2023年山東省煙臺市芝罘區(qū)八年級數(shù)學第二學期期末聯(lián)考模擬試題含解析_第1頁
2023年山東省煙臺市芝罘區(qū)八年級數(shù)學第二學期期末聯(lián)考模擬試題含解析_第2頁
2023年山東省煙臺市芝罘區(qū)八年級數(shù)學第二學期期末聯(lián)考模擬試題含解析_第3頁
2023年山東省煙臺市芝罘區(qū)八年級數(shù)學第二學期期末聯(lián)考模擬試題含解析_第4頁
2023年山東省煙臺市芝罘區(qū)八年級數(shù)學第二學期期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年八下數(shù)學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題3分,共30分)1.矩形的對角線一定()A.互相垂直平分且相等 B.互相平分且相等C.互相垂直且相等 D.互相垂直平分2.若,則下列各不等式不一定成立的是()A. B. C. D.3.下列任務中,適宜采用普查方式的是()A.調查某地的空氣質量 B.了解中學生每天的睡眠時間C.調查某電視劇在本地區(qū)的收視率 D.了解某一天本校因病缺課的學生數(shù)4.一次函數(shù)的圖象如圖所示,當時,x的取值范圍是A. B. C. D.5.美是一種感覺,本應沒有什么客觀的標準,但在自然界里,物體形狀的比例卻提供了在的稱與協(xié)調上的一種美感的參考,在數(shù)學上,這個比例稱為黃金分割.在人體由腳底至肚臍的長度與身高的比例上,肚臍是理想的黃金分割點,也就是說,若此比值越接近就越給別人一種美的感覺.某女士身高為,腳底至肚臍的長度與身高的比為為了追求美,地想利用高跟鞋達到這一效果,那么她選的高跟鞋的高度約為()A. B. C. D.6.下列等式一定成立的是()A. B. C. D.7.已知△ABC的三邊分別是a、b、c,下列條件中不能判斷△ABC為直角三角形的是()A.a2+b2=c2 B.∠A+∠B=90°C.a=3,b=4,c=5 D.∠A:∠B:∠C=3:4:58.若=,則的值是()A. B. C. D.9.甲,乙兩個樣本的容量相同,甲樣本的方差為0.102,乙樣本的方差是0.06,那么()A.甲的波動比乙的波動大 B.乙的波動比甲的波動大C.甲,乙的波動大小一樣 D.甲,乙的波動大小無法確定10.平南縣某小區(qū)5月份隨機抽取了15戶家庭,對其用電情況進行了統(tǒng)計,統(tǒng)計情況如下(單位:度):78,62,95,108,87,103,99,74,87,105,88,76,76,94,79.則用電量在71~80的家庭有()A.4戶 B.5戶 C.6戶 D.7戶二、填空題(每小題3分,共24分)11.如圖所示:分別以直角三角形三邊為邊向外作三個正方形,其面積分別用、、表示,若,,則的長為__________.12.如圖,在中,分別以點、為圓心,大于的長為半徑作弧,兩弧交于點、,作直線交于點,連接,若,,則與之間的函數(shù)關系式是___________.13.函數(shù)是y關于x的正比例函數(shù),則______.14.在函數(shù)中,自變量的取值范圍是________.15.已知y=(k﹣1)x+k2﹣1是正比例函數(shù),則k=_____.16.如圖,等腰直角三角形ABC的底邊長為6,AB⊥BC;等腰直角三角形CDE的腰長為2,CD⊥ED;連接AE,F(xiàn)為AE中點,連接FB,G為FB上一動點,則GA的最小值為____.17.如圖,經過平移后得到,下列說法錯誤的是()A. B.C. D.18.已知函數(shù)y=(k-1)x|k|是正比例函數(shù),則k=________三、解答題(共66分)19.(10分)如圖,在Rt△ABC中,∠B=90°,BC=53,∠C=30°.點D從點C出發(fā)沿CA方向以每秒2個單位長的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以每秒1個單位長的速度向點B勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動,設點D、E運動的時間是t秒(t>0).過點D作DF⊥BC于點(1)求證:AE=DF;(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應的t值;如果不能,說明理由.(3)當t為何值時,△DEF為直角三角形?請說明理由.20.(6分)如圖,在正方形ABCD中,點M在CD邊上,點N在正方形ABCD外部,且滿足∠CMN=90°,CM=MN.連接AN,CN,取AN的中點E,連接BE,AC,交于F點.(1)①依題意補全圖形;②求證:BE⊥AC.(2)設AB=1,若點M沿著線段CD從點C運動到點D,則在該運動過程中,線段EN所掃過的面積為(直接寫出答案).21.(6分)某公司經營甲、乙兩種商品,兩種商品的進價和售價情況如下表:進價(萬元/件)售價(萬元/件)甲1214.5乙810兩種商品的進價和售價始終保持不變.現(xiàn)準備購進甲、乙兩種商品共20件.設購進甲種商品件,兩種商品全部售出可獲得利潤為萬元.(1)與的函數(shù)關系式為__________________;(2)若購進兩種商品所用的資金不多于200萬元,則該公司最多購進多少合甲種商品?(3)在(2)的條件下,請你幫該公司設計一種進貨方案,使得該公司獲得最大利潤,并求出最大利潤是多少?22.(8分)兩個全等的直角三角形重疊放在直線l上,如圖①所示,AB=6cm,AC=10cm,∠ABC=90°,將Rt△ABC在直線l上左右平移(如圖②).(1)求證:四邊形ACFD是平行四邊形.(2)怎樣移動Rt△ABC,使得四邊形ACFD的面積等于△ABC的面積的一半?(3)將Rt△ABC向左平移4cm,求四邊形DHCF的面積.23.(8分)如圖,△ABC中,∠ACB=90°,D.E分別是BC、BA的中點,聯(lián)結DE,F(xiàn)在DE延長線上,且AF=AE.(1)求證:四邊形ACEF是平行四邊形;(2)若四邊形ACEF是菱形,求∠B的度數(shù).24.(8分)如圖,在中,延長至點,使,連接,作于點,交的延長線于點,且.(1)求證:;(2)如果,求的度數(shù).25.(10分)為加快城市群的建設與發(fā)展,在A、B兩城市間新建一條城際鐵路,建成后,鐵路運行里程由現(xiàn)在的210km縮短至180km,平均時速要比現(xiàn)行的平均時速快200km,運行時間僅是現(xiàn)行時間的,求建成后的城際鐵路在A、B兩地的運行時間?26.(10分)如圖,要在長、寬分別為50米、40米的矩形草坪內建一個正方形的觀賞亭.為方便行人,分別從東,南,西,北四個方向修四條寬度相同的矩形小路與亭子相連,若小路的寬是正方形觀賞亭邊長的,小路與觀賞亭的面積之和占草坪面積的,求小路的寬.

參考答案一、選擇題(每小題3分,共30分)1、B【解析】

根據(jù)矩形的性質對矩形的對角線進行判斷即可.【詳解】解:矩形的對角線一定互相平分且相等,故選:B.【點睛】此題考查矩形的性質,關鍵是根據(jù)矩形的對角線一定互相平分且相等解答.2、D【解析】

根據(jù)不等式的性質逐個判斷即可.【詳解】A、∵,

∴,故本選項不符合題意;

B、∵,

∴,故本選項不符合題意;

C、∵,

∴,故本選項不符合題意;

D、∵,

∴,故本選項符合題意;

故選:D.【點睛】本題考查了不等式的性質,能熟記不等式的性質的內容是解此題的關鍵.3、D【解析】

調查方式的選擇需要將普查的局限性和抽樣調查的必要性結合起來,具體問題具體分析,普查結果準確,所以在要求精確、難度相對不大,實驗無破壞性的情況下應選擇普查方式,當考查的對象很多或考查會給被調查對象帶來損傷破壞,以及考查經費和時間都非常有限時,普查就受到限制,這時就應選擇抽樣調查.【詳解】A.調查某地的空氣質量,由于范圍廣,應當使用抽樣調查,故本選項錯誤;B.了解中學生每天的睡眠時間,由于人數(shù)多,不易全面掌握所有的人,故應當采用抽樣調查;C.調查某電視劇在本地區(qū)的收視率,人數(shù)較多,不便測量,應當采用抽樣調查,故本選項錯誤;D.了解某一天本校因病缺課的學生數(shù),人數(shù)少,耗時短,應當采用全面調查的方式,故本選項正確。故選D.【點睛】此題考查全面調查與抽樣調查,解題關鍵在于掌握調查方法.4、A【解析】

解:由圖像可知,當時,x的取值范圍是.故選A.5、C【解析】

根據(jù)已知條件算出下半身身高,然后設選的高跟鞋的高度為xcm,根據(jù)比值是0.618列出方程,解方程即可【詳解】根據(jù)已知條件得下半身長是160×0.6=96cm設選的高跟鞋的高度為xcm,有解得x≈7.5經檢驗x≈7.5是原方程的解故選C【點睛】本題考查分式方程的應用,能夠讀懂題意列出方程是本題關鍵6、A【解析】

根據(jù)分式的基本性質逐一判斷即可.【詳解】解:約分正確,故A正確,符號處理錯誤,故B錯誤,根據(jù)分式的基本性質明顯錯誤,故C錯誤,根據(jù)分式的基本性質也錯誤,故D錯誤.故選:A.【點睛】本題考查的是分式的基本性質對約分的要求,掌握分式的基本性質是解題關鍵.7、D【解析】分析:利用直角三角形的定義和勾股定理的逆定理逐項判斷即可.詳解:A.a2=b2+c2,符合勾股定理的逆定理,能夠判定△ABC為直角三角形,不符合題意;B.∠A+∠B=∠C,此時∠C是直角,能夠判定△ABC是直角三角形,不符合題意;C.52=32+42,符合勾股定理的逆定理,能夠判定△ABC為直角三角形,不符合題意;D.∠A:∠B:∠C=3:4:5,那么∠A=45°、∠B=60°、∠C=75°,△ABC不是直角三角形;故選D.點睛:此題主要考查了直角三角形的判定方法,只有三角形的三邊長構成勾股數(shù)或三個內角中有一個是直角的情況下,才能判定三角形是直角三角形.8、A【解析】

先設a=2k,則b=5k,然后將它們分別代入,計算即可求出其值即可.【詳解】解:∵=,設a=2k,則b=5k,

∴=.

故選A.【點睛】本題考查了比例的基本性質,比較簡單,關鍵是巧設未知數(shù),可使計算簡便.9、A【解析】

根據(jù)方差的定義,方差越小數(shù)據(jù)越穩(wěn)定,故可選出正確選項.【詳解】解:根據(jù)方差的意義,甲樣本的方差大于乙樣本的方差,故甲的波動比乙的波動大.故選A.【點睛】本題考查方差的意義.方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.10、B【解析】

根據(jù)題意找出用電量在71~80的家庭即可.【詳解】解:用電量在71~80的家庭有:78,74,76,76,79共5戶.

故選:B.【點睛】本題主要考查了數(shù)據(jù)的收集與整理,理清題意是解題的關鍵.二、填空題(每小題3分,共24分)11、1.【解析】

先設Rt△ABC的三邊分別為a、b、c,再分別用a、b、c表示S1、S2、S3的值,由勾股定理即可得出S2的值.【詳解】解:設Rt△ABC的三邊分別為a、b、c,∴S1=a2=25,S2=b2,S3=c2=9,∵△ABC是直角三角形,∴c2+b2=a2,即S3+S2=S1,∴S2=S1-S3=25-9=16,∴BC=1,故答案為:1.【點睛】本題考查的是勾股定理的應用及正方形的面積公式,熟知勾股定理是解答此題的關鍵.12、【解析】

由題意可判定PQ是AD的垂直平分線,根據(jù)線段垂直平分線的性質即得ED=EA,進一步可得∠A=∠ADE,再根據(jù)平行線的性質和平行四邊形對角相等的性質即得結果.【詳解】解:由題意可知,PQ是AD的垂直平分線,∴ED=EA,∴∠A=∠ADE,∵四邊形ABCD是平行四邊形,∴∠A=∠C=x°,AB∥CD,∴∠A+∠ADC=180°,即,∴.故答案為.【點睛】本題考查了對尺規(guī)作線段垂直平分線的理解和線段垂直平分線的性質以及平行四邊形的性質,解題的關鍵是由作圖語言正確判斷PQ是AD的垂直平分線.13、1【解析】試題分析:因為函數(shù)是y關于x的正比例函數(shù),所以,解得m=1.考點:正比例函數(shù)14、x≠1【解析】

根據(jù)分式有意義的條件,即可求解.【詳解】∵在函數(shù)中,x-1≠0,∴x≠1.故答案是:x≠1.【點睛】本題主要考查函數(shù)的自變量的取值范圍,掌握分式的分母不等于零,是解題的關鍵.15、-1【解析】【分析】根據(jù)正比例函數(shù)的定義可知k-1≠0,常數(shù)項k2-1=0,由此即可求得答案.【詳解】∵y=(k-1)x+k2-1是正比例函數(shù),∴k-1≠0,k2-1=0,解得k≠1,k=±1,∴k=-1,故答案為-1.【點睛】本題考查了正比例函數(shù)的定義,熟知正比例函數(shù)y=kx中一次項系數(shù)中不為0,常數(shù)項等于0是解題的關鍵.16、3.【解析】

運用等腰直角過三角形角的性質,逐步推導出AC⊥EC,當AG⊥BF時AG最小,最后運用平行線等分線段定理,即可求解.【詳解】解:∵等腰直角三角形ABC,等腰直角三角形CDE∴∠ECD=45°,∠ACB=45°即AC⊥EC,且CE∥BF當AG⊥BF,時AG最小,所以由∵AF=AE∴AG=CG=AC=3故答案為3【點睛】本題考查了等腰直角三角形三角形的性質和平行線等分線段定理,其中靈活應用三角形中位線定理是解答本題的關鍵.17、D【解析】

根據(jù)平移的性質,對應點的連線互相平行且相等,平移變換只改變圖形的位置不改變圖形的形狀與大小對各小題分析判斷即可得解.【詳解】A、AB∥DE,正確;B、,正確;C、AD=BE,正確;D、,故錯誤,故選D.【點睛】本題主要考查了平移的性質,是基礎題,熟記性質是解題的關鍵.18、-1【解析】試題解析:∵根據(jù)正比例函數(shù)的定義,可得:k-1≠0,|k|=1,∴k=-1.三、解答題(共66分)19、(1)證明見解析;(2)能,理由見解析;(3)t=52秒或4秒時,【解析】

(1)在△DFC中,∠DFC=90°,∠C=30°,根據(jù)30°角直角三角形的性質及已知條件即可證得結論;(2)先證得四邊形AEFD為平行四邊形,使?AEFD為菱形則需要滿足的條件為AE=AD,由此即可解答;(3)①∠EDF=90°時,四邊形EBFD為矩形.在Rt△AED中求可得AD=2AE,由此即可解答;②∠DEF=90°時,由(2)知【詳解】(1)證明:在△DFC中,∠DFC=90°,∠C=30∴DF=t.又∵AE=t,∴AE=DF.(2)解:能.理由如下:∵AB⊥BC,DF⊥BC,∴AE//DF.又AE=DF,∴四邊形AEFD為平行四邊形.∵AB=BC?tan∴AC=2AB=10.∴AD=AC-DC=10-2t.若使?AEFD為菱形,則需AE=AD,即t=10-2t,t=10即當t=103時,四邊形(3)解:①∠EDF=90°時,四邊形在Rt△AED中,∠ADE=∠C=30∴AD=2AE.即10-2t=2t,t=5②∠DEF=90°時,由(2)四邊形AEFD為平行四邊形知∴∠ADE=∠DEF=90∵∠A=90∴AD=AE?cos即10-2t=12t③∠EFD=90綜上所述,當t=52秒或4秒時,【點睛】本題考查了菱形的性質,考查了菱形是平行四邊形,考查了菱形的判定定理,以及菱形與矩形之間的聯(lián)系.難度適宜,計算繁瑣.20、(1)①見解析;②見解析;(2)【解析】

(1)①依照題意補全圖形即可;②連接CE,由正方形以及等腰直角三角形的性質可得出∠ACD=∠MCN=45°,從而得出∠ACN=90°,再根據(jù)直角三角形的性質以及點E為AN的中點即可得出AE=CE,由此即可得出B、E在線段AC的垂直平分線上,由此即可證得BE⊥AC;

(2)找出EN所掃過的圖形為四邊形DFCN.根據(jù)正方形以及等腰直角三角形的性質可得出BD∥CN,由此得出四邊形DFCN為梯形,再由AB=1,可算出線段CF、DF、CN的長度,利用梯形的面積公式即可得出結論.【詳解】(1)①依題意補全圖形,如圖1所示.

②證明:連接CE,如圖2所示.

∵四邊形ABCD是正方形,

∴∠BCD=90°,AB=BC,

∴∠ACB=∠ACD=∠BCD=45°,

∵∠CMN=90°,CM=MN,

∴∠MCN=45°,

∴∠ACN=∠ACD+∠MCN=90°.

∵在Rt△ACN中,點E是AN中點,

∴AE=CE=AN.

∵AE=CE,AB=CB,

∴點B,E在AC的垂直平分線上,

∴BE垂直平分AC,

∴BE⊥AC.(2)在點M沿著線段CD從點C運動到點D的過程中,線段EN所掃過的圖形為四邊形DFCN.

∵∠BDC=45°,∠DCN=45°,

∴BD∥CN,

∴四邊形DFCN為梯形.

∵AB=1,

∴CF=DF=BD=,CN=,

∴S梯形DFCN=(DF+CN)?CF=(+)×=.

故答案為:.【點睛】此題考查正方形的性質,等腰直角三角形的性質,平行線的性質以及梯形的面積公式,解題的關鍵是:(1)根據(jù)垂直平分線上點的性質證出垂直;(2)用AD表示出EF、BF的長度;(3)找出EN所掃過的圖形.根據(jù)題意畫出圖形,利用數(shù)形結合解決問題是關鍵.21、(1)w=0.5x+40;(2)10;(3)該公司購進甲種商品10件,乙種商品10件時,該公司獲得最大利潤,最大利潤是45萬元【解析】

(1)設該公司購進甲種商品x件,則乙種商品(20﹣x)件,根據(jù)題意可得等量關系:公司獲得的利潤w=甲種商品的利潤+乙種商品的利潤,根據(jù)等量關系可得函數(shù)關系式;(2)根據(jù)資金不多于20萬元列出不等式組;(3)根據(jù)一次函數(shù)的性質:k>0時,w隨x的增大而增大可得答案.【詳解】解:(1)設該公司購進甲種商品x件,則乙種商品(20﹣x)件,根據(jù)題意得:w=(14.5﹣12)x+(10﹣8)(20﹣x),整理得:w=0.5x+40;故答案為:w=0.5x+40;(2)由題意得:12x+8(20﹣x)≤200,解得x≤10,故該公司最多購進10臺甲種商品;(3)∵對于函數(shù)w=0.5x+40,w隨x的增大而增大,∴當x=10時,能獲得最大利潤,最大利潤為:w=0.5×10+40=45(萬元),故該公司購進甲種商品10件,乙種商品10件時,該公司獲得最大利潤,最大利潤是45萬元.【點睛】此題主要考查了一次函數(shù)的應用,關鍵是正確理解題意,找出等量關系,列出函數(shù)關系式.22、(1)見解析;(2)將Rt△ABC向左(或右)平移2cm,可使四邊形ACFD的面積等于△ABC的面積的一半.(3)18(cm2)【解析】

(1)四邊形ACFD為Rt△ABC平移形成的,即可求得四邊形ACFD是平行四邊形;(2)先根據(jù)勾股定理得BC==8(cm),△ABC的面積=24cm2,要滿足四邊形ACFD的面積等于△ABC的面積的一半,即6×CF=24×,解得CF=2cm,從而求解;(3)將Rt△ABC向右平移4cm,則EH為Rt△ABC的中位線,即可求得△ADH和△CEH的面積,即可解題.【詳解】(1)證明:∵四邊形ACFD是由Rt△ABC平移形成的,∴AD∥CF,AC∥DF.∴四邊形ACFD為平行四邊形.(2)解:由題易得BC==8(cm),△ABC的面積=24cm2.要使得四邊形ACFD的面積等于△ABC的面積的一半,即6×CF=24×,解得CF=2cm,∴將Rt△ABC向左(或右)平移2cm,可使四邊形ACFD的面積等于△ABC的面積的一半.(3)解:將Rt△ABC向左平移4cm,則BE=AD=4cm.又∵BC=8cm,∴CE=4cm=AD.由(1)知四邊形ACFD是平行四邊形,∴AD∥BF.∴∠HAD=∠HCE.又∵∠DHA=∠EHC,∴△DHA≌△EHC(AAS).∴DH=HE=DE=AB=3cm.∴S△HEC=HE·EC=6cm2.∵△ABC≌△DEF,∴S△ABC=SDEF.由(2)知S△ABC=24cm2,∴S△DEF=24cm2.∴四邊形DHCF的面積為S△DEF-S△HEC=24-6=18(cm2).【點睛】本題考查平行四邊形的判定、三角形面積和平行四邊形面積的計算,還考查了全等三角形的判定、中位線定理,考查了勾股定理在直角三角形中的運用,本題中求△CEH的面積是解題的關鍵.23、(1)證明見解析;(2)30°.【解析】

(1)由直角三角形斜邊上的中線等于斜邊的一半,得到CE=AE=BE,從而得到AF=CE,再由等腰三角形三線合一,得到∠1=∠2,從而有∠F=∠3,得到∠2=∠F,故CE∥AF,然后利用一組對邊平行且相等的四邊形是菱形證明;(2)由菱形的性質,得到AC=CE,求出AC=CE=AE,從而得到△AEC是等邊三角形,得出∠CAE=60°,然后根據(jù)直角三角形兩銳角互余解答.【詳解】解:(1)∵∠ACB=90°,E是BA的中點,∴CE=AE=BE,∵AF=AE,∴AF=CE,在△BEC中,∵BE=CE且D是BC的中點,∴ED是等腰△BEC底邊上的中線,∴ED也是等腰△BEC的頂角平分線,∴∠1=∠2,∵AF=AE,∴∠F=∠3,∵∠1=∠3,∴∠2=∠F,∴CE∥AF,又∵CE=AF,∴四邊形ACEF是平行四邊形;(2)∵

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論