2022-2023學(xué)年廣東省珠海市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第1頁
2022-2023學(xué)年廣東省珠海市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第2頁
2022-2023學(xué)年廣東省珠海市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第3頁
2022-2023學(xué)年廣東省珠海市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第4頁
2022-2023學(xué)年廣東省珠海市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年廣東省珠海市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.設(shè)lnx是f(x)的一個(gè)原函數(shù),則f'(x)=()。A.

B.

C.

D.

2.

3.

4.設(shè)函數(shù)在x=0處連續(xù),則等于()。A.2B.1/2C.1D.-2

5.下列函數(shù)中,在x=0處可導(dǎo)的是()

A.y=|x|

B.

C.y=x3

D.y=lnx

6.

7.

8.

9.設(shè)f(x)為區(qū)間[a,b]上的連續(xù)函數(shù),則曲線y=f(x)與直線x=a,x=b,y=0所圍成的封閉圖形的面積為()。A.

B.

C..

D.不能確定

10.平面π1:x-2y+3z+1=0,π2:2x+y+2=0的位置關(guān)系為().A.A.垂直B.斜交C.平行D.重合

11.設(shè)f(x)的一個(gè)原函數(shù)為x2,則f'(x)等于().

A.

B.x2

C.2x

D.2

12.

A.6xarctanx2

B.6xtanx2+5

C.5

D.6xcos2x

13.方程2x2-y2=1表示的二次曲面是()。A.球面B.柱面C.旋轉(zhuǎn)拋物面D.圓錐面

14.A.dx+dy

B.

C.

D.2(dx+dy)

15.設(shè)平面則平面π1與π2的關(guān)系為().A.A.平行但不重合B.重合C.垂直D.既不平行,也不垂直16.

17.A.A.1

B.1/m2

C.m

D.m2

18.設(shè)有直線當(dāng)直線l1與l2平行時(shí),λ等于().

A.1B.0C.-1/2D.-1

19.下列等式成立的是()。

A.

B.

C.

D.

20.

A.

B.

C.

D.

二、填空題(20題)21.

22.23.________.24.直線的方向向量為________。25.設(shè)y=1nx,則y'=__________.

26.

27.

28.

29.

30.方程cosxsinydx+sinxcosydy=0的通解為___________.

31.若∫x0f(t)dt=2e3x-2,則f(x)=________。

32.

33.

34.

35.

36.

37.

38.

39.

40.三、計(jì)算題(20題)41.42.

43.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

44.

45.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.

46.

47.

48.證明:49.研究級(jí)數(shù)的收斂性(即何時(shí)絕對收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.50.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.51.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則52.53.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).54.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

55.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.

56.求微分方程y"-4y'+4y=e-2x的通解.

57.求曲線在點(diǎn)(1,3)處的切線方程.58.求微分方程的通解.59.

60.將f(x)=e-2X展開為x的冪級(jí)數(shù).四、解答題(10題)61.62.求在區(qū)間[0,π]上由曲線y=sinx與y=0所圍成的圖形的面積A及該圖形繞x軸旋轉(zhuǎn)一周所得的旋轉(zhuǎn)體的體積Vx。

63.

64.

65.設(shè)y=e-3x+x3,求y'。

66.設(shè)ex-ey=siny,求y’

67.

68.

69.

70.五、高等數(shù)學(xué)(0題)71.分析

在x=0處的可導(dǎo)性

六、解答題(0題)72.求曲線的漸近線.

參考答案

1.C

2.B

3.C解析:

4.C本題考查的知識(shí)點(diǎn)為函數(shù)連續(xù)性的概念。由于f(x)在點(diǎn)x=0連續(xù),因此,故a=1,應(yīng)選C。

5.C選項(xiàng)A中,y=|x|,在x=0處有尖點(diǎn),即y=|x|在x=0處不可導(dǎo);選項(xiàng)B中,在x=0處不存在,即在x=0處不可導(dǎo);選項(xiàng)C中,y=x3,y'=3x2處處存在,即y=x3處處可導(dǎo),也就在x=0處可導(dǎo);選項(xiàng)D中,y=lnx,在x=0處不存在,y=lnx在x=0處不可導(dǎo)(事實(shí)上,在x=0點(diǎn)就沒定義).

6.D

7.C

8.D

9.B本題考查的知識(shí)點(diǎn)為定積分的幾何意義。由定積分的幾何意義可知應(yīng)選B。常見的錯(cuò)誤是選C。如果畫個(gè)草圖,則可以避免這類錯(cuò)誤。

10.A本題考查的知識(shí)點(diǎn)為兩平面的關(guān)系.

兩平面的關(guān)系可由兩平面的法向量n1,n2間的關(guān)系確定.

11.D解析:本題考查的知識(shí)點(diǎn)為原函數(shù)的概念.

由于x2為f(x)的原函數(shù),因此

f(x)=(x2)'=2x,

因此

f'(x)=2.

可知應(yīng)選D.

12.C

13.B

14.C

15.C本題考查的知識(shí)點(diǎn)為兩平面的位置關(guān)系.

由于平面π1,π2的法向量分別為

可知n1⊥n2,從而π1⊥π2.應(yīng)選C.

16.D

17.D本題考查的知識(shí)點(diǎn)為重要極限公式或等價(jià)無窮小代換.

解法1由可知

解法2當(dāng)x→0時(shí),sinx~x,sinmx~mx,因此

18.C解析:

19.C

20.D

故選D.

21.2

22.

23.24.直線l的方向向量為

25.

26.

解析:

27.(-∞.2)

28.

本題考查的知識(shí)點(diǎn)為二元函數(shù)的偏導(dǎo)數(shù).

29.

30.sinx·siny=Csinx·siny=C本題考查了可分離變量微分方程的通解的知識(shí)點(diǎn).

由cosxsinydx+sinxcosydy=0,知sinydsinx+sinxdsiny=-0,即d(sinx·siny)=0,兩邊積分得sinx·siny=C,這就是方程的通解.

31.6e3x

32.e2

33.

34.

本題考查的知識(shí)點(diǎn)為可分離變量方程的求解.

可分離變量方程求解的一般方法為:

(1)變量分離;

(2)兩端積分.

35.<0

36.

37.y=2x+138.0

本題考查的知識(shí)點(diǎn)為無窮小量的性質(zhì).

39.

40.yf''(xy)+f'(x+y)+yf''(x+y)

41.

42.

43.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

44.

45.

46.

47.由一階線性微分方程通解公式有

48.

49.

50.函數(shù)的定義域?yàn)?/p>

注意

51.由等價(jià)無窮小量的定義可知

52.

53.

列表:

說明

54.

55.由二重積分物理意義知

56.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,

57.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

58.

59.

60.

61.

62.

63.64.利用洛必達(dá)法則原式,接下去有兩種解法:解法1利用等價(jià)無窮小代換.

解法2利用洛必達(dá)法則.

本題考查的知識(shí)點(diǎn)為兩個(gè):“”型極限和可變上限積分的求導(dǎo).

對于可變上(下)限積分形式的極限,如果為“”型或“”型,通常利用洛必達(dá)法則求解,將其轉(zhuǎn)化為不含可變上(下)限積分形式的極限.

65.

66.

67.

68.

69.

70.解

71.

在x=0處的導(dǎo)數(shù)值

∴f"(0)=(0)=1;f+"(0)=0;∴f"(0)不存在。

在x=0處的導(dǎo)數(shù)值

∴f"(0)=(0)=1;f+"(0)=0;∴f"(0)不存在。72.由于

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論