薄壁零件柔性裝配線數(shù)字孿生模型構(gòu)建_第1頁
薄壁零件柔性裝配線數(shù)字孿生模型構(gòu)建_第2頁
薄壁零件柔性裝配線數(shù)字孿生模型構(gòu)建_第3頁
薄壁零件柔性裝配線數(shù)字孿生模型構(gòu)建_第4頁
薄壁零件柔性裝配線數(shù)字孿生模型構(gòu)建_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

薄壁零件柔性裝配線數(shù)字孿生模型構(gòu)建薄壁零件柔性裝配線數(shù)字孿生模型構(gòu)建

摘要

在制造業(yè)中,數(shù)字孿生技術(shù)已被廣泛應(yīng)用于產(chǎn)品設(shè)計(jì)、工藝規(guī)劃和生產(chǎn)過程控制等方面。針對薄壁零件的柔性裝配線,數(shù)字孿生模型的構(gòu)建可以有效提高裝配過程的可靠性和效率。本文基于裝配線中的傳感器數(shù)據(jù)和CAD模型,提出了一種薄壁零件柔性裝配線數(shù)字孿生模型的構(gòu)建方法。首先將CAD模型進(jìn)行網(wǎng)格化處理,并根據(jù)傳感器數(shù)據(jù)獲取零件的真實(shí)狀態(tài)信息;然后利用有限元分析技術(shù)對零件的力學(xué)行為進(jìn)行模擬,并結(jié)合機(jī)器學(xué)習(xí)算法對裝配過程中的故障進(jìn)行預(yù)測和診斷;最后,將模擬結(jié)果與實(shí)際數(shù)據(jù)進(jìn)行比對,驗(yàn)證模型的有效性和可行性。實(shí)驗(yàn)結(jié)果表明,該模型可以有效地模擬薄壁零件在裝配過程中的受力及變形情況,預(yù)測與診斷裝配故障的準(zhǔn)確率較高,具有可靠性和實(shí)用性,為薄壁零件柔性裝配線的優(yōu)化提供了重要的理論依據(jù)和技術(shù)支持。

關(guān)鍵詞:數(shù)字孿生;裝配線;薄壁零件;有限元分析;機(jī)器學(xué)習(xí)

Abstract

Inthemanufacturingindustry,digitaltwintechnologyhasbeenwidelyusedinproductdesign,processplanning,andproductionprocesscontrol.Fortheflexibleassemblylineofthin-walledparts,theconstructionofadigitaltwinmodelcaneffectivelyimprovethereliabilityandefficiencyoftheassemblyprocess.Thispaperproposesamethodforconstructingadigitaltwinmodelofaflexibleassemblylineofthin-walledpartsbasedonsensordataandCADmodels.Firstly,theCADmodelismeshed,andthereal-timestateinformationofthepartsisobtainedaccordingtothesensordata.Then,finiteelementanalysistechnologyisusedtosimulatethemechanicalbehavioroftheparts,combinedwithmachinelearningalgorithmstopredictanddiagnoseassemblyfailures.Finally,thesimulationresultsarecomparedwiththeactualdatatoverifytheeffectivenessandfeasibilityofthemodel.Experimentalresultsshowthatthemodelcaneffectivelysimulatethestressanddeformationofthin-walledpartsintheassemblyprocess,withhighaccuracyinpredictinganddiagnosingassemblyfailures,andhasreliabilityandpracticality,providinganimportanttheoreticalbasisandtechnicalsupportfortheoptimizationoftheflexibleassemblylineofthin-walledparts.

Keywords:Digitaltwin;assemblyline;thin-walledpart;finiteelementanalysis;machinelearningWiththedevelopmentofdigitaltwintechnology,moreandmoreattentionhasbeenpaidtoitsapplicationinthemanufacturingindustry.Inrecentyears,theflexibleassemblylineofthin-walledpartshasbecomeanimportantresearchtopicinthefieldofmanufacturingengineering.However,itischallengingtoensuretheaccuracyandreliabilityoftheassemblyprocessofthin-walledpartsduetotheirlowstiffnessandlargedeformation.

Toaddressthisissue,thisstudyproposedadigitaltwin-basedmethodtooptimizetheflexibleassemblylineofthin-walledparts.Themethodcombinedfiniteelementanalysisandmachinelearningtechniquestomodelandsimulatethestressanddeformationofthin-walledpartsintheassemblyprocess.Specifically,thedigitaltwinmodelwasestablishedbasedonthegeometryandmaterialpropertiesoftheparts,andthefiniteelementmethodwasusedtosimulatetheassemblyprocessandcalculatethestressanddeformationoftheparts.Moreover,machinelearningalgorithms,suchasdecisiontreeandrandomforest,wereemployedtopredictanddiagnosetheassemblyfailures,basedonthedatacollectedfromtheassemblyprocess.

Theexperimentalresultsshowedthattheproposedmethodcouldeffectivelysimulatethestressanddeformationofthin-walledpartsintheassemblyprocess,withhighaccuracyinpredictinganddiagnosingassemblyfailures.Moreover,themethodhadgoodreliabilityandpracticality,providinganimportanttheoreticalbasisandtechnicalsupportfortheoptimizationoftheflexibleassemblylineofthin-walledparts.Infutureresearch,theproposedmethodcanbeappliedtoothermanufacturingprocesses,suchasweldingandforming,tofurtherimprovetheefficiencyandqualityofthemanufacturingindustryInadditiontotheproposedmethod'sapplicationintheflexibleassemblyofthin-walledparts,thereispotentialforitsuseinothermanufacturingprocesses.Forexample,itcanbeappliedinweldingtoimprovetheefficiencyandqualityofweldingprocesses.Weldingisacrucialprocessinmanufacturing,andanydefectsorerrorscanleadtoproductfailure,makingitnecessarytodevelopeffectivemethodsforpredictinganddiagnosingassemblyfailures.

Theproposedmethodcanalsobeusedinformingprocesses,whereitcanaccuratelypredictanddiagnoseassemblyfailures.Formingprocessesinvolveaseriesofmetalworkingtechniquesthatareusedtodeformmetalintoaspecificshapeorsize.Theseprocessesincludestamping,bending,androlling.Withtheapplicationoftheproposedmethodinformingprocesses,manufacturerscansignificantlyreducethelikelihoodoferrorsanddefectsinthefinalproduct.

Moreover,enhancingtheefficiencyandqualityofmanufacturingprocessesusingthisproposedmethodcanleadtogreatersustainability.Byreducingtheamountofresourcesconsumedandminimizingwaste,manufacturerscanimprovetheirenvironmentalfootprint.Themethodcanalsobeusedasatooltodevelopnewtechnologiesthataremoreenvironmentallyfriendly,leadingtoincreasedsustainabilityinmanufacturing.

Overall,theproposedmethodrepresentsanimportantbreakthroughinthemanufactureofthin-walledparts.Itsaccuracyandreliabilitymakeitaninvaluabletoolforpredictinganddiagnosingassemblyfailures,improvingefficiency,andensuringhigh-qualityoutput.Itspotentialapplicationinothermanufacturingprocessesrepresentsasignificantadvancementintheindustry,withthepotentialtoenhancesustainabilitywhileimprovingthequalityofgoodsproducedOnepotentialapplicationofthismethodisintheaerospaceindustry,wherelightweight,yetdurablecomponentsarecriticalforensuringthesafetyandefficiencyofaircraft.Withthismethod,manufacturerscanaccuratelypredictanddiagnosepotentialassemblyfailures,reducingtheriskofcostlyorevencatastrophicaccidents.Additionally,theabilitytomanufacturethin-walledpartswithhighaccuracyandreliabilitycanresultinsignificantweightsavings,reducingfuelconsumptionandemissions.

Anotherpotentialapplicationisinthemedicaldeviceindustry,whereprecisionandaccuracyarecrucialforensuringthesafetyandeffectivenessofdevicesusedinpatientcare.Theabilitytomanufacturethin-walledcomponentswithhighprecisioncanresultinbetterperformanceandlonger-lastingproducts,ultimatelyimprovingpatientoutcomes.

Themethodmayalsoprovevaluableintheautomotiveindustry,wherelightweightyetstrongcomponentscanimprovefuelefficiencyandoverallperformanceofvehicles.Byaccuratelypredictinganddiagnosingassemblyfailures,manufacturerscanreducetheriskofrecalls,savingtimeandmoney.

Overall,theproposedmethodhasbroadapplicationsinmanufacturingandhasthepotentialtofundamentallychangehowthin-walledpartsareproduced.Itsaccuracyandreliabilitymakeitaninvaluabletoolforensu

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論