廣東省河源市名校2023屆中考適應性考試數(shù)學試題含解析_第1頁
廣東省河源市名校2023屆中考適應性考試數(shù)學試題含解析_第2頁
廣東省河源市名校2023屆中考適應性考試數(shù)學試題含解析_第3頁
廣東省河源市名校2023屆中考適應性考試數(shù)學試題含解析_第4頁
廣東省河源市名校2023屆中考適應性考試數(shù)學試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數(shù)學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.在六張卡片上分別寫有,π,1.5,5,0,六個數(shù),從中任意抽取一張,卡片上的數(shù)為無理數(shù)的概率是()A. B. C. D.2.如圖所示,將含有30°角的三角板的直角頂點放在相互平行的兩條直線其中一條上,若∠1=35°,則∠2的度數(shù)為()A.10° B.20° C.25° D.30°3.已知x=1是方程x2+mx+n=0的一個根,則代數(shù)式m2+2mn+n2的值為()A.–1B.2C.1D.–24.足球運動員將足球沿與地面成一定角度的方向踢出,足球飛行的路線是一條拋物線.不考慮空氣阻力,足球距離地面的高度h(單位:m)與足球被踢出后經過的時間t(單位:s)之間的關系如下表:t01234567…h(huán)08141820201814…下列結論:①足球距離地面的最大高度為20m;②足球飛行路線的對稱軸是直線;③足球被踢出9s時落地;④足球被踢出1.5s時,距離地面的高度是11m.其中正確結論的個數(shù)是()A.1 B.2 C.3 D.45.小宇媽媽上午在某水果超市買了16.5元錢的葡萄,晚上散步經過該水果超市時,發(fā)現(xiàn)同一批葡萄的價格降低了25%,小宇媽媽又買了16.5元錢的葡萄,結果恰好比早上多了0.5千克.若設早上葡萄的價格是x元/千克,則可列方程()A. B.C. D.6.甲、乙兩人在筆直的湖邊公路上同起點、同終點、同方向勻速步行2400米,先到終點的人原地休息.已知甲先出發(fā)4分鐘,在整個步行過程中,甲、乙兩人的距離y(米)與甲出發(fā)的時間t(分)之間的關系如圖所示,下列結論:①甲步行的速度為60米/分;②乙走完全程用了32分鐘;③乙用16分鐘追上甲;④乙到達終點時,甲離終點還有300米其中正確的結論有()A.1個 B.2個 C.3個 D.4個7.二次函數(shù)y=ax2+bx﹣2(a≠0)的圖象的頂點在第三象限,且過點(1,0),設t=a﹣b﹣2,則t值的變化范圍是()A.﹣2<t<0 B.﹣3<t<0 C.﹣4<t<﹣2 D.﹣4<t<08.如圖,將△ABC繞點C順時針旋轉,點B的對應點為點E,點A的對應點為點D,當點E恰好落在邊AC上時,連接AD,若∠ACB=30°,則∠DAC的度數(shù)是()A. B. C. D.9.圖為一根圓柱形的空心鋼管,它的主視圖是()A. B. C. D.10.下列分子結構模型的平面圖中,既是軸對稱圖形又是中心對稱圖形的有()A.1個 B.2個 C.3個 D.4個二、填空題(共7小題,每小題3分,滿分21分)11.如圖,已知△ABC中,∠ABC=50°,P為△ABC內一點,過點P的直線MN分別交AB、BC于點M、N.若M在PA的中垂線上,N在PC的中垂線上,則∠APC的度數(shù)為_____12.如果a+b=2,那么代數(shù)式(a﹣)÷的值是______.13.在函數(shù)中,自變量x的取值范圍是_________.14.已知△ABC∽△DEF,若△ABC與△DEF的相似比為,則△ABC與△DEF對應中線的比為_____.15.如圖,將正方形OABC放在平面直角坐標系中,O是原點,A的坐標為(1,),則點C的坐標為_____.16.如圖,已知正六邊形ABCDEF的外接圓半徑為2cm,則正六邊形的邊心距是__________cm.17.如圖,將矩形ABCD繞點C沿順時針方向旋轉90°到矩形A′B′CD′的位置,AB=2,AD=4,則陰影部分的面積為_____.三、解答題(共7小題,滿分69分)18.(10分)如圖1,的余切值為2,,點D是線段上的一動點(點D不與點A、B重合),以點D為頂點的正方形的另兩個頂點E、F都在射線上,且點F在點E的右側,聯(lián)結,并延長,交射線于點P.(1)點D在運動時,下列的線段和角中,________是始終保持不變的量(填序號);①;②;③;④;⑤;⑥;(2)設正方形的邊長為x,線段的長為y,求y與x之間的函數(shù)關系式,并寫出定義域;(3)如果與相似,但面積不相等,求此時正方形的邊長.19.(5分)中學課外興趣活動小組準備圍建一個矩形苗圃園,其中一邊靠墻,另外三邊用長為30米的籬笆圍成,已知墻長為18米(如圖所示),設這個苗圃園垂直于墻的一邊的長為x米.(1)若苗圃園的面積為72平方米,求x;(2)若平行于墻的一邊長不小于8米,這個苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請說明理由;(3)當這個苗圃園的面積不小于100平方米時,直接寫出x的取值范圍.20.(8分)如圖,在直角坐標系中,矩形OABC的頂點O與坐標原點重合,A、C分別在坐標軸上,點B的坐標為(4,2),直線交AB,BC分別于點M,N,反比例函數(shù)的圖象經過點M,N.求反比例函數(shù)的解析式;若點P在y軸上,且△OPM的面積與四邊形BMON的面積相等,求點P的坐標.21.(10分)如圖,在中,,的垂直平分線交于,交于,射線上,并且.()求證:;()當?shù)拇笮M足什么條件時,四邊形是菱形?請回答并證明你的結論.22.(10分)如圖,在Rt△ABC中,∠C=90°,翻折∠C,使點C落在斜邊AB上某一點D處,折痕為EF(點E、F分別在邊AC、BC上)若△CEF與△ABC相似.①當AC=BC=2時,AD的長為;②當AC=3,BC=4時,AD的長為;當點D是AB的中點時,△CEF與△ABC相似嗎?請說明理由.23.(12分)春節(jié)期間,小麗一家乘坐高鐵前往某市旅游,計劃第二天租用新能源汽車自駕出游.租車公司:按日收取固定租金80元,另外再按租車時間計費.共享汽車:無固定租金,直接以租車時間(時)計費.如圖是兩種租車方式所需費用y1(元)、y2(元)與租車時間x(時)之間的函數(shù)圖象,根據(jù)以上信息,回答下列問題:(1)分別求出y1、y2與x的函數(shù)表達式;(2)請你幫助小麗一家選擇合算的租車方案.24.(14分)某公司計劃購買A,B兩種型號的電腦,已知購買一臺A型電腦需0.6萬元,購買一臺B型電腦需0.4萬元,該公司準備投入資金y萬元,全部用于購進35臺這兩種型號的電腦,設購進A型電腦x臺.(1)求y關于x的函數(shù)解析式;(2)若購進B型電腦的數(shù)量不超過A型電腦數(shù)量的2倍,則該公司至少需要投入資金多少萬元?

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】

無限不循環(huán)小數(shù)叫無理數(shù),無理數(shù)通常有以下三種形式:一是開方開不盡的數(shù),二是圓周率π,三是構造的一些不循環(huán)的數(shù),如1.010010001……(兩個1之間0的個數(shù)一次多一個).然后用無理數(shù)的個數(shù)除以所有書的個數(shù),即可求出從中任意抽取一張,卡片上的數(shù)為無理數(shù)的概率.【詳解】∵這組數(shù)中無理數(shù)有,共2個,∴卡片上的數(shù)為無理數(shù)的概率是.故選B.【點睛】本題考查了無理數(shù)的定義及概率的計算.2、C【解析】分析:如圖,延長AB交CF于E,∵∠ACB=90°,∠A=30°,∴∠ABC=60°.∵∠1=35°,∴∠AEC=∠ABC﹣∠1=25°.∵GH∥EF,∴∠2=∠AEC=25°.故選C.3、C【解析】

把x=1代入x2+mx+n=0,可得m+n=-1,然后根據(jù)完全平方公式把m2+2mn+n2變形后代入計算即可.【詳解】把x=1代入x2+mx+n=0,代入1+m+n=0,∴m+n=-1,∴m2+2mn+n2=(m+n)2=1.故選C.【點睛】本題考查了方程的根和整體代入法求代數(shù)式的值,能使方程兩邊相等的未知數(shù)的值叫做方程的根.4、B【解析】試題解析:由題意,拋物線的解析式為y=ax(x﹣9),把(1,8)代入可得a=﹣1,∴y=﹣t2+9t=﹣(t﹣4.5)2+20.25,∴足球距離地面的最大高度為20.25m,故①錯誤,∴拋物線的對稱軸t=4.5,故②正確,∵t=9時,y=0,∴足球被踢出9s時落地,故③正確,∵t=1.5時,y=11.25,故④錯誤,∴正確的有②③,故選B.5、B【解析】分析:根據(jù)數(shù)量=,可知第一次買了千克,第二次買了,根據(jù)第二次恰好比第一次多買了0.5千克列方程即可.詳解:設早上葡萄的價格是x元/千克,由題意得,.故選B.點睛:本題考查了分式方程的實際應用,解題的關鍵是讀懂題意,找出列方程所用到的等量關系.6、A【解析】【分析】根據(jù)題意和函數(shù)圖象中的數(shù)據(jù)可以判斷各個小題中的結論是否正確,從而可以解答本題.【詳解】由圖可得,甲步行的速度為:240÷4=60米/分,故①正確,乙走完全程用的時間為:2400÷(16×60÷12)=30(分鐘),故②錯誤,乙追上甲用的時間為:16﹣4=12(分鐘),故③錯誤,乙到達終點時,甲離終點距離是:2400﹣(4+30)×60=360米,故④錯誤,故選A.【點睛】本題考查了函數(shù)圖象,弄清題意,讀懂圖象,從中找到必要的信息是解題的關鍵.7、D【解析】

由二次函數(shù)的解析式可知,當x=1時,所對應的函數(shù)值y=a+b-2,把點(1,0)代入y=ax2+bx-2,a+b-2=0,然后根據(jù)頂點在第三象限,可以判斷出a與b的符號,進而求出t=a-b-2的變化范圍.【詳解】解:∵二次函數(shù)y=ax2+bx-2的頂點在第三象限,且經過點(1,0)∴該函數(shù)是開口向上的,a>0

∵y=ax2+bx﹣2過點(1,0),∴a+b-2=0.∵a>0,∴2-b>0.∵頂點在第三象限,∴-<0.∴b>0.∴2-a>0.∴0<b<2.∴0<a<2.∴t=a-b-2.∴﹣4<t<0.【點睛】本題考查大小二次函數(shù)的圖像,熟練掌握圖像的性質是解題的關鍵.8、D【解析】

由題意知:△ABC≌△DEC,∴∠ACB=∠DCE=30°,AC=DC,∴∠DAC=(180°?∠DCA)÷2=(180°?30°)÷2=75°.故選D.【點睛】本題主要考查了旋轉的性質,解題的關鍵是掌握旋轉的性質:①對應點到旋轉中心的距離相等.②對應點與旋轉中心所連線段的夾角等于旋轉角.③旋轉前、后的圖形全等.9、B【解析】試題解析:從正面看是三個矩形,中間矩形的左右兩邊是虛線,故選B.10、C【解析】

根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A是軸對稱圖形,不是中心對稱圖形;B,C,D是軸對稱圖形,也是中心對稱圖形.故選:C.【點睛】掌握中心對稱圖形與軸對稱圖形的概念:軸對稱圖形:如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形;中心對稱圖形:在同一平面內,如果把一個圖形繞某一點旋轉180°,旋轉后的圖形能和原圖形完全重合,那么這個圖形就叫做中心對稱圖形.二、填空題(共7小題,每小題3分,滿分21分)11、115°【解析】

根據(jù)三角形的內角和得到∠BAC+∠ACB=130°,根據(jù)線段的垂直平分線的性質得到AM=PM,PN=CN,由等腰三角形的性質得到∠MAP=∠APM,∠CPN=∠PCN,推出∠MAP+∠PCN=∠PAC+∠ACP=×130°=65°,于是得到結論.【詳解】∵∠ABC=50°,∴∠BAC+∠ACB=130°,∵若M在PA的中垂線上,N在PC的中垂線上,∴AM=PM,PN=CN,∴∠MAP=∠APM,∠CPN=∠PCN,∵∠APC=180°-∠APM-∠CPN=180°-∠PAC-∠ACP,∴∠MAP+∠PCN=∠PAC+∠ACP=×130°=65°,∴∠APC=115°,故答案為:115°【點睛】本題考查了線段的垂直平分線的性質,等腰三角形的性質,三角形的內角和,熟練掌握線段的垂直平分線的性質是解題的關鍵.12、2【解析】分析:根據(jù)分式的運算法則即可求出答案.詳解:當a+b=2時,原式===a+b=2故答案為:2點睛:本題考查分式的運算,解題的關鍵熟練運用分式的運算法則,本題屬于基礎題型.13、x≤1且x≠﹣1【解析】試題分析:根據(jù)二次根式有意義,分式有意義得:1﹣x≥0且x+1≠0,解得:x≤1且x≠﹣1.故答案為x≤1且x≠﹣1.考點:函數(shù)自變量的取值范圍;分式有意義的條件;二次根式有意義的條件.14、3:4【解析】由于相似三角形的相似比等于對應中線的比,∴△ABC與△DEF對應中線的比為3:4故答案為3:4.15、(﹣,1)【解析】如圖作AF⊥x軸于F,CE⊥x軸于E.∵四邊形ABCD是正方形,∴OA=OC,∠AOC=90°,∵∠COE+∠AOF=90°,∠AOF+∠OAF=90°,∴∠COE=∠OAF,在△COE和△OAF中,,∴△COE≌△OAF,∴CE=OF,OE=AF,∵A(1,),∴CE=OF=1,OE=AF=,∴點C坐標(﹣,1),故答案為(,1).點睛:本題考查正方形的性質、全等三角形的判定和性質等知識,坐標與圖形的性質,解題的關鍵是學會添加常用的輔助線,構造全等三角形解決問題,屬于中考??碱}型.注意:距離都是非負數(shù),而坐標可以是負數(shù),在由距離求坐標時,需要加上恰當?shù)姆?16、【解析】連接OA,作OM⊥AB于點M,∵正六邊形ABCDEF的外接圓半徑為2cm∴正六邊形的半徑為2cm,即OA=2cm在正六邊形ABCDEF中,∠AOM=30°,∴正六邊形的邊心距是OM=cos30°×OA=(cm)故答案為.17、【解析】試題解析:連接∵四邊形ABCD是矩形,∴CE=BC=4,∴CE=2CD,由勾股定理得:∴陰影部分的面積是S=S扇形CEB′?S△CDE故答案為三、解答題(共7小題,滿分69分)18、(1)④⑤;(2);(3)或.【解析】

(1)作于M,交于N,如圖,利用三角函數(shù)的定義得到,設,則,利用勾股定理得,解得,即,,設正方形的邊長為x,則,,由于,則可判斷為定值;再利用得到,則可判斷為定值;在中,利用勾股定理和三角函數(shù)可判斷在變化,在變化,在變化;(2)易得四邊形為矩形,則,證明,利用相似比可得到y(tǒng)與x的關系式;(3)由于,與相似,且面積不相等,利用相似比得到,討論:當點P在點F點右側時,則,所以,當點P在點F點左側時,則,所以,然后分別解方程即可得到正方形的邊長.【詳解】(1)如圖,作于M,交于N,在中,∵,設,則,∵,∴,解得,∴,,設正方形的邊長為x,在中,∵,∴,∴,在中,,∴為定值;∵,∴,∴為定值;在中,,而在變化,∴在變化,在變化,∴在變化,所以和是始終保持不變的量;故答案為:④⑤(2)∵MN⊥AP,DEFG是正方形,∴四邊形為矩形,∴,∵,∴,∴,即,∴(3)∵,與相似,且面積不相等,∴,即,∴,當點P在點F點右側時,AP=AF+PF==,∴,解得,當點P在點F點左側時,,∴,解得,綜上所述,正方形的邊長為或.【點睛】本題考查了相似形綜合題:熟練掌握銳角三角函數(shù)的定義、正方形的性質和相似三角形的判定與性質.19、(1)x=2;(2)苗圃園的面積最大為12.5平方米,最小為5平方米;(3)6≤x≤4.【解析】

(1)根據(jù)題意得方程求解即可;(2)設苗圃園的面積為y,根據(jù)題意得到二次函數(shù)解析式y(tǒng)=x(31-2x)=-2x2+31x,根據(jù)二次函數(shù)的性質求解即可;(3)由題意得不等式,即可得到結論.【詳解】解:(1)苗圃園與墻平行的一邊長為(31-2x)米.依題意可列方程x(31-2x)=72,即x2-15x+36=1.解得x1=3,x2=2.又∵31-2x≤3,即x≥6,∴x=2(2)依題意,得8≤31-2x≤3.解得6≤x≤4.面積S=x(31-2x)=-2(x-)2+(6≤x≤4).①當x=時,S有最大值,S最大=;②當x=4時,S有最小值,S最小=4×(31-22)=5.(3)令x(31-2x)=41,得x2-15x+51=1.解得x1=5,x2=1∴x的取值范圍是5≤x≤4.20、(1);(2)點P的坐標是(0,4)或(0,-4).【解析】

(1)求出OA=BC=2,將y=2代入求出x=2,得出M的坐標,把M的坐標代入反比例函數(shù)的解析式即可求出答案.(2)求出四邊形BMON的面積,求出OP的值,即可求出P的坐標.【詳解】(1)∵B(4,2),四邊形OABC是矩形,∴OA=BC=2.將y=2代入3得:x=2,∴M(2,2).把M的坐標代入得:k=4,∴反比例函數(shù)的解析式是;(2).∵△OPM的面積與四邊形BMON的面積相等,∴.∵AM=2,∴OP=4.∴點P的坐標是(0,4)或(0,-4).21、(1)見解析;(2)見解析【解析】

(1)求出EF∥AC,根據(jù)EF=AC,利用平行四邊形的判定推出四邊形ACEF是平行四邊形即可;(2)求出CE=AB,AC=AB,推出AC=CE,根據(jù)菱形的判定推出即可.【詳解】(1)證明:∵∠ACB=90°,DE是BC的垂直平分線,∴∠BDE=∠ACB=90°,∴EF∥AC,∵EF=AC,∴四邊形ACEF是平行四邊形,∴AF=CE;(2)當∠B=30°時,四邊形ACEF是菱形,證明:∵∠B=30°,∠ACB=90°,∴AC=AB,∵DE是BC的垂直平分線,∴BD=DC,∵DE∥AC,∴BE=AE,∵∠ACB=90°,∴CE=AB,∴CE=AC,∵四邊形ACEF是平行四邊形,∴四邊形ACEF是菱形,即當∠B=30°時,四邊形ACEF是菱形.【點睛】本題考查了菱形的判定平行四邊形的判定線段垂直平分線,含30度角的直角三角形性質,直角三角形斜邊上中線性質等知識點的應用綜合性比較強,有一定的難度.22、解:(1)①.②或.(2)當點D是AB的中點時,△CEF與△ABC相似.理由見解析.【解析】

(1)①當AC=BC=2時,△ABC為等腰直角三角形;

②若△CEF與△ABC相似,分兩種情況:①若CE:CF=3:4,如圖1所示,此時EF∥AB,CD為AB邊上的高;②若CF:CE=3:4,如圖2所示.由相似三角形角之間的關系,可以推出∠A=∠ECD與∠B=∠FCD,從而得到CD=AD=BD,即D點為AB的中點;

(2)當點D是AB的中點時,△CEF與△ABC相似.可以推出∠CFE=∠A,∠C=∠C,從而可以證明兩個三角形相似.【詳解】(1)若△CEF與△ABC相似.①當AC=BC=2時,△ABC為等腰直角三角形,如答圖1所示,此時D為AB邊中點,AD=AC=.②當AC=3,BC=4時,有兩種情況:(I)若CE:CF=3:4,如答圖2所示,∵CE:CF=AC:BC,∴EF∥BC.由折疊性質可知,CD⊥EF,∴CD⊥AB,即此時CD為AB邊上的高.在Rt△ABC中,AC=3,BC=4,∴BC=1.∴cosA=.∴AD=AC?cosA=3×=.(II)若CF:CE=3:4,如答圖3所示.∵△CEF∽△CAB,∴∠CEF=∠B.由折疊性質可知,∠CEF+∠ECD=90°.又∵∠A+∠B=90°,∴∠A=∠ECD,∴AD=CD.同理可得:∠B=∠FCD,CD=BD.∴AD=BD.∴此時AD=AB=×1=.綜上所述,當AC=3,BC=4時,AD的長為或.(2)當點D是AB的中點時,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論