版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.一個三棱錐的三視圖如圖所示,則該棱錐的全面積為()A. B. C. D.2.甲、乙、丙三人隨意坐下,乙不坐中間的概率為()A. B. C. D.3.已知,,則點(diǎn)在直線上的概率為()A. B. C. D.4.直線,,的斜率分別為,,,如圖所示,則()A. B.C. D.5.已知函數(shù)(,)的部分圖像如圖所示,則的值分別是()A. B.C. D.6.已知等差數(shù)列的前項和為,若,則()A.18 B.13 C.9 D.77.七巧板是我國古代勞動人民發(fā)明的一種智力玩具,由五塊等腰直角三角形、一塊正方形和一塊平行四邊形共七塊板組成.如圖是一個用七巧板拼成的正方形,若在此正方形中任取一點(diǎn),則此點(diǎn)取自黑色部分的概率為()A. B. C. D.8.在△ABC中,角A、B、C所對的邊分別為a、b、c,若acosA=bcosB,則△ABC的形狀為()A.等腰三角形B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形9.下列四個函數(shù)中,以為最小正周期,且在區(qū)間上為減函數(shù)的是()A. B. C. D.10.的值為A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在銳角△中,角所對應(yīng)的邊分別為,若,則角等于________.12.已知數(shù)列的通項公式,那么使得其前項和大于7.999的的最小值為______.13.設(shè)向量,若,,則.14.直線x-315.在中,角的對邊分別為,且面積為,則面積的最大值為_____.16.等差數(shù)列中,公差.則與的等差中項是_____(用數(shù)字作答)三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.某城市的華為手機(jī)專賣店對該市市民使用華為手機(jī)的情況進(jìn)行調(diào)查.在使用華為手機(jī)的用戶中,隨機(jī)抽取100名,按年齡(單位:歲)進(jìn)行統(tǒng)計的頻率分布直方圖如圖:(1)根據(jù)頻率分布直方圖,分別求出樣本的平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表)和中位數(shù)的估計值(均精確到個位);(2)在抽取的這100名市民中,按年齡進(jìn)行分層抽樣,抽取20人參加華為手機(jī)宣傳活動,再從這20人中年齡在和的人群里,隨機(jī)選取2人各贈送一部華為手機(jī),求這2名市民年齡都在內(nèi)的概率.18.如圖1,在直角梯形中,,,點(diǎn)在上,且,將沿折起,使得平面平面(如圖2).為中點(diǎn)(1)求證:;(2)求四棱錐的體積;(3)在線段上是否存在點(diǎn),使得平面?若存在,求的值;若不存在,請說明理由19.已知等差數(shù)列的首項為,公差為,前n項和為,且滿足,.(1)證明;(2)若,,當(dāng)且僅當(dāng)時,取得最小值,求首項的取值范圍.20.(1)已知圓經(jīng)過和兩點(diǎn),若圓心在直線上,求圓的方程;(2)求過點(diǎn)、和的圓的方程.21.已知函數(shù)(1)求函數(shù)的最大值,以及取到最大值時所對應(yīng)的的集合;(2)在上恒成立,求實(shí)數(shù)的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
數(shù)形結(jié)合,還原出該幾何體的直觀圖,計算出各面的面積,可得結(jié)果.【詳解】如圖為等腰直角三角形,平面根據(jù)三視圖,可知點(diǎn)到的距離為點(diǎn)到的距離為所以,故該棱錐的全面積為故選:A【點(diǎn)睛】本題考查三視圖還原,并求表面積,難點(diǎn)在于還原幾何體,對于一些常見的幾何體要熟悉其三視圖,對解題有很大幫助,屬中檔題.2、A【解析】甲、乙、丙三人隨意坐下有種結(jié)果,乙坐中間則有,乙不坐中間有種情況,概率為,故選A.點(diǎn)睛:有關(guān)古典概型的概率問題,關(guān)鍵是正確求出基本事件總數(shù)和所求事件包含的基本事件數(shù).(1)基本事件總數(shù)較少時,用列舉法把所有基本事件一一列出時,要做到不重復(fù)、不遺漏,可借助“樹狀圖”列舉.(2)注意區(qū)分排列與組合,以及計數(shù)原理的正確使用.3、B【解析】
先求出點(diǎn))的個數(shù),然后求出點(diǎn)在直線上的個數(shù),最后根據(jù)古典概型求出概率.【詳解】點(diǎn)的個數(shù)為,其中點(diǎn)三點(diǎn)在直線上,所以點(diǎn)在直線上的概率為,故本題選B.【點(diǎn)睛】本題考查了古典概型概率的計算公式,考查了數(shù)學(xué)運(yùn)算能力.4、A【解析】
根據(jù)題意可得出直線,,的傾斜角滿足,由傾斜角與斜率的關(guān)系得出結(jié)果.【詳解】解:設(shè)三條直線的傾斜角為,根據(jù)三條直線的圖形可得,因?yàn)?,?dāng)時,,當(dāng)時,單調(diào)遞增,且,故,即故選A.【點(diǎn)睛】本題考查了直線的傾斜角與斜率的關(guān)系,解題的關(guān)鍵是熟悉正切函數(shù)的單調(diào)性.5、B【解析】
通過函數(shù)圖像可計算出三角函數(shù)的周期,從而求得w,再代入一個最低點(diǎn)即可得到答案.【詳解】,,又,,,又,,故選B.【點(diǎn)睛】本題主要考查三角函數(shù)的圖像,通過周期求得w是解決此類問題的關(guān)鍵.6、B【解析】
利用等差數(shù)列通項公式、前項和列方程組,求出,.由此能求出.【詳解】解:等差數(shù)列的前項和為,,,,解得,..故選:.【點(diǎn)睛】本題考查等差數(shù)列第7項的值的求法,考查等差數(shù)列的性質(zhì)等基礎(chǔ)知識,考查運(yùn)算求解能力,是基礎(chǔ)題.7、B【解析】
設(shè)正方形的邊長為,計算出陰影部分區(qū)域的面積和正方形區(qū)域的面積,然后利用幾何概型的概率公式計算出所求事件的概率.【詳解】設(shè)正方形的邊長為,則陰影部分由三個小等腰直角三角形構(gòu)成,則正方形的對角線長為,則等腰直角三角形的邊長為,對應(yīng)每個小等腰三角形的面積,則陰影部分的面積之和為,正方形的面積為,若在此正方形中任取一點(diǎn),則此點(diǎn)取自黑色部分的概率為,故選:B.【點(diǎn)睛】本題考查面積型幾何概型概率公式計算事件的概率,解題的關(guān)鍵在于計算出所求事件對應(yīng)區(qū)域的面積和總區(qū)域的面積,考查計算能力,屬于中等題.8、C【解析】
利用正弦定理由acosA=bcosB,可得sinAcosA=sinBcosB,再利用二倍角的正弦即可判斷△ABC的形狀.【詳解】在△ABC中,∵acosA=bcosB,∴由正弦定理得:sinAcosA=sinBcosB,即sin2A=sin2B,∴2A=2B或2A+2B=π,∴A=B或A+B=,∴△ABC的形狀為等腰三角形或直角三角形.故選C.考點(diǎn):三角形的形狀判斷.9、B【解析】
由條件利用三角函數(shù)的周期性和單調(diào)性,判斷各個選項是否正確,即可求得答案.【詳解】對于A,因?yàn)榈闹芷跒?故A錯誤;對于B,因?yàn)閨以為最小正周期,且在區(qū)間上為減函數(shù),故B正確;對于C,因?yàn)榈闹芷跒?故C錯誤;對于D,因?yàn)閰^(qū)間上為增函數(shù),故D錯誤.故選:B.【點(diǎn)睛】本題主要考查了判斷三角函數(shù)的周期和在指定區(qū)間上的單調(diào)性,解題關(guān)鍵是掌握三角函數(shù)的基礎(chǔ)知識和函數(shù)圖象,考查了分析能力,屬于基礎(chǔ)題.10、B【解析】
試題分析:由誘導(dǎo)公式得,故選B.考點(diǎn):誘導(dǎo)公式.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】試題分析:利用正弦定理化簡,得,因?yàn)?,所以,因?yàn)闉殇J角,所以.考點(diǎn):正弦定理的應(yīng)用.【方法點(diǎn)晴】本題主要考查了正弦定理的應(yīng)用、以及特殊角的三角函數(shù)值問題,其中解答中涉及到解三角形中的邊角互化,轉(zhuǎn)化為三角函數(shù)求值的應(yīng)用,解答中熟練掌握正弦定理的變形,完成條件的邊角互化是解答的關(guān)鍵,注重考查了分析問題和解答問題的能力,同時注意條件中銳角三角形,屬于中檔試題.12、1【解析】
直接利用數(shù)列的通項公式,建立不等式,解不等式求出結(jié)果.【詳解】解:數(shù)列的通項公式,則:,所以:當(dāng)時,即:,當(dāng)時,成立,即:的最小值為1.故答案為:1【點(diǎn)睛】本題考查的知識要點(diǎn):數(shù)列的通項公式的求法及應(yīng)用,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)化能力,屬于基礎(chǔ)題型.13、【解析】
利用向量垂直數(shù)量積為零列等式可得,從而可得結(jié)果.【詳解】因?yàn)?,且,所以,可得,又因?yàn)?,所以,故答案?【點(diǎn)睛】利用向量的位置關(guān)系求參數(shù)是出題的熱點(diǎn),主要命題方式有兩個:(1)兩向量平行,利用解答;(2)兩向量垂直,利用解答.14、π【解析】
將直線方程化為斜截式,利用直線斜率與傾斜角的關(guān)系求解即可.【詳解】因?yàn)閤-3所以y=33x-33則tanα=33,α=【點(diǎn)睛】本題主要考查直線的斜率與傾斜角的關(guān)系,意在考查對基礎(chǔ)知識的掌握情況,屬于基礎(chǔ)題.15、【解析】
利用三角形面積構(gòu)造方程可求得,可知,從而得到;根據(jù)余弦定理,結(jié)合基本不等式可求得,代入三角形面積公式可求得最大值.【詳解】,由余弦定理得:(當(dāng)且僅當(dāng)時取等號)本題正確結(jié)果:【點(diǎn)睛】本題考查解三角形問題中的三角形面積的最值問題的求解;求解最值問題的關(guān)鍵是能夠通過余弦定理構(gòu)造等量關(guān)系,進(jìn)而利用基本不等式求得邊長之積的最值,屬于??碱}型.16、5【解析】
根據(jù)等差中項的性質(zhì),以及的值,求出的值即是所求.【詳解】根據(jù)等差中項的性質(zhì)可知,的等差中項是,故.【點(diǎn)睛】本小題主要考查等差中項的性質(zhì),考查等差數(shù)列基本量的計算,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】分析:(1)直接利用頻率分布直方圖的平均值和中位數(shù)公式求解.(2)利用古典概型求這2名市民年齡都在內(nèi)的概率.詳解:(Ⅰ)平均值的估計值:中位數(shù)的估計值:因?yàn)?,所以中位?shù)位于區(qū)間年齡段中,設(shè)中位數(shù)為,所以,.(Ⅱ)用分層抽樣的方法,抽取的20人,應(yīng)有4人位于年齡段內(nèi),記為,2人位于年齡段內(nèi),記為.現(xiàn)從這6人中隨機(jī)抽取2人,設(shè)基本事件空間為,則設(shè)2名市民年齡都在為事件A,則,所以.點(diǎn)睛:(1)本題主要考查頻率分布直方圖,考查平均值和中位數(shù)的計算和古典概型,意在考查學(xué)生對這些基礎(chǔ)知識的掌握能力和基本的運(yùn)算能力.(2)先計算出每個小矩形的面積,通過解方程找到左邊面積為0.5的點(diǎn)P,點(diǎn)P對應(yīng)的數(shù)就是中位數(shù).一般利用平均數(shù)的公式計算.其中代表第個矩形的橫邊的中點(diǎn)對應(yīng)的數(shù),代表第個矩形的面積.18、(1)證明見解析(2)(3)存在,【解析】
(1)證明DG⊥AE,再根據(jù)面面垂直的性質(zhì)得出DG⊥平面ABCE即可證明(2)分別計算DG和梯形ABCE的面積,即可得出棱錐的體積;(3)過點(diǎn)C作CF∥AE交AB于點(diǎn)F,過點(diǎn)F作FP∥AD交DB于點(diǎn)P,連接PC,可證平面PCF∥平面ADE,故CP∥平面ADE,根據(jù)PF∥AD計算的值.【詳解】(1)證明:因?yàn)闉橹悬c(diǎn),,所以.因?yàn)槠矫嫫矫?,平面平面,平面,所以平?又因?yàn)槠矫?,?2)在直角三角形中,易求,則所以四棱錐的體積為(3)存在點(diǎn),使得平面,且=3:4過點(diǎn)作交于點(diǎn),則.過點(diǎn)作交于點(diǎn),連接,則.又因?yàn)槠矫嫫矫?,所以平?同理平面.又因?yàn)?,所以平面平?因?yàn)槠矫?,所以平面,由,則=3:4【點(diǎn)睛】本題考查了面面垂直的性質(zhì),面面平行性質(zhì),棱錐的體積計算,屬于中檔題.19、(1)證明見解析;(2)【解析】
(1)根據(jù)等差數(shù)列的前n項和公式,變形可證明為等差數(shù)列.結(jié)合條件,,可得,進(jìn)而表示出.由為等差數(shù)列,表示出,化簡變形后結(jié)合不等式性質(zhì)即可證明.(2)將三角函數(shù)式分組,提公因式后結(jié)合同角三角函數(shù)關(guān)系式化簡.再由平方差公式及正弦的和角與差角公式合并.根據(jù)條件等式,結(jié)合等差數(shù)列性質(zhì),即可求得.由,即可確定.當(dāng)且僅當(dāng)時,取得最小值,可得不等式組,即可得首項的取值范圍.【詳解】(1)證明:等差數(shù)列的前n項和為,則所以,,故為等差數(shù)列,因?yàn)?,所以,解得,因?yàn)?得故,從而.(2)而.由條件又由等差數(shù)列性質(zhì)知:所以,因?yàn)?所以,那么.等差數(shù)列,當(dāng)且僅當(dāng)時,取得最小值.,所以.【點(diǎn)睛】本題考查了等差數(shù)列前n項和公式的應(yīng)用,等差數(shù)列通項公式定義及變形式應(yīng)用.三角函數(shù)式變形,正弦和角與差角公式的應(yīng)用,不等式組的解法,綜合性強(qiáng),屬于難題.20、(1);(2)【解析】
(1)由直線AB的斜率,中點(diǎn)坐標(biāo),寫出線段AB中垂線的直線方程,與直線x-2y-3=0聯(lián)立即可求出交點(diǎn)的坐標(biāo)即
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版酒店紅酒供貨合同
- 2025年度新能源汽車充電樁運(yùn)營管理合同重點(diǎn)條款探討3篇
- 2024政府機(jī)關(guān)綠化工程采購合同范本二零二四2篇
- 二零二五版合同能源服務(wù)與節(jié)能產(chǎn)品推廣協(xié)議模板3篇
- 2025年度智能場館場地租賃合同范本3篇
- 2024自建房施工合同包工包料合同
- 二零二四年度35kv架空線路施工工程設(shè)計與施工協(xié)調(diào)合同
- 2025年度金融機(jī)構(gòu)外匯借款合同模板12篇
- 勞動合同編號:XX-2025年度-001
- 2025年智能燃?xì)獗硗茝V與應(yīng)用居民供氣合同3篇
- 城市軌道交通的網(wǎng)絡(luò)安全與數(shù)據(jù)保護(hù)
- 英國足球文化課件
- 《行政職業(yè)能力測驗(yàn)》2023年公務(wù)員考試新疆維吾爾新疆生產(chǎn)建設(shè)兵團(tuán)可克達(dá)拉市預(yù)測試題含解析
- 醫(yī)院投訴案例分析及處理要點(diǎn)
- 燙傷的安全知識講座
- 工程變更、工程量簽證、結(jié)算以及零星項目預(yù)算程序?qū)嵤┘?xì)則(試行)
- 練習(xí)20連加連減
- 五四制青島版數(shù)學(xué)五年級上冊期末測試題及答案(共3套)
- 員工內(nèi)部崗位調(diào)換申請表
- 商法題庫(含答案)
- 鋼結(jié)構(gòu)用高強(qiáng)度大六角頭螺栓連接副 編制說明
評論
0/150
提交評論