)f(x)=x2+ax+3在(-∞,1]上單調(diào)遞減,則實(shí)數(shù)a的取值范圍是()A.(-∞,1]B.[―1,+∞)C.(―∞,-2]D.(-2,+∞)
13.若函數(shù)y=log2(x+a)的反函數(shù)的圖像經(jīng)過點(diǎn)P(-1,0),則a的值為()A.-2
B.2
C.
D.
14.A=,是AB=的()A.充分條件B.必要條件C.充要條件D.既不充分也不必要條件
15.在等差數(shù)列中,若a3+a17=10,則S19等于()A.75B.85C.95D.65
16.下表是某廠節(jié)能降耗技術(shù)改造后生產(chǎn)某產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對照數(shù)據(jù),用最小二乘法得到y(tǒng)關(guān)于x的線性回歸方程y^=0.7x+a,則a=()A.0.25B.0.35C.0.45D.0.55
17.直線:y+4=0與圓(x-2)2+(y+l)2=9的位置關(guān)系是()
A.相切B.相交且直線不經(jīng)過圓心C.相離D.相交且直線經(jīng)過圓心
18.若f(x)=logax(a>0且a≠1)的圖像與g(x)=logbx(b>0,b≠1)的關(guān)于x軸對稱,則下列正確的是()A.a>bB.a=bC.a<bD.AB=1
19.設(shè)平面向量a(3,5),b(-2,1),則a-2b的坐標(biāo)是()A.(7,3)B.(-7,-3)C.(-7,3)D.(7,-3)
20.在△ABC中,“x2
=1”是“x=1”的()
A.充分不必要條件B.必要不充分條件C.充分必要條件D.既不充分也不必要條件
二、填空題(10題)21.函數(shù)y=x2+5的遞減區(qū)間是
。
22.
23.從含有質(zhì)地均勻且大小相同的2個(gè)紅球、N個(gè)白球的口袋中取出一球,若取到紅球的概率為2/5,則取得白球的概率等于______.
24.某田徑隊(duì)有男運(yùn)動(dòng)員30人,女運(yùn)動(dòng)員10人.用分層抽樣的方法從中抽出一個(gè)容量為20的樣本,則抽出的女運(yùn)動(dòng)員有______人.
25.若f(x-1)=x2-2x+3,則f(x)=
。
26.等差數(shù)列的前n項(xiàng)和_____.
27.
28.設(shè)平面向量a=(2,sinα),b=(cosα,1/6),且a//b,則sin2α的值是_____.
29.若一個(gè)球的體積為則它的表面積為______.
30.設(shè)AB是異面直線a,b的公垂線段,已知AB=2,a與b所成角為30°,在a上取線段AP=4,則點(diǎn)P到直線b的距離為_____.
三、計(jì)算題(10題)31.已知函數(shù)f(x)的定義域?yàn)閧x|x≠0},且滿足.(1)求函數(shù)f(x)的解析式;(2)判斷函數(shù)f(x)的奇偶性,并簡單說明理由.
32.有語文書3本,數(shù)學(xué)書4本,英語書5本,書都各不相同,要把這些書隨機(jī)排在書架上.(1)求三種書各自都必須排在一起的排法有多少種?(2)求英語書不挨著排的概率P。
33.在等差數(shù)列{an}中,前n項(xiàng)和為Sn
,且S4
=-62,S6=-75,求等差數(shù)列{an}的通項(xiàng)公式an.
34.(1)求函數(shù)f(x)的定義域;(2)判斷函數(shù)f(x)的奇偶性,并說明理由。
35.有四個(gè)數(shù),前三個(gè)數(shù)成等差數(shù)列,公差為10,后三個(gè)數(shù)成等比數(shù)列,公比為3,求這四個(gè)數(shù).
36.設(shè)函數(shù)f(x)既是R上的減函數(shù),也是R上的奇函數(shù),且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范圍.
37.求焦點(diǎn)x軸上,實(shí)半軸長為4,且離心率為3/2的雙曲線方程.
38.己知直線l與直線y=2x+5平行,且直線l過點(diǎn)(3,2).(1)求直線l的方程;(2)求直線l在y軸上的截距.
39.從含有2件次品的7件產(chǎn)品中,任取2件產(chǎn)品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2
.
40.解不等式4<|1-3x|<7
四、簡答題(10題)41.已知雙曲線C:的右焦點(diǎn)為,且點(diǎn)到C的一條漸近線的距離為.(1)求雙曲線C的標(biāo)準(zhǔn)方程;(2)設(shè)P為雙曲線C上一點(diǎn),若|PF1|=,求點(diǎn)P到C的左焦點(diǎn)的距離.
42.四棱錐S-ABCD中,底面ABOD為平行四邊形,側(cè)面SBC丄底面ABCD(1)證明:SA丄BC
43.化簡
44.某商場經(jīng)銷某種商品,顧客可采用一次性付款或分期付款購買,根據(jù)以往資料統(tǒng)計(jì),顧客采用一次性付款的概率是0.6,求3為顧客中至少有1為采用一次性付款的概率。
45.己知邊長為a的正方形ABCD,PA丄底面ABCD,PA=a,求證,PC丄BD
46.據(jù)調(diào)查,某類產(chǎn)品一個(gè)月被投訴的次數(shù)為0,1,2的概率分別是0.4,0.5,0.1,求該產(chǎn)品一個(gè)月內(nèi)被投訴不超過1次的概率
47.如圖,在直三棱柱中,已知(1)證明:AC丄BC;(2)求三棱錐的體積.
48.化簡
49.如圖,四棱錐P-ABCD中,PA丄底面ABCD,AB//CD,AD=CD=1,BAD=120°,PA=,ACB=90°。(1)求證:BC丄平面PAC。(2)求點(diǎn)B到平面PCD的距離。
50.在等差數(shù)列中,已知a1,a4是方程x2-10x+16=0的兩個(gè)根,且a4>a1,求S8的值
五、解答題(10題)51.在銳角△ABC中,內(nèi)角A,B,C所對的邊分別是a,b,c(1)求c的值;(2)求sinA的值.
52.已知公差不為零的等差數(shù)列{an}的前4項(xiàng)和為10,且a2,a3,a7成等比數(shù)列.(1)求通項(xiàng)公式an;(2)設(shè)bn=2an求數(shù)列{bn}的前n項(xiàng)和Sn.
53.
54.從含有2件次品的7件產(chǎn)品中,任取2件產(chǎn)品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2
.
55.如圖,在四棱錐P-ABCD中,底面是正方形,PD⊥平面ABCD,且PD=AD.(1)求證:PA⊥CD;(2)求異面直線PA與BC所成角的大小.
56.給定橢圓C:x2/a2+y2/b2(a>b>0),稱圓C1:x2+y2=a2+b2為橢圓C的“伴隨圓已知橢圓C的離心率為/2,且經(jīng)過點(diǎn)(0,1).(1)求橢圓C的方程;(2)求直線l:x—y+3=0被橢圓C的伴隨圓C1所截得的弦長.
57.已知函數(shù)f(x)=log21+x/1-x.(1)求f(x)的定義域;(2)討論f(x)的奇偶性;(3)用定義討論f(x)的單調(diào)性.
58.
59.
60.
六、單選題(0題)61.以點(diǎn)(2,0)為圓心,4為半徑的圓的方程為()A.(x-2)2+y2=16
B.(x-2)2+y2=4
C.(x+2)2+y2=46
D.(x+2)2+y2=4
參考答案
1.D
2.B
3.A
4.Cem+2n=eln2+2ln5=2×25=50。
5.B
6.D三角函數(shù)圖像性質(zhì).函數(shù)y=2sin(2x+π/6)的周期為π,將函數(shù):y=2sin(2x+π/6)的圖象向右平移1/4個(gè)周期即π/4個(gè)單位,所得函數(shù)為y=2sin[2(x-π/4)+π/6]=2sin(2x-π/3)
7.D三角函數(shù)的兩角和差公式sin75°cosl5°-cos75°sinl5°=sin(75°-15°)=sin60°=
8.B
9.D因?yàn)棣翞榈诙笙藿?,所以sinα大于0,tanα小于0,所以P在第四象限。
10.C等差數(shù)列的性質(zhì)∵{an}為等差數(shù)列,∴2a7=a3+a11=20,∴a7=10.
11.D直線與圓相交的性質(zhì).直線x-y=0過圓心(0,0),故該直線被圓x2+y2=1所截弦長為圓的直徑的長度2.
12.C二次函數(shù)圖像的性質(zhì).根據(jù)二次函數(shù)圖象的對稱性有-a/2≥1,得a≤-2.
13.D
14.AA是空集可以得到A交B為空集,但是反之不成立,因此時(shí)充分條件。
15.C
16.B線性回歸方程的計(jì)算.由題可以得出
17.A直線與圓的位置關(guān)系.圓心(2,-1)到直線y=-4的距離為|-4-(-1)|=3,而圓的半徑為3,所以直線與圓相切,
18.D
19.A由題可知,a-2b=(3,5)-2(-2,1)=(7,3)。
20.Bx2=1不能得到x=1,但是反之成立,所以是必要不充分條件。
21.(-∞,0]。因?yàn)槎魏瘮?shù)的對稱軸是x=0,開口向上,所以遞減區(qū)間為(-∞,0]。
22.R
23.3/5古典概型的概率公式.由題可得,取出紅球的概率為2/2+n=2/5,所以n=3,即白球個(gè)數(shù)為3,取出白球的概率為3/5.
24.5分層抽樣方法.因?yàn)槟羞\(yùn)動(dòng)員30人,女運(yùn)動(dòng)員10人,所以抽出的女運(yùn)動(dòng)員有10f(10+30)×20=1/4×20=5人.
25.
26.2n,
27.-1
28.2/3平面向量的線性運(yùn)算,三角函數(shù)恒等變換.因?yàn)閍//b,所以2x1/6-sinαcosα=0即sinαcosα=1/3.所以sin2α=2sinαcosα=2/3.
29.12π球的體積,表面積公式.
30.
,以直線b和A作平面,作P在該平面上的垂點(diǎn)D,作DC垂直b于C,則有PD=,BD=4,DC=2,因此PC=,(PC為垂直于b的直線).
31.
32.
33.解:設(shè)首項(xiàng)為a1、公差為d,依題意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23
34.
35.
36.解:(1)因?yàn)閒(x)=在R上是奇函數(shù)所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因?yàn)閒(x)=在R上是減函數(shù),t2-3t+1<-1所以1<t<2
37.解:實(shí)半軸長為4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20雙曲線方程為
38.解:(1)設(shè)所求直線l的方程為:2x-y+c=0∵直線l過點(diǎn)(3,2)∴6-2+c=0即c=-4∴所求直線l的方程為:2x-y-4=0(2)∵當(dāng)x=0時(shí),y=-4∴直線l在y軸上的截距為-4
39.
40.
41.(1)∵雙曲線C的右焦點(diǎn)為F1(2,0),∴c=2又點(diǎn)F1到C1的一條漸近線的距離為,∴,即以解得b=
42.證明:作SO丄BC,垂足為O,連接AO∵側(cè)面SB丄底面ABCD∴SO丄底面ABCD∵SA=SB∴0A=0B又∵ABC=45°∴AOB是等腰直角三角形則OA丄OB得SA丄BC
43.
44.
45.證明:連接ACPA⊥平面ABCD,PC是斜線,BD⊥ACPC⊥BD(三垂線定理)
46.設(shè)事件A表示“一個(gè)月內(nèi)被投訴的次數(shù)為0”,事件B表示“一個(gè)月內(nèi)被投訴的次數(shù)為1”∴P(A+B)=P(A)+P(B)=0.4+0.5=0.9
47.
48.sinα
49.證明:(1)PA⊥底面ABCDPA丄BC又∠ACB=90°,BC丄AC則BC丄平面PAC(2)設(shè)點(diǎn)B到平面PCD的距離為hAB//CDAB//平面PCD又∠BAD=120°∠ADC=60°又AD=CD=1則△ADC為等邊三角形,且AC=1PA=
PD=PC=2
50.方程的兩個(gè)根為2和8,又∴又∵a4=a1+3d,∴d=2∵。
51.
52.(1)由題意知
53.
54.
55.(1)如圖,已知底面ABCD是正方形,∴CD⊥AD.∵PD⊥平面ABCD,又CD包含于平面ABCD,∴PD⊥CD.∵PD∩AD=D,∴CD⊥平面PAD,又PA包含于平面PAD,∴PA⊥CD.(2)解∵BC//AD,∴∠PAD即為異面直線PA與BC所成的角.由(1)知,PD⊥AD,在Rt△PAD中,PD=AD,故∠PAD=45°即為所求.
56.
57.(1)要使函數(shù)f
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 地板磚供貨合同協(xié)議
- 有利于買家的采購合同模板
- 簡單汽車租賃合同大全
- 銷售合同合同范本
- 滅火器材的快速使用與效果評估
- 基于機(jī)器學(xué)習(xí)的光子太赫茲通信系統(tǒng)中幾何整形技術(shù)研究
- 陰影環(huán)境下的全光函數(shù)采樣與新視點(diǎn)重構(gòu)研究
- 海拉爾盆地烏爾遜-貝爾凹陷油氣成藏過程及有利目標(biāo)預(yù)測
- 智能制造基地監(jiān)理合同(2篇)
- 智能家居公司合并合同(2篇)
- 加油站廉潔培訓(xùn)課件
- 2022版義務(wù)教育(生物學(xué))課程標(biāo)準(zhǔn)(附課標(biāo)解讀)
- 2023屆上海市松江區(qū)高三下學(xué)期二模英語試題(含答案)
- 誡子書教案一等獎(jiǎng)?wù)]子書教案
- 《民航服務(wù)溝通技巧》教案第16課民航服務(wù)人員平行溝通的技巧
- 深圳市物業(yè)專項(xiàng)維修資金管理系統(tǒng)操作手冊(電子票據(jù))
- 2023年鐵嶺衛(wèi)生職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析
- 起重機(jī)械安裝吊裝危險(xiǎn)源辨識、風(fēng)險(xiǎn)評價(jià)表
- 華北理工兒童口腔醫(yī)學(xué)教案06兒童咬合誘導(dǎo)
- 中國建筑項(xiàng)目管理表格
- 高一3班第一次月考總結(jié)班會課件
評論
0/150
提交評論