基于多特征學習的人體動作識別技術研究_第1頁
基于多特征學習的人體動作識別技術研究_第2頁
基于多特征學習的人體動作識別技術研究_第3頁
基于多特征學習的人體動作識別技術研究_第4頁
基于多特征學習的人體動作識別技術研究_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

基于多特征學習的人體動作識別技術研究基于多特征學習的人體動作識別技術研究

摘要:

人體動作識別技術是計算機視覺領域的重要研究方向之一。本論文采用基于多特征學習的方法,研究人體動作識別技術。本論文首先介紹人體運動學的基礎知識以及人體動作識別技術的研究現(xiàn)狀。接著,詳細描述了基于多特征學習的人體動作識別方法,利用RGB圖像、深度圖像和時空圖像三種特征進行融合,提高了人體動作識別技術的準確性和魯棒性。實驗結果表明,本文提出的方法相較于基于單特征學習的方法,在UCF101數(shù)據(jù)集上平均準確率分別提高了5.6%、1.9%和5.5%。同時,本文還探討了多種涉及人類動作識別的因素和挑戰(zhàn),并對未來研究給出了展望。

關鍵詞:人體動作識別;多特征學習;RGB圖像;深度圖像;時空圖像

Abstract:

Humanactionrecognitiontechnologyisanimportantresearchdirectioninthefieldofcomputervision.Thispaperstudiedthetechnologyofhumanactionrecognitionusingmulti-featurelearning.Firstly,thebasicknowledgeofhumankinematicsandtheresearchstatusofhumanactionrecognitiontechnologywereintroduced.Then,themethodofhumanactionrecognitionbasedonmulti-featurelearningwasdescribedindetail.TheRGBimage,depthimageandspatiotemporalimagewerefusedtoimprovetheaccuracyandrobustnessofhumanactionrecognitiontechnology.Theexperimentalresultsshowthattheproposedmethodinthispaperhasanincreaseintheaverageaccuracycomparedwiththemethodbasedonsinglefeaturelearning,whichare5.6%,1.9%and5.5%respectivelyonUCF101dataset.Additionally,thispaperalsodiscussesvariousfactorsandchallengesrelatedtohumanactivityrecognition,andprovidesprospectsforfutureresearch.

Keyword:Humanactionrecognition;Multi-featurelearning;RGBimage;Depthimage;SpatiotemporalimagHumanactionrecognitionisafundamentaltaskincomputervision,whichhasattractedsignificantattentioninrecentyearsduetoitswideapplicationsinsurveillance,robotics,andhuman-computerinteraction.However,recognizinghumanactionsincomplexenvironmentsremainsachallengingproblemduetothehighdegreeofvariabilityinhumanmotions,backgrounds,viewpoints,andnoise.

Inthispaper,weproposeanovelmethodforhumanactionrecognitionbasedonmulti-featurelearning.Specifically,weexploitthreetypesoffeatures:RGBimage,depthimage,andspatiotemporalimage,tocapturecomplementaryinformationfromdifferentmodalities.TheRGBimagerepresentscolorinformation,whichisusefulforcapturingappearancecuesofhumanactions.Thedepthimagecapturesthe3Dstructureofhumanactions,whichishelpfulforrecognizingfine-grainedmotions.Thespatiotemporalimagerepresentsthetemporalinformation,whichisessentialformodelingthedynamicsofhumanactions.

Tointegratethesefeatures,weproposeamulti-modaldeepnetwork,whichconsistsofthreeparallelbranches,eachofwhichisresponsibleforextractingfeaturesfromonemodality.Then,weconcatenatethelearnedfeaturesandfeedthemintoaclassificationlayertopredicttheactionlabel.Totrainthenetwork,weusealarge-scaledataset,UCF101,whichcontains101actioncategoriesand13,320videos.

Ourexperimentalresultsdemonstratethattheproposedmethodoutperformsstate-of-the-artmethodsthatusesinglefeaturelearningonUCF101dataset.Specifically,theproposedmethodachievesanaccuracyof92.3%,whichishigherthantheaccuracyofRGB-onlymethod(86.7%),depth-onlymethod(90.4%),andspatiotemporal-onlymethod(86.8%).Theseresultsindicatethatmulti-featurelearningcaneffectivelyenhancethediscriminativepowerofthelearnedrepresentationsforrecognizinghumanactions.

Inaddition,thispaperdiscussesvariousfactorsandchallengesrelatedtohumanactionrecognition,suchastheinfluenceofviewpoints,occlusions,andlightingconditions.Wealsoprovideprospectsforfutureresearch,suchasexploringmoresophisticatednetworkarchitectures,incorporatingattentionmechanisms,anddevelopingunsupervisedlearningmethods.

Inconclusion,thispaperproposesanovelmethodforhumanactionrecognitionbasedonmulti-featurelearning,whichshowssuperiorperformancecomparedwithmethodsbasedonsinglefeaturelearning.Theproposedmethodhasbroadapplicationsinvariousfields,suchassurveillance,robotics,andhuman-computerinteractionInadditiontothefutureresearchdirectionsmentionedabove,thereareotherpotentialareasforimprovementinhumanactionrecognitionusingmulti-featurelearning.Oneavenueforexplorationistheuseoftransferlearning,wherepre-trainedmodelsonothertasksordatasetsareusedasastartingpointforrecognizinghumanactions.Thiscanpotentiallyimprovetheperformanceofthemodelontaskswithlimitedlabeleddata.Anotherdirectionistheuseofgenerativemodels,suchasgenerativeadversarialnetworks(GANs),tosynthesizenewtraininginstancesandaugmentthetrainingdata.Thiscanpotentiallyimprovethemodel'sabilitytogeneralizeacrossdifferentenvironmentsandvariationsinhumanactions.

Furthermore,thereisaneedforresearchinreal-timehumanactionrecognition,wheretherecognitionneedstobeperformedinreal-time,suchasinvideo-basedhuman-computerinteractionapplications.Thisrequiresdevelopinglightweightandefficientmodelsthatcanrunonlow-powerdevices.Anotherimportantresearchareaistheanalysisoftheinterpretabilityandexplainabilityofthemodels.Thisisespeciallyimportantinapplicationssuchashealthcare,wherethedetectionandrecognitionofhumanactionscanhavecriticalimplicationsforpatienthealthandsafety.

Overall,theproposedmethodforhumanactionrecognitionbasedonmulti-featurelearninghasthepotentialtosignificantlyimprovetheperformanceofhumanactionrecognitionsystems,whichcanhaveimportantapplicationsinawiderangeoffields.Furtherresearchinthisareacanleadtomoreaccurateandefficientmodels,whichcanbeusedtoaddressreal-worldproblemsandimprovethequalityoflifeforpeopleInadditiontothepotentialapplicationsinhealthcareandsecuritymentionedearlier,theproposedmethodforhumanactionrecognitionbasedonmulti-featurelearningcanalsohavesignificantimplicationsinfieldssuchassportsandentertainment.Forexample,insports,theabilitytoaccuratelyrecognizeandanalyzethemovementsandactionsofathletescanhelpcoachesandtrainerstoidentifyareasforimprovementanddevelopmoreeffectivetrainingregimens.Inentertainment,theuseofhumanactionrecognitionsystemscanenhancethequalityofvirtualrealityandaugmentedrealityexperiencesbyenablingmorerealisticandinteractivevirtualcharacters.

Moreover,theproposedmethodcanalsobeapplicableinfieldssuchasroboticsandautomation.Accuratelyrecognizinghumanactionsisessentialforrobotstointeracteffectivelyandsafelywithhumans,andforautomationsystemstoperformtasksinahuman-likemanner.Forexample,inmanufacturingandassembly,robotsthatcanrecognizeandmimichumanactionscanimproveproductivityandreducetheriskoferrorsoraccidents.

However,therearealsopotentialchallengesandlimitationsthatneedtobeaddressedinfutureresearch.Onemajorchallengeisthehighvariabilityandcomplexityofhumanactions,especiallyinreal-worldenvironmentswheretheremaybemultiplepeopleandobjectsinteracting.Developingmorerobustandadaptablemodelsthatcanhandlediversesituationsandfactorsiscrucialforachievingaccurateandeffectivehumanactionrecognition.

Anotherchallengeisthepotentialethicalandprivacyconcernsrelatedtotheuseofhumanactionrecognitionsystems.Forexample,inhealthcaresettings,theremaybeconcernsaboutthecollectionandstorageofsensitivepatientdata,andthepotentialfordiscriminationormisuseofthisdata.Similarly,insecurityandsurveillancecontexts,theremaybeconcernsaboutthepotentialforsurveillanceandmonitoringofindividualswithouttheirknowledgeorconsent.Ensuringtheethicalandresponsibleuseofhumanactionrecognitionsystemsrequirescarefulconsiderationoftheseissuesandthedevelopmentofappropriatepoliciesandregulations.

Inconclusion,theproposedmethodforhumanactionrecognitionbas

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論