![2022-2023學(xué)年浙江省金華市方格外國語學(xué)校高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測試題含解析_第1頁](http://file4.renrendoc.com/view/d368050666936dcd24b2373c878fa107/d368050666936dcd24b2373c878fa1071.gif)
![2022-2023學(xué)年浙江省金華市方格外國語學(xué)校高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測試題含解析_第2頁](http://file4.renrendoc.com/view/d368050666936dcd24b2373c878fa107/d368050666936dcd24b2373c878fa1072.gif)
![2022-2023學(xué)年浙江省金華市方格外國語學(xué)校高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測試題含解析_第3頁](http://file4.renrendoc.com/view/d368050666936dcd24b2373c878fa107/d368050666936dcd24b2373c878fa1073.gif)
![2022-2023學(xué)年浙江省金華市方格外國語學(xué)校高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測試題含解析_第4頁](http://file4.renrendoc.com/view/d368050666936dcd24b2373c878fa107/d368050666936dcd24b2373c878fa1074.gif)
![2022-2023學(xué)年浙江省金華市方格外國語學(xué)校高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測試題含解析_第5頁](http://file4.renrendoc.com/view/d368050666936dcd24b2373c878fa107/d368050666936dcd24b2373c878fa1075.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.將函數(shù)的圖像先向右平移個(gè)單位,再將所得的圖像上每個(gè)點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼谋?,得到的圖像,則的可能取值為()A. B. C. D.2.長方體,,,,則異面直線與所成角的余弦值為A. B. C. D.3.已知各項(xiàng)均為正數(shù)的數(shù)列的前項(xiàng)和為,且若對(duì)任意的,恒成立,則實(shí)數(shù)的取值范圍為()A. B. C. D.4.某工廠一年中各月份的收入、支出情況的統(tǒng)計(jì)如圖所示,下列說法中錯(cuò)誤的是().A.收入最高值與收入最低值的比是B.結(jié)余最高的月份是月份C.與月份的收入的變化率與至月份的收入的變化率相同D.前個(gè)月的平均收入為萬元5.已知函數(shù)與的圖象上存在關(guān)于軸對(duì)稱的點(diǎn),則實(shí)數(shù)的取值范圍是().A. B. C. D.6.閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,輸出的值等于()A.-3 B.-10 C.0 D.-27.若直線與平面相交,則()A.平面內(nèi)存在無數(shù)條直線與直線異面B.平面內(nèi)存在唯一的一條直線與直線平行C.平面內(nèi)存在唯一的一條直線與直線垂直D.平面內(nèi)的直線與直線都相交8.已知正四棱錐的頂點(diǎn)均在球上,且該正四棱錐的各個(gè)棱長均為,則球的表面積為()A. B. C. D.9.若直線上存在點(diǎn)滿足則實(shí)數(shù)的最大值為A. B. C. D.10.已知圓C1:x2+y2+4y+3=0,圓C2:x2+A.210-3 B.210+3二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè)函數(shù),則使得成立的的取值范圍是_______________.12.已知數(shù)列,,且,則________.13.中醫(yī)藥是反映中華民族對(duì)生命、健康和疾病的認(rèn)識(shí),具有悠久歷史傳統(tǒng)和獨(dú)特理論及技術(shù)方法的醫(yī)藥學(xué)體系,是中華文明的瑰寶.某科研機(jī)構(gòu)研究發(fā)現(xiàn),某品種中成藥的藥物成份的含量(單位:)與藥物功效(單位:藥物單位)之間具有關(guān)系:.檢測這種藥品一個(gè)批次的5個(gè)樣本,得到成份的平均值為,標(biāo)準(zhǔn)差為,估計(jì)這批中成藥的藥物功效的平均值為__________藥物單位.14.?dāng)?shù)列定義為,則_______.15.如圖,為測量出高,選擇和另一座山的山頂為測量觀測點(diǎn),從點(diǎn)測得點(diǎn)的仰角,點(diǎn)的仰角以及;從點(diǎn)測得.已知山高,則山高_(dá)_________.16.已知向量,且,則___________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.設(shè)有關(guān)于的一元二次方程.(Ⅰ)若是從四個(gè)數(shù)中任取的一個(gè)數(shù),是從三個(gè)數(shù)中任取的一個(gè)數(shù),求上述方程有實(shí)根的概率.(Ⅱ)若是從區(qū)間任取的一個(gè)數(shù),是從區(qū)間任取的一個(gè)數(shù),求上述方程有實(shí)根的概率.18.在中,角,,所對(duì)的邊分別為,,,且,.(1)求證:是銳角三角形;(2)若,求的面積.19.如圖,在三棱錐中,平面平面為等邊三角形,,且,分別為的中點(diǎn).(1)求證:平面平面;(2)求三棱錐的體積.20.已知函數(shù).(1)求(x)的最小正周期和單調(diào)遞增區(qū)間;(2)求f(x)在區(qū)間上的最大值和最小值.21.已知曲線C:x2+y2+2x+4y+m=1.(1)當(dāng)m為何值時(shí),曲線C表示圓?(2)若直線l:y=x﹣m與圓C相切,求m的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】由題意結(jié)合輔助角公式有:,將函數(shù)的圖像先向右平移個(gè)單位,所得函數(shù)的解析式為:,再將所得的圖像上每個(gè)點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼谋?,所得函?shù)的解析式為:,而,據(jù)此可得:,據(jù)此可得:.本題選擇D選項(xiàng).2、A【解析】
由題,找出,故(或其補(bǔ)角)為異面直線與所成角,然后解出答案即可.【詳解】如圖,連接,由,(或其補(bǔ)角)為異面直線與所成角,由已知可得,則..即異面直線與所成角的余弦值為.故選A.【點(diǎn)睛】本題考查了異面直線的夾角問題,找平行線,找出夾角是解題的關(guān)鍵,屬于較為基礎(chǔ)題.3、C【解析】
由得到an=n,任意的,恒成立等價(jià)于,利用作差法求出的最小值即可.【詳解】當(dāng)n=1時(shí),,又∴∵an+12=2Sn+n+1,∴當(dāng)n≥2時(shí),an2=2Sn﹣1+n,兩式相減可得:an+12﹣an2=2an+1,∴an+12=(an+1)2,∵數(shù)列{an}是各項(xiàng)均為正數(shù)的數(shù)列,∴an+1=an+1,即an+1﹣an=1,顯然n=1時(shí),適合上式∴數(shù)列{an}是等差數(shù)列,首項(xiàng)為1,公差為1.∴an=1+(n﹣1)=n.任意的,恒成立,即恒成立記,,∴為單調(diào)增數(shù)列,即的最小值為∴,即故選C【點(diǎn)睛】已知求的一般步驟:(1)當(dāng)時(shí),由求的值;(2)當(dāng)時(shí),由,求得的表達(dá)式;(3)檢驗(yàn)的值是否滿足(2)中的表達(dá)式,若不滿足則分段表示;(4)寫出的完整表達(dá)式.4、D【解析】由圖可知,收入最高值為萬元,收入最低值為萬元,其比是,故項(xiàng)正確;結(jié)余最高為月份,為,故項(xiàng)正確;至月份的收入的變化率為至月份的收入的變化率相同,故項(xiàng)正確;前個(gè)月的平均收入為萬元,故項(xiàng)錯(cuò)誤.綜上,故選.5、A【解析】若函數(shù)f(x)=a﹣x2(1≤x≤2)與g(x)=2x+1的圖象上存在關(guān)于x軸對(duì)稱的點(diǎn),則方程a﹣x2=﹣(2x+1)?a=x2﹣2x﹣1在區(qū)間[1,2]上有解,令g(x)=x2﹣2x﹣1,1≤x≤2,由g(x)=x2﹣2x﹣1的圖象是開口朝上,且以直線x=1為對(duì)稱軸的拋物線,故當(dāng)x=1時(shí),g(x)取最小值﹣2,當(dāng)x=2時(shí),函數(shù)取最大值﹣1,故a∈[﹣2,﹣1],故選:A.點(diǎn)睛:圖像上存在關(guān)于軸對(duì)稱的點(diǎn),即方程a﹣x2=﹣(2x+1)?a=x2﹣2x﹣1在區(qū)間[1,2]上有解,轉(zhuǎn)化為方程有解求參的問題,變量分離,畫出函數(shù)圖像,使得函數(shù)圖像和常函數(shù)圖像有交點(diǎn)即可;這是解決方程有解,圖像有交點(diǎn),函數(shù)有零點(diǎn)的常見方法。6、A【解析】
第一次循環(huán),;第二次循環(huán),;第三次循環(huán),,當(dāng)時(shí),不成立,循環(huán)結(jié)束,此時(shí),故選A.7、A【解析】
根據(jù)空間中直線與平面的位置關(guān)系,逐項(xiàng)進(jìn)行判定,即可求解.【詳解】由題意,直線與平面相交,對(duì)于A中,平面內(nèi)與無交點(diǎn)的直線都與直線異面,所以有無數(shù)條,正確;對(duì)于B中,平面內(nèi)的直線與要么相交,要么異面,不可能平行,所以,錯(cuò)誤;對(duì)于C中,平面內(nèi)有無數(shù)條平行直線與直線垂直,所以,錯(cuò)誤;對(duì)于D中,由A知,D錯(cuò)誤.故選A.【點(diǎn)睛】本題主要考查了直線與平面的位置關(guān)系的應(yīng)用,其中解答中熟記直線與平面的位置關(guān)系,合理判定是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.8、C【解析】設(shè)點(diǎn)在底面的投影點(diǎn)為,則,,平面,故,而底面所在截面圓的半徑,故該截面圓即為過球心的圓,則球的半徑,故球的表面積,故選C.點(diǎn)睛:本題考查球的內(nèi)接體的判斷與應(yīng)用,球的表面積的求法,考查計(jì)算能力;研究球與多面體的接、切問題主要考慮以下幾個(gè)方面的問題:(1)球心與多面體中心的位置關(guān)系;(2)球的半徑與多面體的棱長的關(guān)系;(3)球自身的對(duì)稱性與多面體的對(duì)稱性;(4)能否做出軸截面.9、B【解析】
首先畫出可行域,然后結(jié)合交點(diǎn)坐標(biāo)平移直線即可確定實(shí)數(shù)m的最大值.【詳解】不等式組表示的平面區(qū)域如下圖所示,由,得:,即C點(diǎn)坐標(biāo)為(-1,-2),平移直線x=m,移到C點(diǎn)或C點(diǎn)的左邊時(shí),直線上存在點(diǎn)在平面區(qū)域內(nèi),所以,m≤-1,即實(shí)數(shù)的最大值為-1.【點(diǎn)睛】本題主要考查線性規(guī)劃及其應(yīng)用,屬于中等題.10、A【解析】
求出圓C1,C2的圓心坐標(biāo)和半徑,作出圓C1關(guān)于直線l的對(duì)稱圓C1',連結(jié)C1'C2,則C1'C2與直線l的交點(diǎn)即為P點(diǎn),此時(shí)M點(diǎn)為P【詳解】由圓C1:x可知圓C1圓心為0,-2圓C2圓心為3,-1圓C1關(guān)于直線l:y=x+1的對(duì)稱圓為圓C連結(jié)C1'C2,交l于P,則此時(shí)M點(diǎn)為PC1'與圓C1'的交點(diǎn)關(guān)于直線l對(duì)稱的點(diǎn),N最小值為C1而C1∴PM+PN【點(diǎn)睛】本題考查了圓方程的綜合應(yīng)用,考查了利用對(duì)稱關(guān)系求曲線上兩點(diǎn)間的最小距離,體現(xiàn)了數(shù)形結(jié)合的解題思想方法,是中檔題.解決解析幾何中的最值問題一般有兩種方法:一是幾何意義,特別是用曲線的定義和平面幾何的有關(guān)結(jié)論來解決,非常巧妙;二是將解析幾何中最值問題轉(zhuǎn)化為函數(shù)問題,然后根據(jù)函數(shù)的特征選用參數(shù)法、配方法、判別式法、三角函數(shù)有界法、函數(shù)單調(diào)性法以及均值不等式法求解.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據(jù)函數(shù)的表達(dá)式判斷出函數(shù)為偶函數(shù),判斷函數(shù)在的單調(diào)性為遞增,根據(jù)偶函數(shù)的對(duì)稱性可得,解絕對(duì)值不等式即可.【詳解】解:,定義域?yàn)?因?yàn)?,所以函?shù)為偶函數(shù).當(dāng)時(shí),易知函數(shù)在為增函數(shù),根據(jù)偶函數(shù)的性質(zhì)可知:由可知,所以,解得:或.故答案為:.【點(diǎn)睛】本題考查偶函數(shù)的性質(zhì)和利用偶函數(shù)對(duì)稱性的特點(diǎn)解決問題,屬于基礎(chǔ)題.12、【解析】
由題意可得{}是以+1為首項(xiàng),以2為公比的等比數(shù)列,再由已知求得首項(xiàng),進(jìn)一步求得即可.【詳解】在數(shù)列中,滿足得,則數(shù)列是以+1為首項(xiàng),以公比為2的等比數(shù)列,得,由,則,得.由,得,故.故答案為:【點(diǎn)睛】本題考查了數(shù)列的遞推式,利用構(gòu)造等比數(shù)列方法求數(shù)列的通項(xiàng)公式,屬于中檔題.13、92【解析】
由題可得,進(jìn)而可得,再計(jì)算出,從而得出答案.【詳解】5個(gè)樣本成份的平均值為,標(biāo)準(zhǔn)差為,所以,,即,解得因?yàn)?,所以所以這批中成藥的藥物功效的平均值藥物單位【點(diǎn)睛】本題考查求幾個(gè)數(shù)的平均數(shù),解題的關(guān)鍵是求出,屬于一般題.14、【解析】
由已知得兩式,相減可發(fā)現(xiàn)原數(shù)列的奇數(shù)項(xiàng)和偶數(shù)項(xiàng)均為等差數(shù)列,分類討論分別算出奇數(shù)項(xiàng)的和和偶數(shù)項(xiàng)的和,再相加得原數(shù)列前的和【詳解】兩式相減得數(shù)列的奇數(shù)項(xiàng),偶數(shù)項(xiàng)分別成等差數(shù)列,,,,數(shù)列的前2n項(xiàng)中所有奇數(shù)項(xiàng)的和為:,數(shù)列的前2n項(xiàng)中所有偶數(shù)項(xiàng)的和為:【點(diǎn)睛】對(duì)于遞推式為,其特點(diǎn)是隔項(xiàng)相減為常數(shù),這種數(shù)列要分類討論,分偶數(shù)項(xiàng)和奇數(shù)項(xiàng)來研究,特別注意偶數(shù)項(xiàng)的首項(xiàng)為,而奇數(shù)項(xiàng)的首項(xiàng)為.15、1【解析】試題分析:在中,,,在中,由正弦定理可得即解得,在中,.故答案為1.考點(diǎn):正弦定理的應(yīng)用.16、【解析】
把平方,將代入,化簡即可得結(jié)果.【詳解】因?yàn)椋?,,故答案?【點(diǎn)睛】本題主要考查向量的模及平面向量數(shù)量積公式,屬于中檔題.平面向量數(shù)量積公式有兩種形式,一是,二是,主要應(yīng)用以下幾個(gè)方面:(1)求向量的夾角,(此時(shí)往往用坐標(biāo)形式求解);(2)求投影,在上的投影是;(3)向量垂直則;(4)求向量的模(平方后需求).三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(Ⅱ)【解析】
(1)本題是一個(gè)古典概型,可知基本事件共12個(gè),方程當(dāng)時(shí)有實(shí)根的充要條件為,滿足條件的事件中包含9個(gè)基本事件,由古典概型公式得到事件發(fā)生的概率.(2)本題是一個(gè)幾何概型,試驗(yàn)的全部約束所構(gòu)成的區(qū)域?yàn)?,.?gòu)成事件的區(qū)域?yàn)椋?,.根?jù)幾何概型公式得到結(jié)果.【詳解】解:設(shè)事件為“方程有實(shí)數(shù)根”.當(dāng)時(shí),方程有實(shí)數(shù)根的充要條件為.(Ⅰ)基本事件共12個(gè):.其中第一個(gè)數(shù)表示的取值,第二個(gè)數(shù)表示的取值.事件中包含9個(gè)基本事件,事件發(fā)生的概率為.(Ⅱ)實(shí)驗(yàn)的全部結(jié)果所構(gòu)成的區(qū)域?yàn)椋畼?gòu)成事件的區(qū)域?yàn)?,所求的概率為【點(diǎn)睛】本題考查幾何概型和古典概型,放在一起的目的是把兩種概型加以比較,屬于基礎(chǔ)題.18、(1)證明見解析(2)【解析】
(1)由正弦定理、余弦定理得,則角C最大,由余弦定理可得答案.
(2)由平面向量數(shù)量積的運(yùn)算及三角形的面積公式結(jié)合(1)可得,利用面積公式可求解.【詳解】【詳解】
(1)由,根據(jù)正弦定理得,又,所以即,所以,因此邊最大,即角最大.設(shè)則即,所以是銳角三角形.(2)由(1)和,即可得解得.所以在中,且所以的面積為.【點(diǎn)睛】本題考查正弦定理和余弦定理,數(shù)量積的定義的應(yīng)用和求三角形面積.19、(1)證明見詳解;(2).【解析】
(1)由面面垂直可得線面垂直,再推證面面垂直即可;(2)根據(jù)垂直于平面AMO,即可由棱錐的體積公式直接求得體積.【詳解】(1)在中,因?yàn)?,且O為AB中點(diǎn),故AB,因?yàn)槠矫鎂AB平面ABC,且平面VAB平面ABC,因?yàn)镃O平面ABC,又AB,故CO平面VAB;又CO平面MOC,故平面MOC平面VAB.即證.(2)由(1)可知CO平面VAB,故三棱錐底面MAO上的高為,又因?yàn)榉謩e為的中點(diǎn),故故.故三棱錐的體積為.【點(diǎn)睛】本題考查由線面垂直推證面面垂直,以及三棱錐體積的求解,屬基礎(chǔ)題.20、(1),的增區(qū)間是.(2).【解析】試題分析:(1)利用兩角和正弦公式和降冪公式化簡,得到的形式,利用公式計(jì)算周期.(2)利用正弦函數(shù)的單調(diào)區(qū)間,再求的單調(diào)性.(3)求三角函數(shù)的最小正周期一般化成,,形式,利用周期公式即可.(4)求解較復(fù)雜三角函數(shù)的單調(diào)區(qū)間時(shí),首先化成形式,再的單調(diào)區(qū)間,只需把看作一個(gè)整體代入相應(yīng)的單調(diào)區(qū)間,注意先把化為正數(shù),這是容易出錯(cuò)的地方.試題解析:(1)因?yàn)椋?=-1,故最小正周期為得故的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- Unit2 What's the elephant doing(說課稿)-2024-2025學(xué)年外研版(三起)英語四年級(jí)上冊(cè)
- 15《八角樓上》(說課稿)2024-2025學(xué)年-統(tǒng)編版二年級(jí)語文上冊(cè)001
- 7《不甘屈辱奮勇抗?fàn)?圓明園的訴說》(說課稿)統(tǒng)編版道德與法治五年級(jí)下冊(cè)
- 2023七年級(jí)英語下冊(cè) Unit 2 What time do you go to school Section A 第1課時(shí)(1a-2d)說課稿 (新版)人教新目標(biāo)版
- 8大家的“朋友”(說課稿)-部編版道德與法治三年級(jí)下冊(cè)
- 2024-2025學(xué)年高中歷史 第一單元 中國古代的農(nóng)耕經(jīng)濟(jì) 第5課 農(nóng)耕時(shí)代的商業(yè)與城市(1)教學(xué)說課稿 岳麓版必修2
- 2024年八年級(jí)歷史下冊(cè) 第三單元 第11課 為實(shí)現(xiàn)中國夢而努力奮斗說課稿 新人教版
- 2024年三年級(jí)品社下冊(cè)《學(xué)看平面圖》說課稿 山東版
- 2025三元區(qū)國有商品林采伐與銷售權(quán)轉(zhuǎn)讓合同書
- Unit 5 Colours Lesson 2 (說課稿)-2024-2025學(xué)年人教新起點(diǎn)版英語一年級(jí)上冊(cè)
- 2024年長沙衛(wèi)生職業(yè)學(xué)院高職單招職業(yè)技能測驗(yàn)歷年參考題庫(頻考版)含答案解析
- 河北省滄州市五縣聯(lián)考2024-2025學(xué)年高一上學(xué)期期末英語試卷(含答案含含聽力原文無音頻)
- 福建省泉州市南安市2024-2025學(xué)年九年級(jí)上學(xué)期期末考試語文試題(無答案)
- 腫瘤護(hù)士培訓(xùn)課件
- 新課標(biāo)體育與健康水平二教案合集
- 2025屆高考語文一輪復(fù)習(xí)知識(shí)清單:古代詩歌鑒賞
- 醫(yī)療器材申請(qǐng)物價(jià)流程
- 我的消防文員職業(yè)規(guī)劃
- 2025年公司品質(zhì)部部門工作計(jì)劃
- 2024年世界職業(yè)院校技能大賽高職組“市政管線(道)數(shù)字化施工組”賽項(xiàng)考試題庫
- 華為研發(fā)部門績效考核制度及方案
評(píng)論
0/150
提交評(píng)論