![能源轉(zhuǎn)型時(shí)代的能源網(wǎng)絡(luò)-Energy Networks in the Energy Transition Era_第1頁(yè)](http://file4.renrendoc.com/view/bc4d91be0a5e5e3fb1b201901dfc60e3/bc4d91be0a5e5e3fb1b201901dfc60e31.gif)
![能源轉(zhuǎn)型時(shí)代的能源網(wǎng)絡(luò)-Energy Networks in the Energy Transition Era_第2頁(yè)](http://file4.renrendoc.com/view/bc4d91be0a5e5e3fb1b201901dfc60e3/bc4d91be0a5e5e3fb1b201901dfc60e32.gif)
![能源轉(zhuǎn)型時(shí)代的能源網(wǎng)絡(luò)-Energy Networks in the Energy Transition Era_第3頁(yè)](http://file4.renrendoc.com/view/bc4d91be0a5e5e3fb1b201901dfc60e3/bc4d91be0a5e5e3fb1b201901dfc60e33.gif)
![能源轉(zhuǎn)型時(shí)代的能源網(wǎng)絡(luò)-Energy Networks in the Energy Transition Era_第4頁(yè)](http://file4.renrendoc.com/view/bc4d91be0a5e5e3fb1b201901dfc60e3/bc4d91be0a5e5e3fb1b201901dfc60e34.gif)
![能源轉(zhuǎn)型時(shí)代的能源網(wǎng)絡(luò)-Energy Networks in the Energy Transition Era_第5頁(yè)](http://file4.renrendoc.com/view/bc4d91be0a5e5e3fb1b201901dfc60e3/bc4d91be0a5e5e3fb1b201901dfc60e35.gif)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
May2022
EnergyNetworksintheEnergyTransitionEra
OIESPaper:EL48RahmatallahPoudineh,SeniorResearchFellow,OIES
i
Thecontentsofthispaperaretheauthor’ssoleresponsibility.Theydonot
necessarilyrepresenttheviewsoftheOxfordInstituteforEnergyStudiesoranyof
itsmembers.
Copyright?2022
OxfordInstituteforEnergyStudies
(RegisteredCharity,No.286084)
Thispublicationmaybereproducedinpartforeducationalornon-profitpurposeswithoutspecial
permissionfromthecopyrightholder,providedacknowledgmentofthesourceismade.Nouseofthis
publicationmaybemadeforresaleorforanyothercommercialpurposewhatsoeverwithoutprior
permissioninwritingfromtheOxfordInstituteforEnergyStudies.
ISBN978-1-78467-199-0
ii
Abstract
Asinfrastructuresthatconnecttheenergysourcewiththeenergyuse,energynetworksconstituteacrucialelementofnationalandglobalenergysystems.Theyalsoplayakeyroleinhelpingwithbalancingsupplyanddemand,thusensuringthatenergyisnotonlyavailableintherightplacesbutalsoattherighttime.Energytransitionwillhavesignificantimpacts,thoughnotnecessarilyinthesameway,onexistingenergynetworks,forexample,electricityandnaturalgasgrids,andmightleadtothegrowthofnewenergycarriersystems,suchasdistrictheatingandcoolingandthedeploymentofnewinfrastructurestosupporttheuseofhydrogen.Understandingtheimplicationsofenergytransitionforenergynetworks,andthewaysinwhichtheseinfrastructuresshouldadapttothechallengesofdecarbonization,isimportanttoachievenet-zerocarbonobjectives.Thispaperexploressomeofthekeyissuesfacedbyelectricitytransmissionanddistributionnetworks;naturalgasnetworks;andfuturehydrogen,heating,andcoolingnetworksinthetransitionofenergysystems.Also,asfuturedecarbonizedenergysystemsarelikelytoexhibitsignificantlymoreinteractionbetweendifferentpartsofthesystem,thispaperexplorespossibleapproachestoutilizingthesynergiesbetweenenergynetworksandbenefitingfromtheirintegratedoperationtolowerthecostsandchallengesofdecarbonization.
iii
Contents
Abstract ii
Figures iii
Tables iii
1.Introduction 1
2.Energynetworks 2
2.1Electricitytransmissionnetworks 2
2.1.1Theeffectofmarketdesign 5
2.1.2Electricitydistributionnetworks 5
2.2Naturalgasnetworks 8
2.3Hydrogennetwork 11
2.4Heatingandcoolingnetworks 12
3.Integratedenergynetworks 16
4.Summaryandconclusions 19
References 22
Figures
Figure1:Naturalgasinprimaryenergyinglobalwholeenergysystemscenariosthatmeeta1.5°C
warmingtarget 9
Figure2:YearlyheatdemandintheUKacrosssectors(2019) 13
Figure3:Globalenergyconsumptionforspacecoolinginbuildings 15
Figure4:Shareofheating/coolingdemandmetthroughdistrictenergysystemsinselectedcountries 15
Figure5:Threelayersofanintegratedapproachtonetworkplanningandoperation 17
Figure6:IllustrativepossibleinteractionsbetweendifferentenergynetworksintheUK 18
Tables
Table1:Transformationoftheelectricitysystemanditsimplications 3
Table2:Anexampleofatransmissionconstraintandtherangeofpossiblesolutions 4
1
Thecontentsofthispaperaretheauthor’ssoleresponsibility.Theydonotnecessarilyrepresenttheviews
oftheOxfordInstituteforEnergyStudiesoranyofitsMembers.
1.Introduction
Energynetworksareinfrastructuresthatconnecttheenergysourcewiththeenergyuseandthusconstituteacrucialelementofnationalandglobalenergysystems.Overthelasthundredyears,thenetworks(especiallyelectricityandgas)haveevolvedfromlocalsimplegridsintocomplexinfrastructuresthattransferenergynotonlywithinnationalboundariesbutalsoacrossbordersinareliableandefficientmanner.
Thenet-zerocarbontargetwillresultinasignificantchangeinenergysystemswithsignificantimplicationsforexistingenergynetworks.Itmayalsoleadtothegrowthofnewenergycarriersystems,suchasdistrictheatingandcooling,andpotentiallygiverisetonewinfrastructuretosupportthedeliveryanduseofhydrogen.
Theelectricitynetworks,inparticular,arefacingsignificantchangesasaresultofthetransformationcurrentlyunderwayintheenergysystem.Electricityisthefastestgrowingconsumerenergybecauseoftherolethatitisexpectedtoplayinthedecarbonizationofthetransport,buildingandindustrialsectors.Traditionally,electricitywasgeneratedinlargecentralizedthermalorhydropowerplants,whichfeedintoatransmissiongridthatconnectsindustrialloadsandsuppliessmallerconsumersthroughdistributiongrids(IEA,2021).Thedesignoftransmissiongridswassuchthatpowerflowsbetweenpowerplantsandmainconsumptioncentreswithinaspecificregionwereeasilyaccommodatedwithoutstructuralcongestion.However,renewableenergyresourcessuchasonshorewindfarms,utility-scalesolarfacilities,andoffshorewindfarmsareoftenlocatedfarfromloadcentres,whilethermalgenerationplantsareeitherbeingphasedoutorforcedoutofthemarketbycheaprenewables.Atthesametime,thereisahugegrowthinsmallerdistributedenergyresources(DERs)onthedistributiongrid.Thesedevelopmentswillchangetheflowpatternwithintheelectricitynetworksandmaycreatenewconstraints,andthusnecessitatemoreefficientutilizationofexistinggridassets,newgridinvestments,andinsomecasesevennewoverallgridandelectricitymarketdesigns.
TheriseofDERs,andthedecentralizationparadigminparticularisupendingthebalancebetweentheelectricitytransmissionanddistributionsectors.Distributiongrids,whichhavehistoricallybeenpassiveandaddressedgridconstraintsthroughoverengineering,arenowbecomingmoreactive.Alongwiththeneedfornewrules,thisalsomeansnewrolesfordistributionsystemoperators(DSOs)tofacilitateefficientintegrationofDERswhileachievingahigherlevelofcoordinationwiththetransmissionsystemoperator(TSO).ThisistoimprovevisibilityandcontroloverDERsandavoidpotentialconflictbetweenDSOsandtheTSO.
Apartfromelectricity,naturalgasisanothermajorenergynetworkinmanycountries.However,thefutureofthenaturalgasgridisuncertain,especiallyatthelow-pressuredistributionlevel.Itpartlydependsonfutureenergyservicescenariosinwhichnaturalgasisprimarilyused,forexample,forheating,andpartlyonthetechnologicalprogressmadetolowerthecostsofcarboncaptureandstorage.Theuseofnaturalgasnetworksmustchangeifthesenetworksaretoplayaroleunderthenet-zerocarbonobjective.Low-carbonalternativessuchashydrogenareapotentialreplacementfornaturalgasbutarangeofchallengesexists.Forexample,astheshareofnaturalgasdeclines,availablevolumesofhydrogenmaynotbesufficienttojustifyadjustingtheexistingnaturalgasinfrastructures.Also,hydrogencanbetransportednotonlyviaarepurposedgasnetwork(ornewpipeline),butalsoviaavailablepowerandtransportationnetworks,suchasbyrail,road,andonwaterways.Thismeansthat,despitetheefficiencyofpipelines,repurposingthegasnetworkmightnotalwaysbetheoptimalsolution.
Thereareotherenergynetworksemergingtoaddressthechallengesofdecarbonizingtheheatingandcoolingsectors.Heatnetworkscurrentlyhavelittleenergydemandmarketsharegloballybut,giventheiradvantageoverindividualheatingsystemsandalsothegrowingurgencyofdecarbonizingheatinginthebuildingsector,theirshareisexpectedtoincrease.IntheUK,forexample,theenergydemand
2
Thecontentsofthispaperaretheauthor’ssoleresponsibility.Theydonotnecessarilyrepresenttheviews
oftheOxfordInstituteforEnergyStudiesoranyofitsMembers.
forheatingaccountsformorethan40percentofallenergyuseandcontributestoaroundone-thirdofcarbonemissions.Underfavourableregulatoryandpolicyconditions,districtheatingcouldbecomethemainmethodofprovidingheattobuildingsinhigh-densitybuiltenvironments,suchascitycentresandcampuses,aswellassomeruraloff-gasgridcommunitiesinthiscountry.
Coolingnetworksarelesscommoncomparedwithdistrictheating,butwiththeriseindemandforspacecoolingintheGlobalSouththesenetworksmayalsogainmoreimportance.IntheUnitedArabEmirates,districtcoolingcurrentlyprovidesmorethanone-fifthofthecoolingload(IRENA,2017b).Theeconomiesofscaleandincreasedefficiencyofprovidingcentralizedspacecooling,comparedwithindividualair-conditioningsystems,canreducetheircostssignificantly.Similartodistrictheating,districtcoolingalsorequiresappropriatepoliciesandregulationstofacilitateitsdeploymentinplaceswithhigh-loaddensity.
Asenergysystemsbecomemorecomplexduetodecarbonization,decentralizationanddigitalizationtrends,theimportanceofenergynetworksascriticalinfrastructuresthatexploitandfacilitatetemporalandspatialdiversityinenergyproductionandconsumptionincreases.Itisthusnecessarytounderstandhowbesttodesign,regulate,integrateandoperateexistingandemergingenergynetworksinordertobenefittheentireenergysystem.Currently,energynetworks,whethertheybeelectricity,gas,heatingorcooling,arecommonlyplannedandoperatedindependently,whichresultsinalossofsynergiesandefficiency(Hosseini,2020).Theseseparateinfrastructuresarenowincreasinglybecominginterconnectedthroughnetworkcouplingtechnologies,suchascombinedcyclegasturbines(CCGT);combinedheatandpowerunits(CHP);andpower-to-Xtechnologies,suchashydrogen,ammonia,heating,cooling,andheatpumps.Anintegratedapproachtotheplanningandoperationofthesenetworkscanlowertheuseofprimaryenergy,provideflexibilitytointegratevariablerenewableenergyresourcesandlowerthecostofachievinganet-zerotarget.Thishoweverentailsaddressingarangeofoperational,regulatory,andgovernanceissues.1
Theoutlineofthispaperisasfollows:Section2discussesissueswhichindividualenergynetworksarefacingduringtheenergytransition,startingwithelectricitytransmissionanddistributiongridsthengoingontonaturalgasandhydrogengridsandfinishingwithheatingandcoolingnetworks.Section3discussestheideaofanintegratedenergynetwork.Finally,Section4providesasummaryandconclusions.
2.Energynetworks
Energynetworksareinfrastructuresthattransferenergyfromtheproductionsourcetotheconsumers’premises.Theyconstitutevariousformsoftechnologiesrangingfromestablishednetworks,suchaselectricityandnaturalgas,toemerginggrids,suchashydrogen,heating,andcooling.Inthissection,webrieflyrevieweachofthesenetworksandhighlightthechallengesandopportunitiestheyfaceasaresultoftheenergytransition.
2.1Electricitytransmissionnetworks
Aswemovetowardsanet-zerocarboneconomy,theelectricitysectorisexperiencingaprofoundtransformation(BEIS,2021a).Onthesupplyside,theriseofrenewableenergyresourceshasledtopowergenerationbecomingincreasinglyvariableanduncertainwhilethepenetrationofDERsimpliesashiftofvaluefromtransmissiontothedistributionlevelduetodecentralization.Onthedemandside,electricitydemandisnotonlyexpectedtorise,duetotheincreasedelectrificationofactivitiesandprocesses,butmayalsobecomemoreuncertainbecauseofthenatureofnewlyelectrifiedactivities
1Theseincludeeconomicissues,suchascoordinationinthepresenceoffragmentedinstitutionalandmarketstructuresofdifferentenergysystems,aswelltechnicalchallenges,suchaspreventingcascadingfailures,loweringvulnerability,andimprovingtheresilienceofintegratedenergynetworks(Tayloretal.,2022).
3
Thecontentsofthispaperaretheauthor’ssoleresponsibility.Theydonotnecessarilyrepresenttheviews
oftheOxfordInstituteforEnergyStudiesoranyofitsMembers.
(forexample,electricvehiclescanpotentiallychargeatanytimeandatanylocationonthenetwork).Inaddition,networkusersarebecomingmoreactiveasdigitalizationandautomationlowerthetransactioncostsofinteractingwiththeelectricitysystem.Theseallhaveimplicationsfortheentireelectricitysystem,includingthenetworkinfrastructure(seeTable1).
Table1:Transformationoftheelectricitysystemanditsimplications
Transformationofthepowersystem
Generation
Variableanduncertainrenewablegeneration
Distributedenergyresources
Energystorage
Electricitydemand
Theriseofelectricityconsumption(e.g.datacentres,
electricvehicles,heatpumps,air-conditioning)
Increaseinuncertaintyofdemand
Networkusers
Activenetworkusers(sumers,energy
communities)
Communicationandcontrol
Digitalizationandautomation
Implicationsforthepowersystem
Initialfocus
Presentfocus
Planning
Renewable
generation
Capacitygrowth
Systeminteraction,integrationcosts
Network
infrastructure
Sufficientcapacitytoaccommodateallusers
Market-basedanddifferentiatedgridaccessregime,competition,costallocation,coordinationwithgeneration
Operation
Reliabilityoperationalsecurity
and
Throughmarket
energy-only
Searchfornewparadigm
Flexibility
Fromconventionalpowerplants
Newsolutions(e.g.DERs,demandresponse,energystorage)andnewincentivesandframeworksforflexibleservices
Source:author
Indeed,adifferentelectricitynetworkisneededcomparedtowhatwehadinthepast.Electricitynetworksrequirehighercapacityandinterconnectionsaswellasmoreefficientapproachestocaterfortheriseintheelectricitydemandandtheincreasedcomplexityandchallengeinasystembalancingsupplyanddemand.
Althoughdecentralizationimpliesthatanincreasinglyhigherproportionofgenerationfacilitiesarelocatedonthedistributionside,significantinvestmentinthetransmissionnetworksisstillrequiredduetothediversegeographicallocationofnewmajorresources,suchasonshoreandoffshorewindfarms,aswellastheincreasedneedforinterconnectivitybetweenelectricitymarkets.
Therearetwoimportantpointswhenitcomestoexpandingthetransmissiongrid.First,thedesignandconstructionofnewtransmissionassetsisacomplexandcostlyprocesswithalongleadtime.Second,thereisstilluncertaintyaboutthetimingandpaceofdecarbonizationofheatingandtransportaswellastheextenttowhichelectrificationcanoutcompetealternativeoptionsinallapplicationsoftheseservices.Thissuggeststhatfuturenetworkinvestmentsneedtoberobustinthefaceofarangeofpossibletransitionpathwayoutcomesforthesetwosectors.
Akeyconcernassociatedwithtraditionalnetworkinvestmentmodelsisrelatedtoeconomicefficiencyandtheirnarrowfocusonasset-basedsolutions,withoutconsideringthefactthatwhilegridexpansioniscrucial,lowercostsandtimelysolutionsmustbeaddressedfirst.Asanexample,consideraregion
4
Thecontentsofthispaperaretheauthor’ssoleresponsibility.Theydonotnecessarilyrepresenttheviews
oftheOxfordInstituteforEnergyStudiesoranyofitsMembers.
inwhichthereisanexcesssupplyofwindgenerationbutlowdemandduetolowerpopulationdensity,whichresultsinatransmissionconstraint.Thestandardsolutiontothischallengeinthepasthasbeentoaddanewwirethatconnectstheareawherethereisovergenerationtothenearesthighdemandcentre.AsseeninTable2,thedeploymentofanewtransmissionlineisoneoffivepossiblesolutionsforthisproblem.Indeed,thisproblemcanbesolvedbyabattery;anaggregator;avoltageserviceprovider;orasinglelargeindustrialdemand,suchasanelectrolyser,whichcanabsorbtheovergeneration.
Table1:Anexampleofatransmissionconstraintandtherangeofpossiblesolutions
Transmissionconstraintexample:thereisahighlevelofwindpowergenerationinanareawithlowerdemand
Solution1:addingawiretoconnectthehighsupplyareatoanareaofhighdemand
Solution2:deployingabatterythatstoresenergywhensupplyishighandreleasesitbacktothegridwhendemandishigh
Solution3:anaggregatorwhichcanaggregatedemandwiththeabilitytoturnitupordownwhenneededtomatchthesupply
Solution4:avoltageserviceproviderthatcanrespondtotheparticularchallengeofasurgeinelectricitysupplyasresultofasuddenincreaseinwindgeneration
Solution5:asinglelargeindustrialdemand,suchaselectrolysers,whichcanreacttowindpowergenerationsurges
Source:adaptedfromBEIS(2021a)
Theproblemisthatwhennetworkcompaniesarenotincentivizedtoconsiderwidersolutionstogridconstraints,Solution1isalmostalwaysthepreferredchoiceevenifitiseconomicallyinefficient.Thisisbecausenetworkcompanieshaveabiastowardsasset-basedsolutionsasnoneoftheotherapproachesincreasethenetworkcompany’sregulatoryassetbase,thusallowingittoreceiveareturn.Onthecontrary,implementingothersolutionsmayevenresultinlowerrevenueforthenetworkcompanyifthevolumeofenergytransportedinthegriddeclines.
Thisisspecificallythecasewhenthenetworkoperatorandnetworkownerarethesameorganizationandwasoneofthereasonsthat,intheUK,theNationalGridElectricitySystemOperator(NGESO)waslegallyseparatedfromthetransmissionowner,NationalGridElectricityTransmission(NGET),althoughtheybothbelongtothesamegroup—theNationalGrid(NG)Group.Therearenowdiscussionstogoevenfurtherandestablishanindependentenergysystemoperatorwhichhasabsolutelynointerestinregulatedelectricityandgasassets.
Therefore,aligningtheincentiveofthenetworkcompaniesiscriticaltoachieveinvestmentefficiency.Althoughthemarketfornon-networksolutionsatthetransmissionlevelmightnotbewell-developedattheoutset,theintroductionofspecificincentivescanencouragethird-partyproviderstoinnovateandgrow,especiallyasthetechnologyadvances.
Theincreaseintherangeofsolutionsalsoallowsforthepossibilityofutilizingmarketmechanismsandcompetitioninasupplychainsegmentthathastraditionallybeenconsideredasanaturalmonopoly.However,giventhatthetypeofnetworkconstraintaffectstherangeofsolutionsavailabletofixthem,anauctionfortheprocurementofsolutionscanbearrangedindifferentways.Sometimesanetworkconstraintmayhaveaclearuniquesolutionandothertimestheremightbearangeofpossiblesolutions.Thus,thecompetitiontoprocurenetworkservicesneedstoaccountfortheseidiosyncrasiesinthetypeofnetworkconstraintsandassociatedsolutions.IntheUK,withdiscussionsaboutintroducingcompetitioninonshoretransmissionnetworks,theregulatoristryingtodesignacompetitionframeworkthataccommodatesthesecomplexities.‘Earlycompetition’issuggestedincaseswhereagridconstraintisidentifiedbutthetenderhappenspriortothesurvey,consent,anddetaileddesignoftheassetbeingdevelopedsothewholeprocessofdesigning,constructing,anddeliveringthesolutionis
5
Thecontentsofthispaperaretheauthor’ssoleresponsibility.Theydonotnecessarilyrepresenttheviews
oftheOxfordInstituteforEnergyStudiesoranyofitsMembers.
tenderedfor(BEIS,2021).Thisistoallowforthefactthattheelectricitysystemischangingandmoresolutionsmightbecomeavailablebythetimethetenderhappens.The‘latecompetition’modelisproposedwhenthenetworkproblemisidentifiedandthesolutionisdecidedsothecompetitiontakesplacetobuild,own,andoperatetheagreedsolution.
Despitetheappealofacompetitionforatransmissionnetworkinfrastructure,therearesomeimportantissuesthatneedtobeconsideredforthechoiceofsolutionandtheassociatedauction.First,theleadtimeoftransmissionprojectsishigh,whilethechangeinthegenerationanddemandpatternsisveryuncertaingivencurrentdevelopmentsintheelectricitysector.Thissuggeststhattheneedforactualtransmissioninvestmentcanalterbythetimeaprojectisdelivered.Second,thereisahighlevelofuncertaintyinthecostoftransmissionprojectsandtherearemanyfactors,suchasmeetingplanningrequirements,thatcanaffecttheoutturncostbutcannotbefullyaccountedforatthetimeofdecision.Third,theeffectoftheseproceduresonothercompetitionmechanisms,suchasthoserelatedtosystemservices(runbytheelectricitysystemoperator)orflexibilitytenders(runbythedistributionnetworkoperator),needtobecarefullyexamined.Therefore,introducingcompetitionfortheprocurementofnetworkservicesrequirescarefuldesignandimplementation.
2.1.1Theeffectofmarketdesign
Thediscussionaboutnetworkoperationanddevelopmentcannotbedecoupledfromthedebateonthedesignoftheelectricitymarket.Theriseofvariableanduncertaingeneration,andthefactthattherenewableresourcesareoftenlocatedawayfromtheloadcentre,willchangetheexistingpatternsofflowinelectricitynetworksandthusresultinnewconstraints.Thechallengeisthatlocalcongestion,whetherintransmissionordistribution,isnotreflectedinelectricitymarketpricesinmostplacesaroundtheworldduetothesuboptimaldesignoftheelectricitymarket.Europeanelectricitymarkets,forexample,arestructuredaroundbiddingzones,whichmeansintrazonalcongestioncanbecomeapersistentchallenge.Currently,transmissionsystem’sconstraintsaremanagedbycost-basedormarket-basedregulatedredispatchoftheflexibilityresourcesinthezone.However,thiscanattimesbeverycostly.
Thekeychoicestoaddresstransmissioncongestion,inthecontextoftheEuropeanelectricitymarketdesign,areeithertoexpandthenetworkortoreconfigurebiddingzonessuchthattheyreflecttheactualstructuralcongestion.Networkexpansionisnotalwaysthemostcost-efficientsolution.Furthermore,thereisnoguaranteethatinthefuturenewstructuralcongestionwouldnotariseafterthenetworkhasbeenexpanded.Animprovedzonalmodelwithadequatedemarcationofbiddingzonescanbeacheapersolutionthannetworkreinforcement.However,apartfromthechallengesofimplementingawell-definedbiddingzone,itisalsosusceptibletoso-calledincrease-decrease(inc-dec)gamingopportunities.
Fromamarketdesignperspective,locationalmarginalpricing(LMP),alsocallednodalpricing,istheoptimumapproachtoutilizethegridefficiently.Inthismodel,thepriceateachnodeofthegridrepresentstheactualcostofsupplyingthatparticularnodegiventhenetworkconstraint.Thus,unlikezonalpricing,LMPtakesintoaccountthephysicalcharacteristicsofthegridwhichmeansno‘outofmarket’instrumentsarerequiredtoaddresscongestion,meaningthereisnoneedforredispatchofflexibilityservices.Itisalsolessvulnerableto‘inc-dec’games.Nonetheless,theimplementationofLMPinthecontextoftheEuropeanelectricitymarketisunlikelytobestraightforwardassuchashiftwouldimplymajorchangesformoststakeholdersinthemarket.
2.1.2Electricitydistributionnetworks
Electricitydistributionnetworksareexpectedtobearthebruntoffurtherelectrificationoftransportandheatingservices.Theiroperatingenvironmentisalsofast-changingduetotherapidgrowthofDERsandtheriseofprosumers.Asaresult,thesenetworksneedtooperateunderconditionsofincreasedvariableloadandgenerationaswellasmorefrequentcongestion.Therearethreeregulatory
6
Thecontentsofthispaperaretheauthor’ssoleresponsibility.Theydonotnecessarilyrepresenttheviews
oftheOxfordInstituteforEnergyStudiesoranyofitsMembers.
instrumentsthatplayacriticalroleinaddressingthechallengesthatdistributionnetworksfaceduringthetransitionera(Gómezetal.,2020).
Thefirstinstrumentisthegridaccessregime.Traditionallygridaccess,forbothconsumersandgenerators,isprovidedonafirmbasis.Thefirmaccessmodelallowsuserstowithdrawand/orinjecttothenetworkuptothemaximumcapacity2oftheinstalledfuseatanytimeorlocation.Despiteitssimplicitygivenlackofneedforreal-timemanagementofinjectionsandwithdrawalbythegridoperator,firmaccessisaninefficientapproach.Thisisbecause,underthisregime,alargepartofthenetworkcapacityisidleasnetworkcomponentsareoftenusedattheirratedvalueonlyforverylimitedtimesoftheyear.Firmaccessalsopreventsnewusersfrombeingconnectedwheneveryuserisgivenagridaccessoptionattheirmaximumratedcapacity.
Anon-firmoraflexibleaccessregime,ontheotherhand,isbetteralignedwiththerequirementforfastandefficientgridconnectioninanelectricitysystemwhichisexperiencingrapidgrowthofrenewableanddistributedenergyresources.Aflexibleconnectionprovidesthenetworkoperatorwiththerighttomanagetheuserfeed-inorconsumptioninexchangeforincentivessuchasdirectrenumeration,arebateongridconnectioncosts,fasterconnection,orsimplytherighttoconnectratherthanrefuseacustomer’sconnectionapplication.Inthisway,theneedforfurthernetworkreinforcementdeclinesandmoreuserscanbeac
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 海南2025年國(guó)家糧食和物資儲(chǔ)備局海南儲(chǔ)備物資管理處招聘16人筆試歷年參考題庫(kù)附帶答案詳解
- 標(biāo)準(zhǔn)緊固件項(xiàng)目籌資方案
- 泰州2025年江蘇泰州職業(yè)技術(shù)學(xué)院口腔門診部招聘合同制口腔助理醫(yī)師筆試歷年參考題庫(kù)附帶答案詳解
- 河北河北省第三榮軍優(yōu)撫醫(yī)院選聘高層次退休人才3人筆試歷年參考題庫(kù)附帶答案詳解
- 昆明2025年云南昆明市五華區(qū)云銅中學(xué)合同制教師招聘筆試歷年參考題庫(kù)附帶答案詳解
- 2025年中國(guó)印染廢水特效脫色劑市場(chǎng)調(diào)查研究報(bào)告
- 廣州2025年廣東廣州市天河區(qū)瑜翠園幼兒園編外聘用制專任教師招聘筆試歷年參考題庫(kù)附帶答案詳解
- 2025年綠籬機(jī)齒輪項(xiàng)目可行性研究報(bào)告
- 2025年滴流樹(shù)脂項(xiàng)目可行性研究報(bào)告
- 2025年楓木實(shí)木地板項(xiàng)目可行性研究報(bào)告
- 《婦女保健》課件
- 汽油安全技術(shù)說(shuō)明書(MSDS)
- 2023年安徽合肥高新區(qū)管委會(huì)招聘72人筆試參考題庫(kù)(共500題)答案詳解版
- 《現(xiàn)代食品檢測(cè)技術(shù)》全套教學(xué)課件
- 政府機(jī)關(guān)法律服務(wù)投標(biāo)方案
- 員工能力評(píng)價(jià)表(全套)
- 部編版語(yǔ)文四年級(jí)下冊(cè) 教材解讀
- 《自相矛盾》說(shuō)課課件
- 自然保護(hù)區(qū)規(guī)劃研究課件
- 《學(xué)會(huì)積極歸因》教學(xué)設(shè)計(jì)
- 半導(dǎo)體溫度計(jì)設(shè)計(jì)與制作
評(píng)論
0/150
提交評(píng)論