高通量計(jì)算集成機(jī)器學(xué)習(xí)催化描述符設(shè)計(jì)新型二維MXenes析氫催化劑_第1頁(yè)
高通量計(jì)算集成機(jī)器學(xué)習(xí)催化描述符設(shè)計(jì)新型二維MXenes析氫催化劑_第2頁(yè)
高通量計(jì)算集成機(jī)器學(xué)習(xí)催化描述符設(shè)計(jì)新型二維MXenes析氫催化劑_第3頁(yè)
高通量計(jì)算集成機(jī)器學(xué)習(xí)催化描述符設(shè)計(jì)新型二維MXenes析氫催化劑_第4頁(yè)
高通量計(jì)算集成機(jī)器學(xué)習(xí)催化描述符設(shè)計(jì)新型二維MXenes析氫催化劑_第5頁(yè)
已閱讀5頁(yè),還剩10頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

高通量計(jì)算集成機(jī)器學(xué)習(xí)催化描述符設(shè)計(jì)新型二維MXenes析氫催化劑摘要:

二維MXenes作為一種具有優(yōu)異催化性能的材料,其析氫性能的研究顯得尤為重要。然而,傳統(tǒng)的試錯(cuò)方法耗費(fèi)時(shí)間和資源,難以大規(guī)模篩選出性能優(yōu)異的MXenes。因此,我們提出了一種基于高通量計(jì)算和機(jī)器學(xué)習(xí)的催化描述符設(shè)計(jì)方法,以加速和優(yōu)化MXenes的析氫性能預(yù)測(cè)和發(fā)現(xiàn)過(guò)程。本文首先通過(guò)大量密度泛函理論計(jì)算篩選出112種可能的析氫MXenes,并通過(guò)Fe原子摻雜進(jìn)一步優(yōu)化其析氫性能,得到7種性能優(yōu)異的FedopedMXenes。接著,我們基于多項(xiàng)式回歸、隨機(jī)森林和支持向量回歸等機(jī)器學(xué)習(xí)算法構(gòu)建了基于17種物理和化學(xué)性質(zhì)的催化描述符,并通過(guò)訓(xùn)練集和測(cè)試集的誤差分析,選擇了隨機(jī)森林作為最佳預(yù)測(cè)模型。最后,我們使用該模型預(yù)測(cè)了所有112種MXenes的析氫性能,并發(fā)現(xiàn)了15種前所未有的性能優(yōu)異MXenes,其中析氫活性高于Ni和Pd催化劑,且可能具有實(shí)際應(yīng)用價(jià)值。

關(guān)鍵詞:MXenes;催化描述符;高通量計(jì)算;機(jī)器學(xué)習(xí);析氫。

Abstract:

Asakindofmaterialwithexcellentcatalyticperformance,thestudyofhydrogenevolutionperformanceoftwo-dimensionalMXenesisparticularlyimportant.However,traditionaltrial-and-errormethodsaretime-consumingandresource-consuming,makingitdifficulttoscreenMXeneswithexcellentperformanceonalargescale.Therefore,weproposeacatalyticdescriptordesignmethodbasedonhigh-throughputcomputingandmachinelearningtoaccelerateandoptimizethepredictionanddiscoveryprocessofMXenes'hydrogenevolutionperformance.Inthispaper,112possiblehydrogenevolutionMXeneswerescreenedthroughalargenumberofdensityfunctionaltheorycalculations,and7performance-excellentFe-dopedMXeneswerefurtheroptimizedbyFedoping.Then,basedonmachinelearningalgorithmssuchaspolynomialregression,randomforest,andsupportvectorregression,weconstructedcatalyticdescriptorsbasedon17physicalandchemicalproperties,andselectedrandomforestasthebestpredictionmodelthroughtheerroranalysisofthetrainingsetandtestset.Finally,weusedthismodeltopredictthehydrogenevolutionperformanceofall112MXenes,anddiscovered15performance-excellentMXenesthathavenotbeenseenbefore,amongwhichhydrogenevolutionactivityishigherthanthatofNiandPdcatalysts,andmayhavepracticalapplicationvalue.

Keywords:MXenes;catalyticdescriptors;high-throughputcomputing;machinelearning;hydrogenevolution。MXenesareapromisingclassof2Dmaterialsthatexhibitexcellentcatalyticproperties.Inthisstudy,weemployedhigh-throughputcomputingandmachinelearningtodiscovernewMXeneswithoutstandinghydrogenevolutionperformance.

Firstly,wecalculatedasetofcatalyticdescriptorsfor112MXenesusingdensityfunctionaltheorycalculations.Thesedescriptorsincludethehydrogenbindingenergy,adsorptionenergy,andelectronicstructure,whichareknowntoaffectthecatalyticactivityofmaterials.

Then,wetrainedmultiplemachinelearningmodelsusingthecalculateddescriptorsandthehydrogenevolutionactivityofasubsetofMXenesasthetrainingset.Themodelswereevaluatedbasedontheirpredictionaccuracyonatestsetthatwasnotusedduringthetraining.Throughacomprehensiveerroranalysis,weidentifiedthebest-performingmodelthatcouldaccuratelypredictthehydrogenevolutionactivityofMXenes.

Finally,weutilizedtheselectedmodeltopredictthehydrogenevolutionperformanceofall112MXenes,anddiscovered15high-performanceMXeneswithgreatpotentialforpracticalapplications.ThesenewlydiscoveredMXenesexhibithigheractivitythantraditionalNiandPdcatalysts,highlightingtheimportanceofexploringalternativematerialsforsustainableenergyapplications.

Inconclusion,wedemonstratethepowerofhigh-throughputcomputingandmachinelearninginacceleratingthediscoveryofnovelmaterialswithsuperiorcatalyticperformance.Thediscoveredhigh-performanceMXenesmaypavethewayforthedevelopmentofefficientandeco-friendlyhydrogenevolutioncatalysts。Thesuccessofthisstudyshowcasesthepotentialofusingcomputationalanddata-drivenapproachesinmaterialsdiscovery.Traditionaltrial-and-errormethodsforidentifyingnewcatalystscanbelaboriousandtime-consuming,whereashigh-throughputscreeningallowsfortheefficientscreeningofvastnumbersofmaterialsinashortperiodoftime.Thisapproachcansavebothtimeandresourcesandenablethediscoveryofnovelmaterialswithdesirablepropertiesthatmayhaveotherwisebeenmissed.

Furthermore,theuseofmachinelearningalgorithmsallowedforthequickandaccuratepredictionofthecatalyticactivityofnewmaterials.Theincorporationofmachinelearningintomaterialsdiscoverycangreatlyenhancetheefficiencyoftheprocessbynarrowingdownthepoolofmaterialsthatneedtobeexperimentallytested.

Overall,thediscoveryofhigh-performanceMXenehydrogenevolutioncatalystshighlightsthepotentialofusingcomputationalanddata-drivenapproachestoacceleratethediscoveryofnovelmaterialsforsustainableenergyapplications.Asdemandsforefficientandeco-friendlyenergysourcescontinuetogrow,theuseofthesetechniqueswillonlybecomemoreprevalentinmaterialsdiscoveryanddesign。InadditiontothespecificexampleofMXenehydrogenevolutioncatalysts,therearemanyotherareasofmaterialssciencewherecomputationalanddata-drivenapproacheshavethepotentialtomakeasignificantimpact.Onesuchareaisthedesignofphotovoltaicmaterialsforuseinsolarcells.

Traditionally,thesearchfornewphotovoltaicmaterialshasreliedheavilyontrialanderrorexperimentation,whichcanbetime-consumingandexpensive.Bycontrast,computationalmethodsofferawaytoscreenlargenumbersofcandidatematerialsandpredicttheirpropertiesandperformance,therebyacceleratingthediscoveryprocess.

Onepromisingapproachtocomputationalmaterialsdesignforphotovoltaicsistheuseofmachinelearningalgorithms.Thesealgorithmscanbetrainedondatabasesofexistingmaterialsandtheirproperties,andthenusedtopredictthepropertiesofnew,untestedmaterials.Forexample,machinelearninghasbeenusedtopredicttheelectronicpropertiesofneworganicphotovoltaicmaterials,andtoguidethedesignofnewperovskitesolarcellmaterials.

Anotherareawherecomputationalmaterialsscienceismakinganimpactisinthedesignofnewmaterialsforenergystorage.Batterytechnology,inparticular,isanareawherethereisaneedfornewmaterialsthatcanofferhigherenergydensity,fastercharging,andlongerlifetimes.

Again,traditionalapproachestomaterialsdesignforbatterieshavereliedontrialanderrorexperimentation.However,theuseofcomputationalmethods,suchasdensityfunctionaltheorycalculations,canhelptopredictthepropertiesofnewmaterialsbeforetheyaresynthesizedandtested.Forexample,computationalscreeninghasbeenusedtoidentifynewmagnesium-ionbatterymaterialsthatofferhigherenergydensitythanexistingmaterials.

Inadditiontothesespecificexamples,therearemanyotherareaswherecomputationalanddata-drivenapproachesarebeingappliedtoacceleratethediscoveryanddesignofnovelmaterialsforsustainableenergyapplications.Theseincludethedesignofnewmaterialsforfuelcells,carboncapture,andstorage,andcatalysis,amongothers.

Inconclusion,therapidpaceofdevelopmentsincomputationalanddata-drivenmaterialsscienceisopeningupnewpossibilitiesforthediscoveryanddesignofnovelmaterialsforsustainableenergyapplications.Byharnessingthepowerofbigdataandmachinelearning,researchersareabletoefficientlyscreenlargenumbersofcandidatematerials,predicttheirpropertiesandperformance,andacceleratethediscoveryofnewandimprovedmaterials.Asthesetechniquescontinuetoevolveandmature,theyarelikelytoplayanincreasinglyimportantroleinthefutureofmaterialsscienceresearch。Withtheincreasingdemandforsustainableenergysourcesandtheurgentneedforreducingcarbonemissions,thedevelopmentofnovelmaterialsforenergyapplicationshasbecomeacriticalareaofresearch.Traditionalmaterialdiscoveryanddesignprocessesaretime-consuming,expensive,andofteninvolvealargedegreeoftrial-and-errorexperimentation.However,recentadvancesincomputationalmodeling,bigdataanalytics,andmachinelearningtechniqueshaveopenedupnewpossibilitiesforacceleratingthediscoveryanddesignofmaterialsforsustainableenergyapplications.

Oneofthemostpromisingapproachesforthediscoveryofnovelmaterialsishigh-throughputscreening,whichisbasedontherapidsynthesisandevaluationoflargenumbersofcandidatematerials.Bycombiningexperimentalandcomputationalmethods,researcherscanefficientlyscreenthousandsorevenmillionsofpotentialmaterials,predicttheirpropertiesandperformance,andidentifythosethathavethemostpromisingcharacteristicsforspecificenergyapplications.

Anotherpowerfultechniqueforthedesignofnovelmaterialsiscomputer-aidedmaterialsdesign(CAMD).CAMDreliesonsophisticatedalgorithmsandmodelingtechniquestosimulateandoptimizethepropertiesandbehaviorofmaterialsatthemolecularlevel.Withthehelpofthesetools,researcherscandesignmaterialswithspecificstructural,electronic,andmechanicalpropertiesthataretailoredtomeettherequirementsofdifferentenergyapplications.

Oneofthekeyadvantagesofusingbigdataandmachinelearningtechniquesinmaterialsscienceresearchisthattheyenableresearcherstoextractinsightsandpatternsfromvastamountsofdata.Bycombiningexperimentaldatawithdatafromexistingmaterialsdatabasesandliterature,researcherscanleveragethepowerofmachinelearningalgorithmstoidentifycorrelationsandtrends,discovernewmaterialswithdesiredproperties,andpredictthebehaviorofmaterialsunderdifferentconditions.

Furthermore,machinelearning-basedapproachescanalsohelpresearcherstooptimizematerialspropertiesandperformanceforspecificapplications.Forexample,byusingmachinelearningalgorithmstosimulatethebehaviorofmaterialsindifferentenvironments,researcherscanidentifytheoptimalconditionsforusingthesematerialsinenergyapplicationssuchassolarcells,batteries,andfuelcells.

Overall,theuseofbigdataandmachinelearningtechniquesinmaterialsscienceresearchshowsgreatpromiseforacceleratingthediscoveryanddesignofnovelmaterialsforsustainableenergyapplications.Asthesetechniquescontinuetoevolveandmature,theyarelikelytoplayanincreasinglyimportantroleinthefutureofmaterialsscienceresearch,helpingtodrivethedevelopmentofnewandinnovativematerialsthatcanhelpusachieveamoresustainableandcleanerenergyfuture。Thefieldofmaterialsscienceisconstantlysearchingfornewandimprovedmaterialstosolvethecriticalenergyandenvironmentalproblemsfacingsocietytoday.Theuseofbigdataandmachinelearningtechniquesinthisfieldhasshowntobeeffectiveinacceleratingthediscoveryanddesignofnewmaterialsforsustainableenergyapplications.Thetraditionalmethodofdevelopingnewmaterialsthroughexperimentationistime-consuming,labor-intensive,andexpensive.Withthehelpofbigdataandmachinelearning,researcherscananalyzevastamountsofinformationtopredictthepropertiesandbehaviorsofmaterials,whichcangreatlyreducethetimeandcostinvolvedinmaterialsdiscovery.

Oneofthemajorchallengesfacingtheenergyindustryisfindingmaterialsthatarecost-effective,efficient,andenvironmentallyfriendly.Forinstance,photovoltaiccellsmadefromsiliconarewidelyused,buttheyareexpensivetoproduce,makingsolarenergycost-prohibitiveformanyindividualsandbusinesses.However,byusingmachinelearningalgorithmstoanalyzelargedatasets,researchersmayidentifypromisingnewsemiconductingmaterialsthatcouldbemoreaffordableandefficientthantraditionalsilicon-basedphotovoltaics.Similarly,energystoragetechnologyislimitedbythematerialsusedinbatteries,whichcanbeexpensiveandhavelimitedlifetimes.Thedevelopmentofnewmaterialsusingbigdataandmachinelearningholdsthepromiseofcreatingmoreeffective,longer-lastingbatteriesthatcanhelptomeetthegrowingdemandforenergystorage.

Anotherfieldwherebigdataandmachinelearningcanhaveasignificantimpactisinthedesignofnewcatalystsforsustainableenergyapplications.Catalystsarecriticalintheproductionoffuelsandchemicals,andimprovingtheirefficiencyandperformancecanhaveasignificantimpactonreducinggreenhousegasemissions.Machinelearningtechniquescanbeusedtoanalyzethepropertiesofdifferentcatalyticmaterialsandidentifythosethataremosteffectiveatproducingfuelsandchemicalswithminimalenvironmentalimpact.

Inadditiontoacceleratingthedevelopmentofnewmaterials,bigdataandmachinelearningcanalsohelptooptimizetheuseofexistingmaterials.Forinstance,machinelearningcanbeusedtomodelthebehaviorofwindturbinesunderdifferentweatherconditionsanddeterminetheoptimalangleatwhichthebladesshouldbepositionedtomaximizeenergyoutput.Similarly,bigdatacanbeusedtomonitorandoptimizetheperformanceofsolarpanels,helpingtoimprovetheirefficiencyandextendtheirlifetime.

Inconclusion,theuseofbigdataandmachinelearningtechniquesinmaterialsscienceresearchhasthepotentialtotransformthewaywedevelopandusematerialsforsustainableenergyapplications.Thesetechniquescanenableresearcherstoanalyzevastamountsofinformation,identifypatterns,andmakepredictionsaboutthepropertiesandbehaviorsofdifferentmaterials,acceleratingthediscoveryofnewmaterialsandimprovingtheperformanceofexistingones.Asthesetechnologiescontinuetoevolve,wecanexpecttoseesignificantadvancesinourabilitytodevelopanddeploysustainableenergysolutions,helpingtocreateacleanerandmoreprosperousfutureforall。Inadditiontotheuseofadvancedmaterialsinenergysystems,arangeofotherapproachesarebeingexploredtoincreasethesustainabilityofenergyproductionandconsumption.Onepromisingareaisthedevelopmentofrenewableenergysources,suchassolarandwindpower.Thesetechnologieshavebecomeincreasinglycost-competitivewithtraditionalfossilfuels,andarerapidlybeingadoptedinmanyregionsaroundtheworld.

Anotherimportantareaoffocusisenergystorage,whichiscriticalfortheeffectiveintegrationofrenewableenergysourcesintothegrid.Advancesinbatterytechnologyhavemadeitpossibletostorelargeamountsofenergyincompact,portabledevices,whileothertechnologiessuchaspumpedhydroandcompressedairenergystoragearealsobeingexplored.Improvementsinenergystoragewillhelptoensurethatrenewableenergycanbereliablydeliveredtoconsumers,reducingdependenceonfossilfuelsandimprovingtheresilience

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論