2022年遼寧省大連市普通高校對口單招數(shù)學(xué)自考真題(含答案)_第1頁
2022年遼寧省大連市普通高校對口單招數(shù)學(xué)自考真題(含答案)_第2頁
2022年遼寧省大連市普通高校對口單招數(shù)學(xué)自考真題(含答案)_第3頁
2022年遼寧省大連市普通高校對口單招數(shù)學(xué)自考真題(含答案)_第4頁
2022年遼寧省大連市普通高校對口單招數(shù)學(xué)自考真題(含答案)_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022年遼寧省大連市普通高校對口單招數(shù)學(xué)自考真題(含答案)學(xué)校:________班級:________姓名:________考號:________

一、單選題(10題)1.A=,是AB=的()A.充分條件B.必要條件C.充要條件D.既不充分也不必要條件

2.已知集合,則等于()A.

B.

C.

D.

3.等差數(shù)列中,a1=3,a100=36,則a3+a98=()A.42B.39C.38D.36

4.用簡單隨機(jī)抽樣的方法從含有100個個體的總體中依次抽取一個容量為5的樣本,則個體m被抽到的概率為()A.1/100B.1/20C.1/99D.1/50

5.{已知集合A={-1,0,1},B={x|-1≤x<1}則A∩B=()A.{0}B.{-1,0}C.{0,1}D.{-1,0,1}

6.直線ax+by+b-a=0與圓x2+y2-x-2=0的位置關(guān)系是()A.相離B.相交C.相切D.無關(guān)

7.若logmn=-1,則m+3n的最小值是()A.

B.

C.2

D.5/2

8.橢圓的中心在原點(diǎn),焦距為4,一條準(zhǔn)線為x=-4,則該橢圓的方程為()A.x2/16+y2/12=1

B.x2/12+y2/8=1

C.x2/8+y2/4=1

D.x2/12+y2/4=1

9.過點(diǎn)M(2,1)的直線與x軸交與P點(diǎn),與y軸交與交與Q點(diǎn),且|MP|=|MQ|,則此直線方程為()A.x-2y+3=0B.2x-y-3=0C.2x+y-5=0D.x+2y-4=0

10.A.-1B.-4C.4D.2

二、填空題(10題)11.若=_____.

12.若f(X)=,則f(2)=

13.

14.拋物線的焦點(diǎn)坐標(biāo)是_____.

15.

16.己知0<a<b<1,則0.2a

0.2b。

17.

18.若事件A與事件互為對立事件,則_____.

19.

20.展開式中,x4的二項式系數(shù)是_____.

三、計算題(5題)21.有四個數(shù),前三個數(shù)成等差數(shù)列,公差為10,后三個數(shù)成等比數(shù)列,公比為3,求這四個數(shù).

22.求焦點(diǎn)x軸上,實半軸長為4,且離心率為3/2的雙曲線方程.

23.解不等式4<|1-3x|<7

24.在等差數(shù)列{an}中,前n項和為Sn

,且S4

=-62,S6=-75,求等差數(shù)列{an}的通項公式an.

25.已知函數(shù)f(x)的定義域為{x|x≠0},且滿足.(1)求函數(shù)f(x)的解析式;(2)判斷函數(shù)f(x)的奇偶性,并簡單說明理由.

四、簡答題(10題)26.計算

27.求到兩定點(diǎn)A(-2,0)(1,0)的距離比等于2的點(diǎn)的軌跡方程

28.以點(diǎn)(0,3)為頂點(diǎn),以y軸為對稱軸的拋物線的準(zhǔn)線與雙曲線3x2-y2+12=0的一條準(zhǔn)線重合,求拋物線的方程。

29.如圖,四棱錐P-ABCD中,PA丄底面ABCD,AB//CD,AD=CD=1,BAD=120°,PA=,ACB=90°。(1)求證:BC丄平面PAC。(2)求點(diǎn)B到平面PCD的距離。

30.證明:函數(shù)是奇函數(shù)

31.拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)為橢圓的左焦點(diǎn),過點(diǎn)M(-1,-1)引拋物線的弦使M為弦的中點(diǎn),求弦長

32.已知集合求x,y的值

33.化簡a2sin(-1350°)+b2tan405°-(a-b)2cot765°-2abcos(-1080°)

34.在ABC中,AC丄BC,ABC=45°,D是BC上的點(diǎn)且ADC=60°,BD=20,求AC的長

35.等比數(shù)列{an}的前n項和Sn,已知S1,S3,S2成等差數(shù)列(1)求數(shù)列{an}的公比q(2)當(dāng)a1-a3=3時,求Sn

五、解答題(10題)36.已知函數(shù)f(x)=sinx+cosx,x∈R.(1)求函數(shù)f(x)的最小正周期和最大值;(2)函數(shù)y=f(x)的圖象可由y=sinx的圖象經(jīng)過怎樣的變換得到?

37.已知{an}為等差數(shù)列,且a3=-6,a6=0.(1)求{an}的通項公式;(2)若等比數(shù)列{bn}滿足b1=-8,b2=a1+a2+a3,求{bn}的前n項和公式.

38.

39.設(shè)橢圓x2/a2+y2/b2的方程為點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(a,0),點(diǎn)B的坐標(biāo)為(0,b),點(diǎn)M在線段AB上,滿足|BM|=2|MA|直線OM的斜率為.(1)求E的離心率e(2)設(shè)點(diǎn)C的坐標(biāo)為(0,-b),N為線段AC的中點(diǎn),證明:MN丄AB

40.已知函數(shù)f(x)=4cosxsin(x+π/6)-1.(1)求f(x)的最小正周期;(2)求f(x)在區(qū)間[-π/6,π/4]上的最大值和最小值.

41.已知函數(shù)f(x)=log21+x/1-x.(1)求f(x)的定義域;(2)討論f(x)的奇偶性;(3)用定義討論f(x)的單調(diào)性.

42.

43.已知函數(shù)(1)求f(x)的最小正周期及其最大值;(2)求f(x)的單調(diào)遞增區(qū)間.

44.已知橢圓C:x2/a2+y2/b2=1(a>b>0)的兩焦點(diǎn)分別F1,F2點(diǎn)P在橢圓C上,且∠PF2F1=90°,|PF1|=6,|PF2|=2.(1)求橢圓C的方程;(2)是否存在直線L與橢圓C相交于A、B兩點(diǎn),且使線段AB的中點(diǎn)恰為圓M:x2+y2+4x-2y=0的圓心,如果存在,求直線l的方程;如果不存在,請說明理由.

45.已知等比數(shù)列{an}的公比q==2,且a2,a3+1,a4成等差數(shù)列.⑴求a1及an;(2)設(shè)bn=an+n,求數(shù)列{bn}前5項和S5.

六、單選題(0題)46.計算sin75°cos15°-cos75°sin15°的值等于()A.0

B.1/2

C.

D.

參考答案

1.AA是空集可以得到A交B為空集,但是反之不成立,因此時充分條件。

2.B由函數(shù)的換算性質(zhì)可知,f-1(x)=-1/x.

3.B

4.B簡單隨機(jī)抽樣方法.總體含有100個個體,則每個個體被抽到的概率為1/100,所以以簡單隨機(jī)抽樣的方法從該總體中抽取一個容量為5的樣本,則指定的某個個體被抽到的概率為1/100×5=1/20.

5.B集合的運(yùn)算.A中的元素-1,0在B中,1不在B中,所以A∩B={-1,0}.

6.B

7.B對數(shù)性質(zhì)及基本不等式求最值.由㏒mn=-1,得m-1==n,則mn=1.由于m>0,n>0,∴m+3n≥2.

8.C橢圓的標(biāo)準(zhǔn)方程.橢圓的焦距為4,所以2c=4,c=2因為準(zhǔn)線為x=-4,所以橢圓的焦點(diǎn)在x軸上,且-a2/c=-4,所以a2=4c=8,b2=a2-c2=8-4=4,所以橢圓的方程為x2/8+y2/4+=1

9.D

10.C

11.

12.00。將x=2代入f(x)得,f(2)=0。

13.{-1,0,1,2}

14.

,因為p=1/4,所以焦點(diǎn)坐標(biāo)為.

15.-1/16

16.>由于函數(shù)是減函數(shù),因此左邊大于右邊。

17.10函數(shù)值的計算.由=3,解得a=10.

18.1有對立事件的性質(zhì)可知,

19.1<a<4

20.7

21.

22.解:實半軸長為4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20雙曲線方程為

23.

24.解:設(shè)首項為a1、公差為d,依題意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23

25.

26.

27.

28.由題意可設(shè)所求拋物線的方程為準(zhǔn)線方程為則y=-3代入得:p=12所求拋物線方程為x2=24(y-3)

29.證明:(1)PA⊥底面ABCDPA丄BC又∠ACB=90°,BC丄AC則BC丄平面PAC(2)設(shè)點(diǎn)B到平面PCD的距離為hAB//CDAB//平面PCD又∠BAD=120°∠ADC=60°又AD=CD=1則△ADC為等邊三角形,且AC=1PA=

PD=PC=2

30.證明:∵∴則,此函數(shù)為奇函數(shù)

31.

32.

33.原式=

34.在指數(shù)△ABC中,∠ABC=45°,AC=BC在直角△ADC中,∠ADC=60°,CD=ACCD=BC-BD,BD=20則,則

35.

36.(1)函數(shù)f(x)=sinx+cosx=sin(x+π/4),∴f(x)的最小正周期是2π,最大值是(2)將y=sinx的圖象向左平行移動π/4個單位,得到sin(x+π/4)的圖象,再將y==sin(x+π/4)的圖象上每-點(diǎn)的縱坐標(biāo)伸長到原來的倍,橫坐標(biāo)不變,所得圖象即為函數(shù)y=f(x)的圖象.

37.(1)設(shè)等差數(shù)列{an}的公差為d因為a3=-6,a5=0,所以解得a1=-10,d=2所以an=-10+(n-1)×2=2n-12.(2)設(shè)等比數(shù)列{bn}的公比為q.因為b2=a1+a2+a3=-24,b1=-8,所以-8q=-24,q=3.所以數(shù)列{bn}的前n項和公式為Sn=b1(1-qn)/1-q=4(1-3n)

38.

39.

40.

41.(1)要使函數(shù)f(x)=㏒21+x/1-x有意義,則須1+x/1-x>0解得-1<x<1,所以f(x)的定義域為{x|-1<x<1}.(2)因為f(x)的定義域為{x|-1<x<1},且f(-x)=㏒2(1+x/1-x)-1=-㏒21+x/1-x=-f(x).所以f(x)是定義在(-1,1)上的奇函數(shù).(3)設(shè)-1<x1<x2<1,則f(x1)-f(x2)=log1+x1/1+x2=㏒(1+x1)(1-x2)f(1-x1)(1+x2)∵-1<x1<x2<1

42

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論