




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
高通量計(jì)算集成機(jī)器學(xué)習(xí)催化描述符設(shè)計(jì)新型二維MXenes析氫催化劑摘要:
二維MXenes作為一種具有優(yōu)異催化性能的材料,其析氫性能的研究顯得尤為重要。然而,傳統(tǒng)的試錯方法耗費(fèi)時間和資源,難以大規(guī)模篩選出性能優(yōu)異的MXenes。因此,我們提出了一種基于高通量計(jì)算和機(jī)器學(xué)習(xí)的催化描述符設(shè)計(jì)方法,以加速和優(yōu)化MXenes的析氫性能預(yù)測和發(fā)現(xiàn)過程。本文首先通過大量密度泛函理論計(jì)算篩選出112種可能的析氫MXenes,并通過Fe原子摻雜進(jìn)一步優(yōu)化其析氫性能,得到7種性能優(yōu)異的FedopedMXenes。接著,我們基于多項(xiàng)式回歸、隨機(jī)森林和支持向量回歸等機(jī)器學(xué)習(xí)算法構(gòu)建了基于17種物理和化學(xué)性質(zhì)的催化描述符,并通過訓(xùn)練集和測試集的誤差分析,選擇了隨機(jī)森林作為最佳預(yù)測模型。最后,我們使用該模型預(yù)測了所有112種MXenes的析氫性能,并發(fā)現(xiàn)了15種前所未有的性能優(yōu)異MXenes,其中析氫活性高于Ni和Pd催化劑,且可能具有實(shí)際應(yīng)用價(jià)值。
關(guān)鍵詞:MXenes;催化描述符;高通量計(jì)算;機(jī)器學(xué)習(xí);析氫。
Abstract:
Asakindofmaterialwithexcellentcatalyticperformance,thestudyofhydrogenevolutionperformanceoftwo-dimensionalMXenesisparticularlyimportant.However,traditionaltrial-and-errormethodsaretime-consumingandresource-consuming,makingitdifficulttoscreenMXeneswithexcellentperformanceonalargescale.Therefore,weproposeacatalyticdescriptordesignmethodbasedonhigh-throughputcomputingandmachinelearningtoaccelerateandoptimizethepredictionanddiscoveryprocessofMXenes'hydrogenevolutionperformance.Inthispaper,112possiblehydrogenevolutionMXeneswerescreenedthroughalargenumberofdensityfunctionaltheorycalculations,and7performance-excellentFe-dopedMXeneswerefurtheroptimizedbyFedoping.Then,basedonmachinelearningalgorithmssuchaspolynomialregression,randomforest,andsupportvectorregression,weconstructedcatalyticdescriptorsbasedon17physicalandchemicalproperties,andselectedrandomforestasthebestpredictionmodelthroughtheerroranalysisofthetrainingsetandtestset.Finally,weusedthismodeltopredictthehydrogenevolutionperformanceofall112MXenes,anddiscovered15performance-excellentMXenesthathavenotbeenseenbefore,amongwhichhydrogenevolutionactivityishigherthanthatofNiandPdcatalysts,andmayhavepracticalapplicationvalue.
Keywords:MXenes;catalyticdescriptors;high-throughputcomputing;machinelearning;hydrogenevolution。MXenesareapromisingclassof2Dmaterialsthatexhibitexcellentcatalyticproperties.Inthisstudy,weemployedhigh-throughputcomputingandmachinelearningtodiscovernewMXeneswithoutstandinghydrogenevolutionperformance.
Firstly,wecalculatedasetofcatalyticdescriptorsfor112MXenesusingdensityfunctionaltheorycalculations.Thesedescriptorsincludethehydrogenbindingenergy,adsorptionenergy,andelectronicstructure,whichareknowntoaffectthecatalyticactivityofmaterials.
Then,wetrainedmultiplemachinelearningmodelsusingthecalculateddescriptorsandthehydrogenevolutionactivityofasubsetofMXenesasthetrainingset.Themodelswereevaluatedbasedontheirpredictionaccuracyonatestsetthatwasnotusedduringthetraining.Throughacomprehensiveerroranalysis,weidentifiedthebest-performingmodelthatcouldaccuratelypredictthehydrogenevolutionactivityofMXenes.
Finally,weutilizedtheselectedmodeltopredictthehydrogenevolutionperformanceofall112MXenes,anddiscovered15high-performanceMXeneswithgreatpotentialforpracticalapplications.ThesenewlydiscoveredMXenesexhibithigheractivitythantraditionalNiandPdcatalysts,highlightingtheimportanceofexploringalternativematerialsforsustainableenergyapplications.
Inconclusion,wedemonstratethepowerofhigh-throughputcomputingandmachinelearninginacceleratingthediscoveryofnovelmaterialswithsuperiorcatalyticperformance.Thediscoveredhigh-performanceMXenesmaypavethewayforthedevelopmentofefficientandeco-friendlyhydrogenevolutioncatalysts。Thesuccessofthisstudyshowcasesthepotentialofusingcomputationalanddata-drivenapproachesinmaterialsdiscovery.Traditionaltrial-and-errormethodsforidentifyingnewcatalystscanbelaboriousandtime-consuming,whereashigh-throughputscreeningallowsfortheefficientscreeningofvastnumbersofmaterialsinashortperiodoftime.Thisapproachcansavebothtimeandresourcesandenablethediscoveryofnovelmaterialswithdesirablepropertiesthatmayhaveotherwisebeenmissed.
Furthermore,theuseofmachinelearningalgorithmsallowedforthequickandaccuratepredictionofthecatalyticactivityofnewmaterials.Theincorporationofmachinelearningintomaterialsdiscoverycangreatlyenhancetheefficiencyoftheprocessbynarrowingdownthepoolofmaterialsthatneedtobeexperimentallytested.
Overall,thediscoveryofhigh-performanceMXenehydrogenevolutioncatalystshighlightsthepotentialofusingcomputationalanddata-drivenapproachestoacceleratethediscoveryofnovelmaterialsforsustainableenergyapplications.Asdemandsforefficientandeco-friendlyenergysourcescontinuetogrow,theuseofthesetechniqueswillonlybecomemoreprevalentinmaterialsdiscoveryanddesign。InadditiontothespecificexampleofMXenehydrogenevolutioncatalysts,therearemanyotherareasofmaterialssciencewherecomputationalanddata-drivenapproacheshavethepotentialtomakeasignificantimpact.Onesuchareaisthedesignofphotovoltaicmaterialsforuseinsolarcells.
Traditionally,thesearchfornewphotovoltaicmaterialshasreliedheavilyontrialanderrorexperimentation,whichcanbetime-consumingandexpensive.Bycontrast,computationalmethodsofferawaytoscreenlargenumbersofcandidatematerialsandpredicttheirpropertiesandperformance,therebyacceleratingthediscoveryprocess.
Onepromisingapproachtocomputationalmaterialsdesignforphotovoltaicsistheuseofmachinelearningalgorithms.Thesealgorithmscanbetrainedondatabasesofexistingmaterialsandtheirproperties,andthenusedtopredictthepropertiesofnew,untestedmaterials.Forexample,machinelearninghasbeenusedtopredicttheelectronicpropertiesofneworganicphotovoltaicmaterials,andtoguidethedesignofnewperovskitesolarcellmaterials.
Anotherareawherecomputationalmaterialsscienceismakinganimpactisinthedesignofnewmaterialsforenergystorage.Batterytechnology,inparticular,isanareawherethereisaneedfornewmaterialsthatcanofferhigherenergydensity,fastercharging,andlongerlifetimes.
Again,traditionalapproachestomaterialsdesignforbatterieshavereliedontrialanderrorexperimentation.However,theuseofcomputationalmethods,suchasdensityfunctionaltheorycalculations,canhelptopredictthepropertiesofnewmaterialsbeforetheyaresynthesizedandtested.Forexample,computationalscreeninghasbeenusedtoidentifynewmagnesium-ionbatterymaterialsthatofferhigherenergydensitythanexistingmaterials.
Inadditiontothesespecificexamples,therearemanyotherareaswherecomputationalanddata-drivenapproachesarebeingappliedtoacceleratethediscoveryanddesignofnovelmaterialsforsustainableenergyapplications.Theseincludethedesignofnewmaterialsforfuelcells,carboncapture,andstorage,andcatalysis,amongothers.
Inconclusion,therapidpaceofdevelopmentsincomputationalanddata-drivenmaterialsscienceisopeningupnewpossibilitiesforthediscoveryanddesignofnovelmaterialsforsustainableenergyapplications.Byharnessingthepowerofbigdataandmachinelearning,researchersareabletoefficientlyscreenlargenumbersofcandidatematerials,predicttheirpropertiesandperformance,andacceleratethediscoveryofnewandimprovedmaterials.Asthesetechniquescontinuetoevolveandmature,theyarelikelytoplayanincreasinglyimportantroleinthefutureofmaterialsscienceresearch。Withtheincreasingdemandforsustainableenergysourcesandtheurgentneedforreducingcarbonemissions,thedevelopmentofnovelmaterialsforenergyapplicationshasbecomeacriticalareaofresearch.Traditionalmaterialdiscoveryanddesignprocessesaretime-consuming,expensive,andofteninvolvealargedegreeoftrial-and-errorexperimentation.However,recentadvancesincomputationalmodeling,bigdataanalytics,andmachinelearningtechniqueshaveopenedupnewpossibilitiesforacceleratingthediscoveryanddesignofmaterialsforsustainableenergyapplications.
Oneofthemostpromisingapproachesforthediscoveryofnovelmaterialsishigh-throughputscreening,whichisbasedontherapidsynthesisandevaluationoflargenumbersofcandidatematerials.Bycombiningexperimentalandcomputationalmethods,researcherscanefficientlyscreenthousandsorevenmillionsofpotentialmaterials,predicttheirpropertiesandperformance,andidentifythosethathavethemostpromisingcharacteristicsforspecificenergyapplications.
Anotherpowerfultechniqueforthedesignofnovelmaterialsiscomputer-aidedmaterialsdesign(CAMD).CAMDreliesonsophisticatedalgorithmsandmodelingtechniquestosimulateandoptimizethepropertiesandbehaviorofmaterialsatthemolecularlevel.Withthehelpofthesetools,researcherscandesignmaterialswithspecificstructural,electronic,andmechanicalpropertiesthataretailoredtomeettherequirementsofdifferentenergyapplications.
Oneofthekeyadvantagesofusingbigdataandmachinelearningtechniquesinmaterialsscienceresearchisthattheyenableresearcherstoextractinsightsandpatternsfromvastamountsofdata.Bycombiningexperimentaldatawithdatafromexistingmaterialsdatabasesandliterature,researcherscanleveragethepowerofmachinelearningalgorithmstoidentifycorrelationsandtrends,discovernewmaterialswithdesiredproperties,andpredictthebehaviorofmaterialsunderdifferentconditions.
Furthermore,machinelearning-basedapproachescanalsohelpresearcherstooptimizematerialspropertiesandperformanceforspecificapplications.Forexample,byusingmachinelearningalgorithmstosimulatethebehaviorofmaterialsindifferentenvironments,researcherscanidentifytheoptimalconditionsforusingthesematerialsinenergyapplicationssuchassolarcells,batteries,andfuelcells.
Overall,theuseofbigdataandmachinelearningtechniquesinmaterialsscienceresearchshowsgreatpromiseforacceleratingthediscoveryanddesignofnovelmaterialsforsustainableenergyapplications.Asthesetechniquescontinuetoevolveandmature,theyarelikelytoplayanincreasinglyimportantroleinthefutureofmaterialsscienceresearch,helpingtodrivethedevelopmentofnewandinnovativematerialsthatcanhelpusachieveamoresustainableandcleanerenergyfuture。Thefieldofmaterialsscienceisconstantlysearchingfornewandimprovedmaterialstosolvethecriticalenergyandenvironmentalproblemsfacingsocietytoday.Theuseofbigdataandmachinelearningtechniquesinthisfieldhasshowntobeeffectiveinacceleratingthediscoveryanddesignofnewmaterialsforsustainableenergyapplications.Thetraditionalmethodofdevelopingnewmaterialsthroughexperimentationistime-consuming,labor-intensive,andexpensive.Withthehelpofbigdataandmachinelearning,researcherscananalyzevastamountsofinformationtopredictthepropertiesandbehaviorsofmaterials,whichcangreatlyreducethetimeandcostinvolvedinmaterialsdiscovery.
Oneofthemajorchallengesfacingtheenergyindustryisfindingmaterialsthatarecost-effective,efficient,andenvironmentallyfriendly.Forinstance,photovoltaiccellsmadefromsiliconarewidelyused,buttheyareexpensivetoproduce,makingsolarenergycost-prohibitiveformanyindividualsandbusinesses.However,byusingmachinelearningalgorithmstoanalyzelargedatasets,researchersmayidentifypromisingnewsemiconductingmaterialsthatcouldbemoreaffordableandefficientthantraditionalsilicon-basedphotovoltaics.Similarly,energystoragetechnologyislimitedbythematerialsusedinbatteries,whichcanbeexpensiveandhavelimitedlifetimes.Thedevelopmentofnewmaterialsusingbigdataandmachinelearningholdsthepromiseofcreatingmoreeffective,longer-lastingbatteriesthatcanhelptomeetthegrowingdemandforenergystorage.
Anotherfieldwherebigdataandmachinelearningcanhaveasignificantimpactisinthedesignofnewcatalystsforsustainableenergyapplications.Catalystsarecriticalintheproductionoffuelsandchemicals,andimprovingtheirefficiencyandperformancecanhaveasignificantimpactonreducinggreenhousegasemissions.Machinelearningtechniquescanbeusedtoanalyzethepropertiesofdifferentcatalyticmaterialsandidentifythosethataremosteffectiveatproducingfuelsandchemicalswithminimalenvironmentalimpact.
Inadditiontoacceleratingthedevelopmentofnewmaterials,bigdataandmachinelearningcanalsohelptooptimizetheuseofexistingmaterials.Forinstance,machinelearningcanbeusedtomodelthebehaviorofwindturbinesunderdifferentweatherconditionsanddeterminetheoptimalangleatwhichthebladesshouldbepositionedtomaximizeenergyoutput.Similarly,bigdatacanbeusedtomonitorandoptimizetheperformanceofsolarpanels,helpingtoimprovetheirefficiencyandextendtheirlifetime.
Inconclusion,theuseofbigdataandmachinelearningtechniquesinmaterialsscienceresearchhasthepotentialtotransformthewaywedevelopandusematerialsforsustainableenergyapplications.Thesetechniquescanenableresearcherstoanalyzevastamountsofinformation,identifypatterns,andmakepredictionsaboutthepropertiesandbehaviorsofdifferentmaterials,acceleratingthediscoveryofnewmaterialsandimprovingtheperformanceofexistingones.Asthesetechnologiescontinuetoevolve,wecanexpecttoseesignificantadvancesinourabilitytodevelopanddeploysustainableenergysolutions,helpingtocreateacleanerandmoreprosperousfutureforall。Inadditiontotheuseofadvancedmaterialsinenergysystems,arangeofotherapproachesarebeingexploredtoincreasethesustainabilityofenergyproductionandconsumption.Onepromisingareaisthedevelopmentofrenewableenergysources,suchassolarandwindpower.Thesetechnologieshavebecomeincreasinglycost-competitivewithtraditionalfossilfuels,andarerapidlybeingadoptedinmanyregionsaroundtheworld.
Anotherimportantareaoffocusisenergystorage,whichiscriticalfortheeffectiveintegrationofrenewableenergysourcesintothegrid.Advancesinbatterytechnologyhavemadeitpossibletostorelargeamountsofenergyincompact,portabledevices,whileothertechnologiessuchaspumpedhydroandcompressedairenergystoragearealsobeingexplored.Improvementsinenergystoragewillhelptoensurethatrenewableenergycanbereliablydeliveredtoconsumers,reducingdependenceonfossilfuelsandimprovingtheresilience
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 綠色印刷技術(shù)評估方法考核試卷
- 樂器批發(fā)商的消費(fèi)者洞察與市場細(xì)分研究考核試卷
- 節(jié)能技術(shù)發(fā)展現(xiàn)狀考核試卷
- 美術(shù)教育中的社會服務(wù)與社區(qū)發(fā)展實(shí)踐考核試卷
- 計(jì)劃生育宣傳標(biāo)語
- 元旦晚會的活動總結(jié)
- 計(jì)劃生育獎勵扶助工作計(jì)劃兩篇
- 企業(yè)安全生產(chǎn)年終工作總結(jié)集錦10篇
- 每日占卜活動方案
- 段考獎勵活動方案
- 胸腔鏡肺葉切除手術(shù)配合及護(hù)理
- 變速箱廠總平面布置設(shè)計(jì)設(shè)施規(guī)劃與物流分析課程設(shè)計(jì)
- 艾里遜自動變速箱技術(shù)培訓(xùn)課程(H5610AR系列)
- 深圳市物業(yè)專項(xiàng)維修資金管理系統(tǒng)操作手冊(業(yè)(居)委會)
- 高中數(shù)學(xué)研究性學(xué)習(xí)報(bào)告
- 天然藥物提取與分離技術(shù)
- 2023年中汽中心校園招聘筆試題庫及答案解析
- LS 8010-2014植物油庫設(shè)計(jì)規(guī)范
- GB/T 20041.21-2017電纜管理用導(dǎo)管系統(tǒng)第21部分:剛性導(dǎo)管系統(tǒng)的特殊要求
- GB/T 19465-2004工業(yè)用異丁烷(HC-600a)
- GB/T 18255-2022焦化粘油類產(chǎn)品餾程的測定方法
評論
0/150
提交評論