版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
高通量計(jì)算集成機(jī)器學(xué)習(xí)催化描述符設(shè)計(jì)新型二維MXenes析氫催化劑摘要:
二維MXenes作為一種具有優(yōu)異催化性能的材料,其析氫性能的研究顯得尤為重要。然而,傳統(tǒng)的試錯(cuò)方法耗費(fèi)時(shí)間和資源,難以大規(guī)模篩選出性能優(yōu)異的MXenes。因此,我們提出了一種基于高通量計(jì)算和機(jī)器學(xué)習(xí)的催化描述符設(shè)計(jì)方法,以加速和優(yōu)化MXenes的析氫性能預(yù)測(cè)和發(fā)現(xiàn)過(guò)程。本文首先通過(guò)大量密度泛函理論計(jì)算篩選出112種可能的析氫MXenes,并通過(guò)Fe原子摻雜進(jìn)一步優(yōu)化其析氫性能,得到7種性能優(yōu)異的FedopedMXenes。接著,我們基于多項(xiàng)式回歸、隨機(jī)森林和支持向量回歸等機(jī)器學(xué)習(xí)算法構(gòu)建了基于17種物理和化學(xué)性質(zhì)的催化描述符,并通過(guò)訓(xùn)練集和測(cè)試集的誤差分析,選擇了隨機(jī)森林作為最佳預(yù)測(cè)模型。最后,我們使用該模型預(yù)測(cè)了所有112種MXenes的析氫性能,并發(fā)現(xiàn)了15種前所未有的性能優(yōu)異MXenes,其中析氫活性高于Ni和Pd催化劑,且可能具有實(shí)際應(yīng)用價(jià)值。
關(guān)鍵詞:MXenes;催化描述符;高通量計(jì)算;機(jī)器學(xué)習(xí);析氫。
Abstract:
Asakindofmaterialwithexcellentcatalyticperformance,thestudyofhydrogenevolutionperformanceoftwo-dimensionalMXenesisparticularlyimportant.However,traditionaltrial-and-errormethodsaretime-consumingandresource-consuming,makingitdifficulttoscreenMXeneswithexcellentperformanceonalargescale.Therefore,weproposeacatalyticdescriptordesignmethodbasedonhigh-throughputcomputingandmachinelearningtoaccelerateandoptimizethepredictionanddiscoveryprocessofMXenes'hydrogenevolutionperformance.Inthispaper,112possiblehydrogenevolutionMXeneswerescreenedthroughalargenumberofdensityfunctionaltheorycalculations,and7performance-excellentFe-dopedMXeneswerefurtheroptimizedbyFedoping.Then,basedonmachinelearningalgorithmssuchaspolynomialregression,randomforest,andsupportvectorregression,weconstructedcatalyticdescriptorsbasedon17physicalandchemicalproperties,andselectedrandomforestasthebestpredictionmodelthroughtheerroranalysisofthetrainingsetandtestset.Finally,weusedthismodeltopredictthehydrogenevolutionperformanceofall112MXenes,anddiscovered15performance-excellentMXenesthathavenotbeenseenbefore,amongwhichhydrogenevolutionactivityishigherthanthatofNiandPdcatalysts,andmayhavepracticalapplicationvalue.
Keywords:MXenes;catalyticdescriptors;high-throughputcomputing;machinelearning;hydrogenevolution。MXenesareapromisingclassof2Dmaterialsthatexhibitexcellentcatalyticproperties.Inthisstudy,weemployedhigh-throughputcomputingandmachinelearningtodiscovernewMXeneswithoutstandinghydrogenevolutionperformance.
Firstly,wecalculatedasetofcatalyticdescriptorsfor112MXenesusingdensityfunctionaltheorycalculations.Thesedescriptorsincludethehydrogenbindingenergy,adsorptionenergy,andelectronicstructure,whichareknowntoaffectthecatalyticactivityofmaterials.
Then,wetrainedmultiplemachinelearningmodelsusingthecalculateddescriptorsandthehydrogenevolutionactivityofasubsetofMXenesasthetrainingset.Themodelswereevaluatedbasedontheirpredictionaccuracyonatestsetthatwasnotusedduringthetraining.Throughacomprehensiveerroranalysis,weidentifiedthebest-performingmodelthatcouldaccuratelypredictthehydrogenevolutionactivityofMXenes.
Finally,weutilizedtheselectedmodeltopredictthehydrogenevolutionperformanceofall112MXenes,anddiscovered15high-performanceMXeneswithgreatpotentialforpracticalapplications.ThesenewlydiscoveredMXenesexhibithigheractivitythantraditionalNiandPdcatalysts,highlightingtheimportanceofexploringalternativematerialsforsustainableenergyapplications.
Inconclusion,wedemonstratethepowerofhigh-throughputcomputingandmachinelearninginacceleratingthediscoveryofnovelmaterialswithsuperiorcatalyticperformance.Thediscoveredhigh-performanceMXenesmaypavethewayforthedevelopmentofefficientandeco-friendlyhydrogenevolutioncatalysts。Thesuccessofthisstudyshowcasesthepotentialofusingcomputationalanddata-drivenapproachesinmaterialsdiscovery.Traditionaltrial-and-errormethodsforidentifyingnewcatalystscanbelaboriousandtime-consuming,whereashigh-throughputscreeningallowsfortheefficientscreeningofvastnumbersofmaterialsinashortperiodoftime.Thisapproachcansavebothtimeandresourcesandenablethediscoveryofnovelmaterialswithdesirablepropertiesthatmayhaveotherwisebeenmissed.
Furthermore,theuseofmachinelearningalgorithmsallowedforthequickandaccuratepredictionofthecatalyticactivityofnewmaterials.Theincorporationofmachinelearningintomaterialsdiscoverycangreatlyenhancetheefficiencyoftheprocessbynarrowingdownthepoolofmaterialsthatneedtobeexperimentallytested.
Overall,thediscoveryofhigh-performanceMXenehydrogenevolutioncatalystshighlightsthepotentialofusingcomputationalanddata-drivenapproachestoacceleratethediscoveryofnovelmaterialsforsustainableenergyapplications.Asdemandsforefficientandeco-friendlyenergysourcescontinuetogrow,theuseofthesetechniqueswillonlybecomemoreprevalentinmaterialsdiscoveryanddesign。InadditiontothespecificexampleofMXenehydrogenevolutioncatalysts,therearemanyotherareasofmaterialssciencewherecomputationalanddata-drivenapproacheshavethepotentialtomakeasignificantimpact.Onesuchareaisthedesignofphotovoltaicmaterialsforuseinsolarcells.
Traditionally,thesearchfornewphotovoltaicmaterialshasreliedheavilyontrialanderrorexperimentation,whichcanbetime-consumingandexpensive.Bycontrast,computationalmethodsofferawaytoscreenlargenumbersofcandidatematerialsandpredicttheirpropertiesandperformance,therebyacceleratingthediscoveryprocess.
Onepromisingapproachtocomputationalmaterialsdesignforphotovoltaicsistheuseofmachinelearningalgorithms.Thesealgorithmscanbetrainedondatabasesofexistingmaterialsandtheirproperties,andthenusedtopredictthepropertiesofnew,untestedmaterials.Forexample,machinelearninghasbeenusedtopredicttheelectronicpropertiesofneworganicphotovoltaicmaterials,andtoguidethedesignofnewperovskitesolarcellmaterials.
Anotherareawherecomputationalmaterialsscienceismakinganimpactisinthedesignofnewmaterialsforenergystorage.Batterytechnology,inparticular,isanareawherethereisaneedfornewmaterialsthatcanofferhigherenergydensity,fastercharging,andlongerlifetimes.
Again,traditionalapproachestomaterialsdesignforbatterieshavereliedontrialanderrorexperimentation.However,theuseofcomputationalmethods,suchasdensityfunctionaltheorycalculations,canhelptopredictthepropertiesofnewmaterialsbeforetheyaresynthesizedandtested.Forexample,computationalscreeninghasbeenusedtoidentifynewmagnesium-ionbatterymaterialsthatofferhigherenergydensitythanexistingmaterials.
Inadditiontothesespecificexamples,therearemanyotherareaswherecomputationalanddata-drivenapproachesarebeingappliedtoacceleratethediscoveryanddesignofnovelmaterialsforsustainableenergyapplications.Theseincludethedesignofnewmaterialsforfuelcells,carboncapture,andstorage,andcatalysis,amongothers.
Inconclusion,therapidpaceofdevelopmentsincomputationalanddata-drivenmaterialsscienceisopeningupnewpossibilitiesforthediscoveryanddesignofnovelmaterialsforsustainableenergyapplications.Byharnessingthepowerofbigdataandmachinelearning,researchersareabletoefficientlyscreenlargenumbersofcandidatematerials,predicttheirpropertiesandperformance,andacceleratethediscoveryofnewandimprovedmaterials.Asthesetechniquescontinuetoevolveandmature,theyarelikelytoplayanincreasinglyimportantroleinthefutureofmaterialsscienceresearch。Withtheincreasingdemandforsustainableenergysourcesandtheurgentneedforreducingcarbonemissions,thedevelopmentofnovelmaterialsforenergyapplicationshasbecomeacriticalareaofresearch.Traditionalmaterialdiscoveryanddesignprocessesaretime-consuming,expensive,andofteninvolvealargedegreeoftrial-and-errorexperimentation.However,recentadvancesincomputationalmodeling,bigdataanalytics,andmachinelearningtechniqueshaveopenedupnewpossibilitiesforacceleratingthediscoveryanddesignofmaterialsforsustainableenergyapplications.
Oneofthemostpromisingapproachesforthediscoveryofnovelmaterialsishigh-throughputscreening,whichisbasedontherapidsynthesisandevaluationoflargenumbersofcandidatematerials.Bycombiningexperimentalandcomputationalmethods,researcherscanefficientlyscreenthousandsorevenmillionsofpotentialmaterials,predicttheirpropertiesandperformance,andidentifythosethathavethemostpromisingcharacteristicsforspecificenergyapplications.
Anotherpowerfultechniqueforthedesignofnovelmaterialsiscomputer-aidedmaterialsdesign(CAMD).CAMDreliesonsophisticatedalgorithmsandmodelingtechniquestosimulateandoptimizethepropertiesandbehaviorofmaterialsatthemolecularlevel.Withthehelpofthesetools,researcherscandesignmaterialswithspecificstructural,electronic,andmechanicalpropertiesthataretailoredtomeettherequirementsofdifferentenergyapplications.
Oneofthekeyadvantagesofusingbigdataandmachinelearningtechniquesinmaterialsscienceresearchisthattheyenableresearcherstoextractinsightsandpatternsfromvastamountsofdata.Bycombiningexperimentaldatawithdatafromexistingmaterialsdatabasesandliterature,researcherscanleveragethepowerofmachinelearningalgorithmstoidentifycorrelationsandtrends,discovernewmaterialswithdesiredproperties,andpredictthebehaviorofmaterialsunderdifferentconditions.
Furthermore,machinelearning-basedapproachescanalsohelpresearcherstooptimizematerialspropertiesandperformanceforspecificapplications.Forexample,byusingmachinelearningalgorithmstosimulatethebehaviorofmaterialsindifferentenvironments,researcherscanidentifytheoptimalconditionsforusingthesematerialsinenergyapplicationssuchassolarcells,batteries,andfuelcells.
Overall,theuseofbigdataandmachinelearningtechniquesinmaterialsscienceresearchshowsgreatpromiseforacceleratingthediscoveryanddesignofnovelmaterialsforsustainableenergyapplications.Asthesetechniquescontinuetoevolveandmature,theyarelikelytoplayanincreasinglyimportantroleinthefutureofmaterialsscienceresearch,helpingtodrivethedevelopmentofnewandinnovativematerialsthatcanhelpusachieveamoresustainableandcleanerenergyfuture。Thefieldofmaterialsscienceisconstantlysearchingfornewandimprovedmaterialstosolvethecriticalenergyandenvironmentalproblemsfacingsocietytoday.Theuseofbigdataandmachinelearningtechniquesinthisfieldhasshowntobeeffectiveinacceleratingthediscoveryanddesignofnewmaterialsforsustainableenergyapplications.Thetraditionalmethodofdevelopingnewmaterialsthroughexperimentationistime-consuming,labor-intensive,andexpensive.Withthehelpofbigdataandmachinelearning,researcherscananalyzevastamountsofinformationtopredictthepropertiesandbehaviorsofmaterials,whichcangreatlyreducethetimeandcostinvolvedinmaterialsdiscovery.
Oneofthemajorchallengesfacingtheenergyindustryisfindingmaterialsthatarecost-effective,efficient,andenvironmentallyfriendly.Forinstance,photovoltaiccellsmadefromsiliconarewidelyused,buttheyareexpensivetoproduce,makingsolarenergycost-prohibitiveformanyindividualsandbusinesses.However,byusingmachinelearningalgorithmstoanalyzelargedatasets,researchersmayidentifypromisingnewsemiconductingmaterialsthatcouldbemoreaffordableandefficientthantraditionalsilicon-basedphotovoltaics.Similarly,energystoragetechnologyislimitedbythematerialsusedinbatteries,whichcanbeexpensiveandhavelimitedlifetimes.Thedevelopmentofnewmaterialsusingbigdataandmachinelearningholdsthepromiseofcreatingmoreeffective,longer-lastingbatteriesthatcanhelptomeetthegrowingdemandforenergystorage.
Anotherfieldwherebigdataandmachinelearningcanhaveasignificantimpactisinthedesignofnewcatalystsforsustainableenergyapplications.Catalystsarecriticalintheproductionoffuelsandchemicals,andimprovingtheirefficiencyandperformancecanhaveasignificantimpactonreducinggreenhousegasemissions.Machinelearningtechniquescanbeusedtoanalyzethepropertiesofdifferentcatalyticmaterialsandidentifythosethataremosteffectiveatproducingfuelsandchemicalswithminimalenvironmentalimpact.
Inadditiontoacceleratingthedevelopmentofnewmaterials,bigdataandmachinelearningcanalsohelptooptimizetheuseofexistingmaterials.Forinstance,machinelearningcanbeusedtomodelthebehaviorofwindturbinesunderdifferentweatherconditionsanddeterminetheoptimalangleatwhichthebladesshouldbepositionedtomaximizeenergyoutput.Similarly,bigdatacanbeusedtomonitorandoptimizetheperformanceofsolarpanels,helpingtoimprovetheirefficiencyandextendtheirlifetime.
Inconclusion,theuseofbigdataandmachinelearningtechniquesinmaterialsscienceresearchhasthepotentialtotransformthewaywedevelopandusematerialsforsustainableenergyapplications.Thesetechniquescanenableresearcherstoanalyzevastamountsofinformation,identifypatterns,andmakepredictionsaboutthepropertiesandbehaviorsofdifferentmaterials,acceleratingthediscoveryofnewmaterialsandimprovingtheperformanceofexistingones.Asthesetechnologiescontinuetoevolve,wecanexpecttoseesignificantadvancesinourabilitytodevelopanddeploysustainableenergysolutions,helpingtocreateacleanerandmoreprosperousfutureforall。Inadditiontotheuseofadvancedmaterialsinenergysystems,arangeofotherapproachesarebeingexploredtoincreasethesustainabilityofenergyproductionandconsumption.Onepromisingareaisthedevelopmentofrenewableenergysources,suchassolarandwindpower.Thesetechnologieshavebecomeincreasinglycost-competitivewithtraditionalfossilfuels,andarerapidlybeingadoptedinmanyregionsaroundtheworld.
Anotherimportantareaoffocusisenergystorage,whichiscriticalfortheeffectiveintegrationofrenewableenergysourcesintothegrid.Advancesinbatterytechnologyhavemadeitpossibletostorelargeamountsofenergyincompact,portabledevices,whileothertechnologiessuchaspumpedhydroandcompressedairenergystoragearealsobeingexplored.Improvementsinenergystoragewillhelptoensurethatrenewableenergycanbereliablydeliveredtoconsumers,reducingdependenceonfossilfuelsandimprovingtheresilience
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 小學(xué)四年級(jí)多位數(shù)乘除法400題
- 學(xué)校愛國(guó)衛(wèi)生建設(shè)工作計(jì)劃
- 兒童蛀牙傷害大
- 命題作文“釋放”寫作指導(dǎo)及佳作
- 汽車工程師的工作總結(jié)
- 化工行業(yè)銷售業(yè)績(jī)總結(jié)
- 制造加工行業(yè)營(yíng)業(yè)員工作總結(jié)
- 文化行業(yè)策劃師技能提升總結(jié)
- 生物科技行業(yè)會(huì)計(jì)工作總結(jié)
- 涉及社區(qū)的美術(shù)項(xiàng)目規(guī)劃計(jì)劃
- 2024年南京市第一醫(yī)院分院高層次衛(wèi)技人才招聘筆試歷年參考題庫(kù)頻考點(diǎn)附帶答案
- 鄧州市龍理鄉(xiāng)第一初級(jí)中學(xué)-2025年春節(jié)寒假跨學(xué)科主題實(shí)踐作業(yè)模板【課件】
- 2024年中央經(jīng)濟(jì)工作會(huì)議精神解讀
- 2023-2024學(xué)年廣東省深圳市福田區(qū)八年級(jí)(上)期末歷史試卷
- 公司安全事故隱患內(nèi)部舉報(bào)、報(bào)告獎(jiǎng)勵(lì)制度
- 歷史常識(shí)單選題100道及答案解析
- 2024年陜西榆林市神木市公共服務(wù)輔助人員招聘775人歷年高頻難、易錯(cuò)點(diǎn)500題模擬試題附帶答案詳解
- 福建省泉州市2023-2024學(xué)年高一上學(xué)期期末質(zhì)檢英語(yǔ)試題(解析版)
- GA 2139-2024警用防暴臂盾
- 2024年首都機(jī)場(chǎng)集團(tuán)招聘筆試參考題庫(kù)附帶答案詳解
- 上海牛津英語(yǔ)三年級(jí)句型轉(zhuǎn)換
評(píng)論
0/150
提交評(píng)論