![張量分析翻譯 英文原文_第1頁(yè)](http://file4.renrendoc.com/view/de6499010310a70c495a79aea30851b4/de6499010310a70c495a79aea30851b41.gif)
![張量分析翻譯 英文原文_第2頁(yè)](http://file4.renrendoc.com/view/de6499010310a70c495a79aea30851b4/de6499010310a70c495a79aea30851b42.gif)
![張量分析翻譯 英文原文_第3頁(yè)](http://file4.renrendoc.com/view/de6499010310a70c495a79aea30851b4/de6499010310a70c495a79aea30851b43.gif)
![張量分析翻譯 英文原文_第4頁(yè)](http://file4.renrendoc.com/view/de6499010310a70c495a79aea30851b4/de6499010310a70c495a79aea30851b44.gif)
![張量分析翻譯 英文原文_第5頁(yè)](http://file4.renrendoc.com/view/de6499010310a70c495a79aea30851b4/de6499010310a70c495a79aea30851b45.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1/1
張量分析翻譯英文原文
Tensor
Tensorsaregeometricobjectsthatdescribelinear
relationsbetweenvectors,scalars,andothertensors.
Elementaryexamplesofsuchrelationsincludethe
dotproduct,thecrossproduct,andlinear
maps.Vectorsandscalarsthemselvesarealsotensors.
Atensorcanberepresentedasamulti-dimensional
arrayofnumericalvalues.Theorder(alsodegreeor
rank)ofatensoristhedimensionalityofthearray
neededtorepresentit,orequivalently,thenumberof
indicesneededtolabelacomponentofthatarray.Forexample,alinearmapcanberepresentedbyamatrix,a2-dimensionalarray,andthereforeisa2nd-ordertensor.Avectorcanberepresentedasa1-dimensionalarrayandisa
1st-ordertensor.Scalarsaresinglenumbersand
arethus0th-ordertensors.
Tensorsareusedtorepresentcorrespondencesbetweensetsofgeometricvectors.Forexample,theCauchystresstensorTtakesadirectionvasinputandproducesthestressT(v)onthesurface
normaltothisvectorforoutputthusexpressing
arelationshipbetweenthesetwovectors,showninthefigure(right).
Becausetheyexpressarelationshipbetweenvectors,tensorsthemselvesmustbe
independentofaparticularchoiceofcoordinatesystem.Takingacoordinatebasisorframeofreferenceandapplyingthetensortoitresultsinanorganizedmultidimensionalarrayrepresentingthetensorinthatbasis,orframeofreference.Thecoordinateindependenceofatensorthentakestheformofa"covariant"transformationlawthatrelatesthearraycomputedinonecoordinatesystemtothatcomputedinanotherone.Thistransformationlawisconsideredtobebuiltintothenotionofatensorinageometricorphysicalsetting,andthepreciseformofthetransformationlawdeterminesthetype(orvalence)ofthetensor.
Tensorsareimportantinphysicsbecausetheyprovideaconcisemathematicalframeworkforformulatingandsolvingphysicsproblemsinareassuchaselasticity,fluidmechanics,andgeneralrelativity.TensorswerefirstconceivedbyTullioLevi-CivitaandGregorioRicci-Curbastro,whocontinuedtheearlierworkofBernhardRiemannandElwinBrunoChristoffelandothers,aspartoftheabsolutedifferentialcalculus.TheconceptenabledanalternativeformulationoftheintrinsicdifferentialgeometryofamanifoldintheformoftheRiemanncurvaturetensor.[1]Cauchystresstensor,asecond-ordertensor.Thetensor'scomponents,inathree-dimensionalCartesiancoordinatesystem,formthematrixwhosecolumnsarethestresses(forcesperunitarea)actingonthee1,e2,ande3facesofthecube.
History
TheconceptsoflatertensoranalysisarosefromtheworkofCarlFriedrichGaussindifferentialgeometry,andtheformulationwasmuchinfluencedbythetheoryofalgebraicformsandinvariantsdevelopedduringthemiddleofthenineteenthcentury.[2]Theword"tensor"itselfwasintroducedin1846byWilliamRowanHamilton[3]todescribesomethingdifferentfromwhatisnowmeantbyatensor.[Note1]ThecontemporaryusagewasbroughtinbyWoldemarVoigtin1898.[4]
Tensorcalculuswasdevelopedaround1890byGregorioRicci-Curbastrounderthetitleabsolutedifferentialcalculus,andoriginallypresentedbyRicciin1892.[5]ItwasmadeaccessibletomanymathematiciansbythepublicationofRicciandTullioLevi-Civita's1900classictextMéthodesdecalculdifférentielabsoluetleursapplications(Methodsofabsolutedifferentialcalculusandtheirapplications).[6]
Inthe20thcentury,thesubjectcametobeknownastensoranalysis,andachievedbroaderacceptancewiththeintroductionofEinstein'stheoryofgeneralrelativity,around1915.Generalrelativityisformulatedcompletelyinthelanguageoftensors.Einsteinhadlearnedaboutthem,withgreatdifficulty,fromthegeometerMarcelGrossmann.[7]Levi-CivitatheninitiatedacorrespondencewithEinsteintocorrectmistakesEinsteinhadmadeinhisuseoftensoranalysis.Thecorrespondencelasted1915–17,andwascharacterizedbymutualrespect:
Iadmiretheeleganceofyourmethodofcomputation;itmustbenicetoridethroughthesefieldsuponthehorseoftruemathematicswhilethelikeofushavetomakeourwaylaboriouslyonfoot.
—AlbertEinstein,TheItalianMathematiciansofRelativity[8]
Tensorswerealsofoundtobeusefulinotherfieldssuchascontinuummechanics.Somewell-knownexamplesoftensorsindifferentialgeometryarequadraticformssuchasmetrictensors,andtheRiemanncurvaturetensor.TheexterioralgebraofHermannGrassmann,fromthemiddleofthenineteenthcentury,isitselfatensortheory,andhighlygeometric,butitwassometimebeforeitwasseen,withthetheoryofdifferentialforms,asnaturallyunifiedwithtensorcalculus.TheworkofélieCartanmadedifferentialformsoneofthebasickindsoftensorsusedinmathematics.Fromaboutthe1920sonwards,itwasrealisedthattensorsplayabasicroleinalgebraictopology(forexampleintheKünneththeorem).[citationneeded]Correspondinglytherearetypesoftensorsatworkinmanybranchesofabstractalgebra,particularlyinhomologicalalgebraandrepresentationtheory.Multilinearalgebracanbedevelopedingreatergeneralitythanforscalarscomingfromafield,butthetheoryisthencertainlylessgeometric,andcomputationsmoretechnicalandlessalgorithmic.[clarificationneeded]Tensorsaregeneralizedwithincategorytheoryby
meansoftheconceptofmonoidalcategory,fromthe1960s.
Definition
Thereareseveralapproachestodefiningtensors.Althoughseeminglydifferent,theapproachesjustdescribethesamegeometricconceptusingdifferentlanguagesandatdifferentlevelsofabstraction.
Asmultidimensionalarrays
Justasascalarisdescribedbyasinglenumber,andavectorwithrespecttoagivenbasisisdescribedbyanarrayofonedimension,anytensorwithrespecttoabasisisdescribedbyamultidimensionalarray.Thenumbersinthearrayareknownasthescalarcomponentsofthetensororsimplyitscomponents.Theyaredenotedbyindicesgivingtheirpositioninthearray,insubscriptandsuperscript,afterthesymbolicnameofthetensor.Thetotalnumberofindicesrequiredtouniquelyselecteachcomponentisequaltothedimensionofthearray,andiscalledtheorderortherankofthetensor.[Note2]Forexample,theentriesofanorder2tensorTwouldbedenotedTij,whereiandjareindicesrunningfrom1tothedimensionoftherelatedvectorspace.[Note3]
Justasthecomponentsofavectorchangewhenwechangethebasisofthevectorspace,theentriesofatensoralsochangeundersuchatransformation.Eachtensorcomesequippedwithatransformationlawthatdetailshowthecomponentsofthetensorrespondtoachangeofbasis.Thecomponentsofavectorcanrespondintwodistinctwaystoachangeofbasis(seecovarianceandcontravarianceofvectors),
wherethenewbasisvectorsareexpressedintermsoftheoldbasisvectorsas,
whereRijisamatrixandinthesecondexpressionthesummationsignwassuppressed(anotationalconvenienceintroducedbyEinsteinthatwillbeusedthroughoutthisarticle).Thecomponents,vi,ofaregular(orcolumn)vector,v,transformwiththeinverseofthematrixR,
wherethehatdenotesthecomponentsinthenewbasis.Whilethecomponents,wi,ofacovector(orrowvector),wtransformwiththematrixRitself,
Thecomponentsofatensortransforminasimilarmannerwithatransformationmatrixforeachindex.Ifanindextransformslikeavectorwiththeinverseofthebasistransformation,itiscalledcontravariantandistraditionallydenotedwithanupperindex,whileanindexthattransformswiththebasistransformationitselfiscalledcovariantandisdenotedwithalowerindex.Thetransformationlawforanorder-mtensorwithncontravariantindicesandm?ncovariantindicesisthusgivenas,
Suchatensorissaidtobeoforderortype(n,m?n).[Note4]Thisdiscussionmotivatesthefollowingformaldefinition:[9]
Definition.Atensoroftype(n,m?n)isanassignmentofamultidimensionalarray
toeachbasisf=(e1,...,eN)suchthat,ifweapplythechangeofbasis
thenthemultidimensionalarrayobeysthetransformationlaw
ThedefinitionofatensorasamultidimensionalarraysatisfyingatransformationlawtracesbacktotheworkofRicci.[1]Nowadays,thisdefinitionisstillusedinsomephysicsandengineeringtextbooks.[10][11]
Tensorfields
Mainarticle:Tensorfield
Inmanyapplications,especiallyindifferentialgeometryandphysics,itisnaturaltoconsideratensorwithcomponentswhicharefunctions.Thiswas,infact,thesettingofRicci'soriginalwork.Inmodernmathematicalterminologysuchanobjectiscalledatensorfield,buttheyareoftensimplyreferredtoastensorsthemselves.[1]
Inthiscontextthedefiningtransformationlawtakesadifferentform.The"basis"forthetensorfieldisdeterminedbythecoordinatesoftheunderlyingspace,andthe
definingtransformationlawisexpressedintermsofpartialderivativesofthe
coordinatefunctions,,definingacoordinatetransformation,[1]
Asmultilinearmaps
Adownsidetothedefinitionofatensorusingthemultidimensionalarrayapproachisthatitisnotapparentfromthedefinitionthatthedefinedobjectisindeedbasisindependent,asisexpectedfromanintrinsicallygeometricobject.Althoughitispossibletoshowthattransformationlawsindeedensureindependencefromthebasis,sometimesamoreintrinsicdefinitionispreferred.Oneapproachistodefineatensorasamultilinearmap.Inthatapproachatype(n,m)tensorTisdefinedasamap,
whereVisavectorspaceandV*isthecorrespondingdualspaceofcovectors,whichislinearineachofitsarguments.
ByapplyingamultilinearmapToftype(n,m)toabasis{ej}forVandacanonicalcobasis{εi}forV*,
ann+mdimensionalarrayofcomponentscanbeobtained.Adifferentchoiceofbasiswillyielddifferentcomponents.But,becauseTislinearinallofitsarguments,thecomponentssatisfythetensortransformationlawusedinthemultilineararraydefinition.ThemultidimensionalarrayofcomponentsofTthusformatensoraccordingtothatdefinition.Moreover,suchanarraycanberealisedasthecomponentsofsomemultilinearmapT.Thismotivatesviewingmultilinearmapsastheintrinsicobjectsunderlyingtensors.
Usingtensorproducts
Mainarticle:Tensor(intrinsicdefinition)
Forsomemathematicalapplications,amoreabstractapproachissometimesuseful.Thiscanbeachievedbydefiningtensorsintermsofelementsoftensorproductsofvectorspaces,whichinturnaredefinedthroughauniversalproperty.Atype(n,m)tensorisdefinedinthiscontextasanelementofthetensorproductofvector
spaces,[12]
IfviisabasisofVandwjisabasisofW,thenthetensorproducthasa
naturalbasis.ThecomponentsofatensorTarethecoefficientsofthetensorwithrespecttothebasisobtainedfromabasis{ei}forVanditsdual{εj},i.e.
Usingthepropertiesofthetensorproduct,itcanbeshownthatthesecomponentssatisfythetransformationlawforatype(m,n)tensor.Moreover,theuniversalpropertyofthetensorproductgivesa1-to-1correspondencebetweentensorsdefinedinthiswayandtensorsdefinedasmultilinearmaps.
Operations
Thereareanumberofbasicoperationsthatmaybeconductedontensorsthatagainproduceatensor.Thelinearnatureoftensorimpliesthattwotensorsofthesametypemaybeaddedtogether,andthattensorsmaybemultipliedbyascalarwithresultsanalogoustothescalingofavector.Oncomponents,theseoperationsaresimplyperformedcomponentforcomponent.Theseoperationsdonotchangethetypeofthetensor,howevertherealsoexistoperationsthatchangethetypeofthetensors.
Raisingorloweringanindex
Mainarticle:Raisingandloweringindices
Whenavectorspaceisequippedwithaninnerproduct(ormetricasitisoftencalledinthiscontext),operationscanbedefinedthatconvertacontravariant(upper)indexintoacovariant(lower)indexandviceversa.Ametricitselfisa(symmetric)(0,2)-tensor,itisthuspossibletocontractanupperindexofatensorwithoneoflowerindicesofthemetric.Thisproducesanewtensorwiththesameindexstructureastheprevious,butwithlowerindexinthepositionofthecontractedupperindex.Thisoperationisquitegraphicallyknownasloweringanindex.
Converselythematrixinverseofthemetriccanbedefined,whichbehavesasa(2,0)-tensor.Thisinversemetriccanbecontractedwithalowerindextoproduceanupperindex.Thisoperationiscalledraisinganindex.
Applications
Continuummechanics
Importantexamplesareprovidedbycontinuummechanics.Thestressesinsideasolidbodyorfluidaredescribedbyatensor.Thestresstensorandstraintensorarebothsecondordertensors,andarerelatedinagenerallinearelasticmaterialbyafourth-orderelasticitytensor.Indetail,thetensorquantifyingstressina3-dimensionalsolidobjecthascomponentsthatcanbeconvenientlyrepresentedasa3×3array.Thethreefacesofacube-shapedinfinitesimalvolumesegmentofthesolidareeachsubjecttosomegivenforce.Theforce'svectorcomponentsarealsothreeinnumber.Thus,3×3,or9componentsarerequiredtodescribethestressatthiscube-shapedinfinitesimalsegment.Withintheboundsofthissolidisawholemassofvaryingstressquantities,eachrequiring9quantitiestodescribe.Thus,asecondordertensorisneeded.
Ifaparticularsurfaceelementinsidethematerialissingledout,thematerialononesideofthesurfacewillapplyaforceontheotherside.Ingeneral,thisforcewillnotbeorthogonaltothesurface,butitwilldependontheorientationofthesurfaceinalinearmanner.Thisisdescribedbyatensoroftype(2,0),inlinearelasticity,ormorepreciselybyatensorfieldoftype(2,0),sincethestressesmayvaryfrompointtopoint.
Otherexamplesfromphysics
Commonapplicationsinclude
?Electromagnetictensor(orFaraday'stensor)inelectromagnetism
?Finitedeformationtensorsfordescribingdeformationsandstraintensorforstrainincontinuummechanics
?Permittivityandelectricsusceptibilityaretensorsinanisotropicmedia
?Four-tensorsingeneralrelativity(e.g.stress-energytensor),usedtorepresentmomentumfluxes
?Sphericaltensoroperatorsaretheeigenfunctionsofthequantumangularmomentumoperatorinsphericalcoordinates
?Diffusiontensors,thebasisofDiffusionTensorImaging,representratesofdiffusioninbiologicenvironments
?QuantumMechanicsandQuantumComputingutilisetensorproductsforcombinationofquantumstates
Applicationsoftensorsoforder>2
Theconceptofatensorofordertwoisoftenconflatedwiththatofamatrix.Tensorsofhigherorderdohowevercaptureideasimportantinscienceandengineering,ashasbeenshownsuccessivelyinnumerousareasastheydevelop.Thishappens,forinstance,inthefieldofcomputervision,withthetrifocaltensorgeneralizingthefundamentalmatrix.
Thefieldofnonlinearopticsstudiesthechangestomaterialpolarizationdensityunder
extremeelectricfields.Thepolarizationwavesgeneratedarerelatedtothegeneratingelectricfieldsthroughthenonlinearsusceptibilitytensor.IfthepolarizationPisnotlinearlyproportionaltotheelectricfieldE,themediumistermednonlinear.Toagoodapproximation(forsufficientlyweakfields,assumingnopermanentdipolemomentsarepresent),PisgivenbyaTaylorseriesinEwhosecoefficientsarethenonlinearsusceptibilities:
Hereisthelinearsusceptibility,givesthePockelseffectandsecond
harmonicgeneration,andgivestheKerreffect.Thisexpansionshowsthewayhigher-ordertensorsarisenaturallyinthesubjectmatter.
Generalizations[edit]
Tensorsininfinitedimensions
Thenotionofatensorcanbegeneralizedinavarietyofwaystoinfinitedimensions.One,forinstance,isviathetensorproductofHilbertspaces.[15]Anotherwayofgeneralizingtheideaoftensor,commoninnonlinearanalysis,isviathemultilinearmapsdefinitionwhereinsteadofusingfinite-dimensionalvectorspacesandtheiralgebraicduals,oneusesinfinite-dimensionalBanachspacesandtheircontinuousdual.[16]TensorsthuslivenaturallyonBanachmanifolds.[17]
Tensordensities
Mainarticle:Tensordensity
Itisalsopossibleforatensorfieldtohavea"density".Atensorwithdensityrtransformsasanordinarytensorundercoordinatetransformations,exceptthatitisalsomultipliedbythedeterminantoftheJacobiantotherthpower.[18]Invariantly,inthelanguageofmultilinearalgebra,onecanthinkoftensordensitiesasmultilinearmapstakingtheirvaluesinadensitybundlesuchasthe(1-dimensional)spaceofn-forms(wherenisthedimensionoft
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 施工現(xiàn)場(chǎng)施工防噪隔音制度
- 現(xiàn)代家居設(shè)計(jì)中的綠植藝術(shù)實(shí)踐
- 醫(yī)療護(hù)理醫(yī)學(xué)培訓(xùn) 小麥病蟲害防治課件
- DB6528T 202-2024春玉米滴灌栽培技術(shù)規(guī)程
- 中小企業(yè)勞動(dòng)合同模板大全
- 個(gè)人與工廠合作協(xié)議合同
- 個(gè)人借款合同條款解析
- 交通運(yùn)輸行業(yè)勞動(dòng)合同準(zhǔn)則
- 個(gè)人短期借款合同文本范例
- 臨時(shí)勞務(wù)用工合同協(xié)議
- 2025至2030年中國(guó)減肥肽數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2024內(nèi)蒙古公務(wù)員省直行測(cè)、行政執(zhí)法、省考行測(cè)考試真題(5套)
- 2025年安徽馬鞍山市兩山綠色生態(tài)環(huán)境建設(shè)有限公司招聘筆試參考題庫(kù)附帶答案詳解
- 山東省濱州市濱城區(qū)2024-2025學(xué)年九年級(jí)上學(xué)期期末考試化學(xué)試題
- 期末試卷:安徽省宣城市2021-2022學(xué)年七年級(jí)上學(xué)期期末歷史試題(解析版)
- 幼兒教師新年規(guī)劃
- 2024年湖南省公務(wù)員錄用考試《行測(cè)》真題及答案解析
- 2024新版(北京版)三年級(jí)英語(yǔ)上冊(cè)單詞帶音標(biāo)
- 第21課 活動(dòng)課 從考古發(fā)現(xiàn)看中華文明的起源 教學(xué)課件
- 部編版《道德與法治》四年級(jí)下冊(cè)教材解讀與分析文檔
- PP、PVC-風(fēng)管制作安裝施工作業(yè)指導(dǎo)書
評(píng)論
0/150
提交評(píng)論