![2022年江蘇省鎮(zhèn)江市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第1頁](http://file4.renrendoc.com/view/5da2872944d36ff5559a6cf2b8cfa0a1/5da2872944d36ff5559a6cf2b8cfa0a11.gif)
![2022年江蘇省鎮(zhèn)江市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第2頁](http://file4.renrendoc.com/view/5da2872944d36ff5559a6cf2b8cfa0a1/5da2872944d36ff5559a6cf2b8cfa0a12.gif)
![2022年江蘇省鎮(zhèn)江市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第3頁](http://file4.renrendoc.com/view/5da2872944d36ff5559a6cf2b8cfa0a1/5da2872944d36ff5559a6cf2b8cfa0a13.gif)
![2022年江蘇省鎮(zhèn)江市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第4頁](http://file4.renrendoc.com/view/5da2872944d36ff5559a6cf2b8cfa0a1/5da2872944d36ff5559a6cf2b8cfa0a14.gif)
![2022年江蘇省鎮(zhèn)江市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第5頁](http://file4.renrendoc.com/view/5da2872944d36ff5559a6cf2b8cfa0a1/5da2872944d36ff5559a6cf2b8cfa0a15.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年江蘇省鎮(zhèn)江市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.設(shè)y=sinx,則y'|x=0等于().A.1B.0C.-1D.-2
2.當(dāng)a→0時(shí),2x2+3x是x的().A.A.高階無窮小B.等價(jià)無窮小C.同階無窮小,但不是等價(jià)無窮小D.低階無窮小
3.
4.
5.
6.
7.下列命題不正確的是()。
A.兩個(gè)無窮大量之和仍為無窮大量
B.上萬個(gè)無窮小量之和仍為無窮小量
C.兩個(gè)無窮大量之積仍為無窮大量
D.兩個(gè)有界變量之和仍為有界變量
8.
9.設(shè)Y=x2-2x+a,貝0點(diǎn)x=1()。A.為y的極大值點(diǎn)B.為y的極小值點(diǎn)C.不為y的極值點(diǎn)D.是否為y的極值點(diǎn)與a有關(guān)10.A.(-5,5)B.(-∞,0)C.(0,+∞)D.(-∞,+∞)
11.
12.半圓板的半徑為r,重為w,如圖所示。已知板的重心C離圓心的距離為在A、B、D三點(diǎn)用三根鉛垂繩懸掛于天花板上,使板處于水平位置,則三根繩子的拉力為()。
A.F1=0.38w
B.F2=0.23w
C.F3=0.59w
D.以上計(jì)算均正確
13.函數(shù)f(x)=5x在區(qū)間[-1,1]上的最大值是A.A.-(1/5)B.0C.1/5D.514.設(shè)f(x)為區(qū)間[a,b]上的連續(xù)函數(shù),則曲線y=f(x)與直線x=a,x=b,y=0所圍成的封閉圖形的面積為().A.A.
B.
C.
D.不能確定
15.政策指導(dǎo)矩陣是根據(jù)()將經(jīng)營(yíng)單值進(jìn)行分類的。
A.業(yè)務(wù)增長(zhǎng)率和相對(duì)競(jìng)爭(zhēng)地位
B.業(yè)務(wù)增長(zhǎng)率和行業(yè)市場(chǎng)前景
C.經(jīng)營(yíng)單位的競(jìng)爭(zhēng)能力與相對(duì)競(jìng)爭(zhēng)地位
D.經(jīng)營(yíng)單位的競(jìng)爭(zhēng)能力與市場(chǎng)前景吸引力
16.設(shè)D={(x,y){|x2+y2≤a2,a>0,y≥0),在極坐標(biāo)下二重積分(x2+y2)dxdy可以表示為()A.∫0πdθ∫0ar2dr
B.∫0πdθ∫0ar3drC.D.
17.
18.
19.()。A.e-2
B.e-2/3
C.e2/3
D.e2
20.方程x2+y2-2z=0表示的二次曲面是.
A.柱面B.球面C.旋轉(zhuǎn)拋物面D.橢球面二、填空題(20題)21.
22.
23.24.
25.曲線y=x3-3x+2的拐點(diǎn)是__________。
26.
27.28.
29.
30.
31.
32.
33.
34.
35.36.
37.
38.39.過坐標(biāo)原點(diǎn)且與平面2x-y+z+1=0平行的平面方程為______.40.級(jí)數(shù)的收斂區(qū)間為______.三、計(jì)算題(20題)41.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
42.
43.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
44.求微分方程的通解.45.
46.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
47.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.48.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).
49.
50.證明:
51.求微分方程y"-4y'+4y=e-2x的通解.
52.53.
54.求曲線在點(diǎn)(1,3)處的切線方程.55.56.將f(x)=e-2X展開為x的冪級(jí)數(shù).57.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.58.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.59.60.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則四、解答題(10題)61.求∫xlnxdx。
62.
63.
64.(本題滿分10分)
65.
66.
67.
68.69.
70.
五、高等數(shù)學(xué)(0題)71.設(shè)f(x)在x=0處有二階連續(xù)導(dǎo)數(shù)
則x=0是f(x)的()。
A.間斷點(diǎn)B.極大值點(diǎn)C.極小值點(diǎn)D.拐點(diǎn)六、解答題(0題)72.
參考答案
1.A由于
可知應(yīng)選A.
2.C本題考查的知識(shí)點(diǎn)為無窮小階的比較.
應(yīng)依定義考察
由此可知,當(dāng)x→0時(shí),2x3+3x是x的同階無窮小,但不是等價(jià)無窮小,故知應(yīng)選C.
本題應(yīng)明確的是:考察當(dāng)x→x0時(shí)無窮小盧與無窮小α的階的關(guān)系時(shí),要判定極限
這里是以α為“基本量”,考生要特別注意此點(diǎn),才能避免錯(cuò)誤.
3.C
4.D
5.B
6.D
7.A∵f(x)→∞;g(x)→∞∴f(x)+g(x)是不定型,不一定是無窮大。
8.C解析:
9.B本題考查的知識(shí)點(diǎn)為一元函數(shù)的極值。求解的一般步驟為:先求出函數(shù)的一階導(dǎo)數(shù),令偏導(dǎo)數(shù)等于零,確定函數(shù)的駐點(diǎn).再依極值的充分條件來判定所求駐點(diǎn)是否為極值點(diǎn)。由于y=x2-2x+a,可由y'=2x-2=0,解得y有唯一駐點(diǎn)x=1.又由于y"=2,可得知y"|x=1=2>0。由極值的充分條件可知x=1為y的極小值點(diǎn),故應(yīng)選B。如果利用配方法,可得y=(x-1)2+a-1≥a-1,且y|x=1=a-1,由極值的定義可知x=1為y的極小值點(diǎn),因此選B。
10.C本題考查的知識(shí)點(diǎn)為判定函數(shù)的單調(diào)性。
11.C解析:
12.A
13.Df(x)=5x,f'(x)=5xln5>0,可知f(x)在[-1,1]上單調(diào)增加,最大值為f(1)=5,所以選D。
14.B本題考查的知識(shí)點(diǎn)為定積分的幾何意義.
由定積分的幾何意義可知應(yīng)選B.
常見的錯(cuò)誤是選C.如果畫個(gè)草圖,則可以避免這類錯(cuò)誤.
15.D解析:政策指導(dǎo)矩陣根據(jù)對(duì)市場(chǎng)前景吸引力和經(jīng)營(yíng)單位的相對(duì)競(jìng)爭(zhēng)能力的劃分,可把企業(yè)的經(jīng)營(yíng)單位分成九大類。
16.B因?yàn)镈:x2+y2≤a2,a>0,y≥0,令則有r2≤a2,0≤r≤a,0≤θ≤π,所以(x2+y2)dxdy=∫0πdθ∫0ar2.rdr=∫0πdθ∫0ar3.rdr故選B。
17.C解析:
18.B解析:
19.B
20.C本題考查了二次曲面的知識(shí)點(diǎn)。x2+y2-2z=0可化為x2/2+y2/2=z,故表示的是旋轉(zhuǎn)拋物面。
21.
22.63/1223.
本題考查的知識(shí)點(diǎn)為定積分計(jì)算.
可以利用變量替換,令u=2x,則du=2dx,當(dāng)x=0時(shí),u=0;當(dāng)x=1時(shí),u=2.因此
24.
25.(02)
26.3x2siny3x2siny解析:
27.
28.
29.
30.
31.
32.2本題考查了定積分的知識(shí)點(diǎn)。
33.
解析:
34.2yex+x
35.
本題考查的知識(shí)點(diǎn)為定積分的換元法.
解法1
解法2
令t=1+x2,則dt=2xdx.
當(dāng)x=1時(shí),t=2;當(dāng)x=2時(shí),t=5.
這里的錯(cuò)誤在于進(jìn)行定積分變量替換,積分區(qū)間沒做變化.
36.本題考查的知識(shí)點(diǎn)為微分的四則運(yùn)算.
注意若u,v可微,則
37.38.139.已知平面的法線向量n1=(2,-1,1),所求平面與已知平面平行,可設(shè)所求平面方程為2x-y+z+D=0,將x=0,y=0,z=0代入上式,可得D=0,因此所求平面方程為2x-y+z=0.40.(-∞,+∞)本題考查的知識(shí)點(diǎn)為求冪級(jí)數(shù)的收斂區(qū)間.
41.由二重積分物理意義知
42.
43.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
44.
45.
則
46.
47.
48.
列表:
說明
49.
50.
51.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
52.
53.由一階線性微分方程通解公式有
54.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
55.
56.
57.
58.函數(shù)的定義域?yàn)?/p>
注意
59.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年神經(jīng)科手術(shù)器械項(xiàng)目可行性研究報(bào)告
- 2025年棉氨綸背心式健美服項(xiàng)目可行性研究報(bào)告
- 2025年無粉防靜電紅色指套項(xiàng)目可行性研究報(bào)告
- 2025年扁圓濾芯項(xiàng)目可行性研究報(bào)告
- 2025年固定式遙控插座項(xiàng)目可行性研究報(bào)告
- 2025年南方花柜項(xiàng)目可行性研究報(bào)告
- 2025年絲網(wǎng)鋁框項(xiàng)目可行性研究報(bào)告
- 2025年CWDM解決方案項(xiàng)目可行性研究報(bào)告
- 2025至2030年鎖花片項(xiàng)目投資價(jià)值分析報(bào)告
- 2025至2030年行走馬達(dá)油封項(xiàng)目投資價(jià)值分析報(bào)告
- 臟腑辨證與護(hù)理
- 虛擬化與云計(jì)算技術(shù)應(yīng)用實(shí)踐項(xiàng)目化教程 教案全套 第1-14周 虛擬化與云計(jì)算導(dǎo)論-騰訊云服務(wù)
- 甲基丙烯酸甲酯生產(chǎn)工藝畢業(yè)設(shè)計(jì)設(shè)備選型與布置模板
- 徐金桂行政法與行政訴訟法新講義
- 瀝青拌合設(shè)備結(jié)構(gòu)認(rèn)知
- 2023年北京高考政治真題試題及答案
- 復(fù)旦中華傳統(tǒng)體育課程講義05木蘭拳基本技術(shù)
- 北師大版五年級(jí)上冊(cè)數(shù)學(xué)教學(xué)課件第5課時(shí) 人民幣兌換
- 工程回訪記錄單
- 住房公積金投訴申請(qǐng)書
- 檢驗(yàn)科生物安全風(fēng)險(xiǎn)評(píng)估報(bào)告
評(píng)論
0/150
提交評(píng)論