2022-2023學(xué)年廣東省中山市成考專升本高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第1頁
2022-2023學(xué)年廣東省中山市成考專升本高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第2頁
2022-2023學(xué)年廣東省中山市成考專升本高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第3頁
2022-2023學(xué)年廣東省中山市成考專升本高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第4頁
2022-2023學(xué)年廣東省中山市成考專升本高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第5頁
已閱讀5頁,還剩23頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年廣東省中山市成考專升本高等數(shù)學(xué)一自考預(yù)測試題(含答案)學(xué)校:________班級:________姓名:________考號:________一、單選題(20題)1.

2.

3.

4.

5.在空間直角坐標(biāo)系中,方程x2-4(y-1)2=0表示()。A.兩個平面B.雙曲柱面C.橢圓柱面D.圓柱面

6.

7.A.2B.2xC.2yD.2x+2y8.設(shè)函數(shù)在x=0處連續(xù),則等于()。A.2B.1/2C.1D.-29.下列關(guān)系正確的是()。A.

B.

C.

D.

10.若收斂,則下面命題正確的是()A.A.

B.

C.

D.

11.

12.微分方程y+y=0的通解為().A.A.

B.

C.

D.

13.若在(a,b)內(nèi)f'(x)<0,f''(x)<0,則f(x)在(a,b)內(nèi)()。A.單減,凸B.單增,凹C.單減,凹D.單增,凸14.曲線y=1nx在點(e,1)處切線的斜率為().A.A.e2

B.eC.1D.1/e

15.方程x2+2y2+3z2=1表示的二次曲面是

A.圓錐面B.旋轉(zhuǎn)拋物面C.球面D.橢球面

16.

17.設(shè)z=tan(xy),則等于()A.A.

B.

C.

D.

18.

A.0B.2C.4D.819.A.A.

B.

C.

D.

20.

二、填空題(20題)21.曲線y=1-x-x3的拐點是__________。

22.23.

24.25.

26.設(shè)函數(shù)y=x3,則y'=________.

27.

28.微分方程y"-y'=0的通解為______.

29.函數(shù)的間斷點為______.

30.

31.過M0(1,-1,2)且垂直于平面2x-y+3z-1=0的直線方程為.

32.

33.

34.

35.

36.

37.微分方程y'=0的通解為__________。

38.

39.

40.已知平面π:2x+y-3z+2=0,則過點(0,0,0)且與π垂直的直線方程為______.三、計算題(20題)41.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

42.43.求曲線在點(1,3)處的切線方程.44.求微分方程的通解.45.

46.47.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.

48.求微分方程y"-4y'+4y=e-2x的通解.

49.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.50.將f(x)=e-2X展開為x的冪級數(shù).

51.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?

52.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.53.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則54.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.55.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.56.證明:

57.

58.

59.

60.四、解答題(10題)61.62.求由曲線y=3-x2與y=2x,y軸所圍成的平面圖形的面積及該封閉圖形繞x軸旋轉(zhuǎn)一周所成旋轉(zhuǎn)體的體積.

63.

64.

65.設(shè)y=e-3x+x3,求y'。

66.

67.

68.

69.

70.求方程y''2y'+5y=ex的通解.五、高等數(shù)學(xué)(0題)71.某廠每天生產(chǎn)某產(chǎn)品q個單位時,總成本C(q)=0.5q2+36q+9800(元),問每天生產(chǎn)多少時,平均成本最低?

六、解答題(0題)72.

參考答案

1.B

2.D

3.D解析:

4.B

5.A

6.C

7.A

8.C本題考查的知識點為函數(shù)連續(xù)性的概念。由于f(x)在點x=0連續(xù),因此,故a=1,應(yīng)選C。

9.C本題考查的知識點為不定積分的性質(zhì)。

10.D本題考查的知識點為級數(shù)的基本性質(zhì).

由級數(shù)收斂的必要條件:若收斂,則必有,可知D正確.而A,B,C都不正確.

本題常有考生選取C,這是由于考生將級數(shù)收斂的定義存在,其中誤認(rèn)作是un,這屬于概念不清楚而導(dǎo)致的錯誤.

11.B

12.D本題考查的知識點為-階微分方程的求解.

可以將方程認(rèn)作可分離變量方程;也可以將方程認(rèn)作-階線性微分方程;還可以仿二階線性常系數(shù)齊次微分方程,并作為特例求解.

解法1將方程認(rèn)作可分離變量方程.

解法2將方程認(rèn)作-階線性微分方程.由通解公式可得

解法3認(rèn)作二階常系數(shù)線性齊次微分方程特例求解:

特征方程為r+1=0,

特征根為r=-1,

13.A∵f'(x)<0,f(x)單減;f''(x)<0,f(x)凸∴f(x)在(a,b)內(nèi)單減且凸。

14.D本題考查的知識點為導(dǎo)數(shù)的幾何意義.

由導(dǎo)數(shù)的幾何意義可知,若y=f(x)在點x0處可導(dǎo),則曲線),y=f(x)在點(x0,f(x0))處必定存在切線,且切線的斜率為f(x0).

由于y=lnx,可知可知應(yīng)選D.

15.D本題考查了二次曲面的知識點。

16.C解析:

17.B本題考查的知識點為偏導(dǎo)數(shù)運算.

由于z=tan(xy),因此

可知應(yīng)選A.

18.A解析:

19.B本題考查的知識點為定積分運算.

因此選B.

20.B

21.(01)

22.

23.x-arctanx+C;本題考查的知識點為不定積分的運算.

24.

25.

本題考查的知識點為導(dǎo)數(shù)的四則運算.

26.3x2本題考查了函數(shù)的導(dǎo)數(shù)的知識點。因為y=x3,所以y'=3x2

27.

28.y=C1+C2exy=C1+C2ex

解析:本題考查的知識點為二階級常系數(shù)線性微分方程的求解.

特征方程為r2-r=0,

特征根為r1=0,r2=1,

方程的通解為y=C1+C2ex.

29.本題考查的知識點為判定函數(shù)的間斷點.

僅當(dāng),即x=±1時,函數(shù)沒有定義,因此x=±1為函數(shù)的間斷點。

30.-4cos2x

31.

本題考查的知識點為直線方程的求解.

由于所求直線與平面垂直,因此直線的方向向量s可取為已知平面的法向量n=(2,-1,3).

由直線的點向式方程可知所求直線方程為

32.

33.

34.

本題考查的知識點為直線的方程和直線與直線的關(guān)系.

由于兩條直線平行的充分必要條件為它們的方向向量平行,因此可取所求直線的方向向量為(2,1,-1).由直線的點向式方程可知所求直線方程為

35.

解析:

36.

本題考查的知識點為不定積分的換元積分法.

37.y=C

38.

解析:

39.

40.

本題考查的知識點為直線的方程和平面與直線的關(guān)系.

由于直線與已知平面垂直,可知直線的方向向量s與平面的法向量n平行.可以取s=n=(2,1,-3),又已知直線過點(0,0,0),由直線的標(biāo)準(zhǔn)式方程可知

為所求.

41.

42.

43.曲線方程為,點(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

44.

45.

46.

47.由二重積分物理意義知

48.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,

49.

50.

51.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時,價格上漲1%需求量減少2.5%

52.函數(shù)的定義域為

注意

53.由等價無窮小量的定義可知

54.

55.

列表:

說明

56.

57.

58.由一階線性微分方程通解公式有

59.

60.

61.

62.所給曲線圍成的平面圖形如圖1-3所示.

解法1利用定積分求平面圖形的面積.由于的解為x=1,y=2,可得

解法2利用二重積分求平面圖形面積.由于

的解為x=1,y=2,

求旋轉(zhuǎn)體體積與解法1同.本題考查的知

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論