安徽省安慶市徐橋鎮(zhèn)中學(xué)高二數(shù)學(xué)理上學(xué)期期末試題含解析_第1頁
安徽省安慶市徐橋鎮(zhèn)中學(xué)高二數(shù)學(xué)理上學(xué)期期末試題含解析_第2頁
安徽省安慶市徐橋鎮(zhèn)中學(xué)高二數(shù)學(xué)理上學(xué)期期末試題含解析_第3頁
安徽省安慶市徐橋鎮(zhèn)中學(xué)高二數(shù)學(xué)理上學(xué)期期末試題含解析_第4頁
安徽省安慶市徐橋鎮(zhèn)中學(xué)高二數(shù)學(xué)理上學(xué)期期末試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

安徽省安慶市徐橋鎮(zhèn)中學(xué)高二數(shù)學(xué)理上學(xué)期期末試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有是一個(gè)符合題目要求的1.在中,,且,點(diǎn)滿足等于(

) A.

B.

C.

D.參考答案:B略2.高三(1)班從4名男生和3名女生中推薦4人參加學(xué)校組織社會(huì)公益活動(dòng),若選出的4人中既有男生又有女生,則不同的選法共有() A.34種 B.35種 C.120種 D.140種參考答案:A【考點(diǎn)】計(jì)數(shù)原理的應(yīng)用. 【專題】排列組合. 【分析】利用間接法,先求出沒有限制條件的選法,在排除只有男生的選法,問題得以解決 【解答】解:從7個(gè)人中選4人共種選法,只有男生的選法有種,所以既有男生又有女生的選法有﹣=34種. 故選:A. 【點(diǎn)評】本題考查了排列組合題,間接法是常用的一種方法,屬于基礎(chǔ)題 3.已知,則(

)A.

B.

C.

D.

參考答案:B略4.兩旅客坐火車外出旅游,希望座位連在一起,且有一個(gè)靠窗,已知火車上的座位如圖所示,則下列座位號碼符合要求的應(yīng)當(dāng)是窗口12過道345窗口6789101112131415……………A.

48,49B.

62,63

C.75,76

D.84,85參考答案:D由已知圖形中座位的排列順序,可得:被5除余1的數(shù),和能被5整除的座位號臨窗,由于兩旅客希望座位連在一起,且有一個(gè)靠窗,分析答案中的4組座位號,只有D符合條件.故選D

5.在R上可導(dǎo)的函數(shù),當(dāng)時(shí)取得極大值,當(dāng)時(shí)取得極小值,則的取值范圍是()A. B. C. D.參考答案:C試題分析:在由所構(gòu)成的三角形的內(nèi)部,可看作點(diǎn)與點(diǎn)的連線的斜率,結(jié)合圖形可知考點(diǎn):函數(shù)極值及線性規(guī)劃點(diǎn)評:函數(shù)在極值點(diǎn)處的導(dǎo)數(shù)為零且在極值點(diǎn)兩側(cè)導(dǎo)數(shù)一正一負(fù),線性規(guī)劃問題取得最值的位置一般是可行域的頂點(diǎn)處或邊界處,本題有一定的綜合性6..如圖,F(xiàn)1、F2分別是雙曲線的兩個(gè)焦點(diǎn),以坐標(biāo)原點(diǎn)O為圓心,為半徑的圓與該雙曲線左支交于A、B兩點(diǎn),若是等邊三角形,則雙曲線的離心率為(

)A. B. C. D.參考答案:D【分析】連結(jié),根據(jù)圓的直徑的性質(zhì)和等邊三角形的性質(zhì),證出△是含有角的直角三角形,由此得到且.再利用雙曲線的定義,得到,即可算出該雙曲線的離心率.【詳解】解:連結(jié),是圓的直徑,,即,又△是等邊三角形,,,因此,△中,,,.根據(jù)雙曲線的定義,得,解得,雙曲線的離心率為.故選:.【點(diǎn)睛】本題考查了雙曲線的定義、簡單幾何性質(zhì)等知識,屬于基礎(chǔ)題.7.下列命題中的假命題是()A.?x∈R,lgx>0 B.?x∈R,sinx=1 C.?x∈R,x2>0 D.?x∈R,2x>0參考答案:C【考點(diǎn)】特稱命題;2H:全稱命題.【分析】根據(jù)對數(shù)函數(shù),正弦函數(shù)及指數(shù)函數(shù)的性質(zhì),分別判斷,A,B,D為真命題,由當(dāng)x=0時(shí),x2=0,故C為假命題.【解答】解:對于A:當(dāng)x>1時(shí),lgx>0,故?x∈R,lgx>0為真命題;對于B:當(dāng)x=2kπ+,k∈Z時(shí),sinx=1,則?x∈R,sinx=1,為真命題;對于C:當(dāng)x=0時(shí),x2=0,故?x∈R,x2>0,為假命題,對于D,由指數(shù)函數(shù)的性質(zhì)可知:?x∈R,2x>0,故為真命題,故選:C.【點(diǎn)評】本題考查邏輯語言與指數(shù)數(shù)、二次函數(shù)、對數(shù)函數(shù)、正弦函數(shù)的性質(zhì),屬容易題.8.對于上可導(dǎo)的任意函數(shù),若滿足,則必有(

)A.

B.C.

D.參考答案:C9.已知f(x)是定義在R上的函數(shù),且f(x)=f(x+2)恒成立,當(dāng)x∈(﹣2,0)時(shí),f(x)=x2,則當(dāng)x∈[2,3]時(shí),函數(shù)f(x)的解析式為()A.x2﹣4 B.x2+4 C.(x+4)2 D.(x﹣4)2參考答案:D考點(diǎn): 函數(shù)解析式的求解及常用方法;函數(shù)的周期性.

專題: 計(jì)算題.分析: 根據(jù)f(x)=f(x+2)判斷出函數(shù)的周期性,再根據(jù)周期性,把∈[2,3]的函數(shù)值變形到(﹣2,0)上來求.解答: 解:∵f(x)=f(x+2),∴f(x)是周期為2的周期函數(shù),∵當(dāng)x∈(﹣2,0)時(shí),f(x)=x2,根據(jù)周期性,當(dāng)x∈2,3]時(shí),f(x)=f(x﹣4)=(x﹣4)2故選D點(diǎn)評: 本題考查了函數(shù)的周期性的判斷與應(yīng)用,是高考必考內(nèi)容10.如圖所示,在河岸ac一側(cè)測量河的寬度,測量以下四組數(shù)據(jù),較適宜的是().a(chǎn).c,α,γ

b.c,b,αc.c,a,β

d.b,α,γ參考答案:D本題中的c,a,β不好直接測量.二、填空題:本大題共7小題,每小題4分,共28分11.若曲線y=與直線y=a恰有一個(gè)公共點(diǎn),則實(shí)數(shù)a的取值范圍為.參考答案:a=﹣e或a>0【考點(diǎn)】函數(shù)的零點(diǎn)與方程根的關(guān)系.【分析】根據(jù)導(dǎo)數(shù)判斷單調(diào)性:f(x)在(0,)的單調(diào)遞增,在(1,),(1,+∞)的單調(diào)遞減,畫出圖象判斷即可.【解答】解:∵y=,定義域?yàn)椋海?,1)∪(1,+∞)∴y′=,①當(dāng)>0時(shí),即0,②當(dāng)<0時(shí),即<x<1,x>1,③當(dāng)=0時(shí),即x=,∴f(x)在(0,)的單調(diào)遞增,在(1,),(1,+∞)的單調(diào)遞減,f()=﹣e,∵曲線y=與直線y=a恰有一個(gè)公共點(diǎn),∴a=﹣e或a>0,12.若不等式恒成立,則實(shí)數(shù)a的取值范圍是

.參考答案:13.設(shè)等比數(shù)列的前項(xiàng)和為,若=,則實(shí)數(shù)=

參考答案:-114.已知{an}是公差不為0的等差數(shù)列,{bn}是等比數(shù)列,且,,,,若存在常數(shù)u,v對任意正整數(shù)n都有,則________.參考答案:6【分析】設(shè)的公差為,的公比為,由題設(shè)條件解得時(shí),,故,.由,知,分別令和,能夠求出.【詳解】設(shè)的公差為,的公比為,,,,,,,解方程得或,當(dāng)時(shí),,不符合題意,故舍去,當(dāng)時(shí),,,,,,當(dāng)時(shí),,,當(dāng)時(shí),,,,.所以本題答案為6.【點(diǎn)睛】本題考查等差數(shù)列和等比數(shù)列的通項(xiàng)公式的應(yīng)用,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意等價(jià)轉(zhuǎn)化思想的合理運(yùn)用.15.已知定義在R上的函數(shù),當(dāng)時(shí),不等式恒成立,則實(shí)數(shù)的取值范圍為______參考答案:【分析】先根據(jù)構(gòu)造差函數(shù),再根據(jù)條件化為一元函數(shù),利用導(dǎo)數(shù)確定其單調(diào)性,最后根據(jù)單調(diào)性解不等式,解得結(jié)果.【詳解】由,可得,即.因?yàn)?,所以問題可轉(zhuǎn)化為恒成立,記,所以在上單調(diào)遞增.又,所以當(dāng)時(shí),恒成立,即實(shí)數(shù)的取值范圍為.16.已知橢圓上一點(diǎn)P到左焦點(diǎn)的距離為,則它到右準(zhǔn)線的距離為.參考答案:3【考點(diǎn)】橢圓的簡單性質(zhì).【分析】先由橢圓的第一定義求出點(diǎn)P到右焦點(diǎn)的距離,再用第二定義求出點(diǎn)P到右準(zhǔn)線的距離d.【解答】解:由橢圓的第一定義得點(diǎn)P到右焦點(diǎn)的距離等于4﹣=,離心率e=,再由橢圓的第二定義得=e=,∴點(diǎn)P到右準(zhǔn)線的距離d=3,故答案為:3.17.若拋物線的焦點(diǎn)在直線x﹣2y﹣4=0上,則此拋物線的標(biāo)準(zhǔn)方程是

.參考答案:y2=16x或x2=﹣8y

【考點(diǎn)】拋物線的標(biāo)準(zhǔn)方程.【分析】分焦點(diǎn)在x軸和y軸兩種情況分別求出焦點(diǎn)坐標(biāo),然后根據(jù)拋物線的標(biāo)準(zhǔn)形式可得答案.【解答】解:當(dāng)焦點(diǎn)在x軸上時(shí),根據(jù)y=0,x﹣2y﹣4=0可得焦點(diǎn)坐標(biāo)為(4,0)∴拋物線的標(biāo)準(zhǔn)方程為y2=16x當(dāng)焦點(diǎn)在y軸上時(shí),根據(jù)x=0,x﹣2y﹣4=0可得焦點(diǎn)坐標(biāo)為(0,﹣2)∴拋物線的標(biāo)準(zhǔn)方程為x2=﹣8y故答案為:y2=16x或x2=﹣8y【點(diǎn)評】本題主要考查拋物線的標(biāo)準(zhǔn)方程.屬基礎(chǔ)題.三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18.一個(gè)袋中裝有四個(gè)形狀大小完全相同的球,球的編號分別為1,2,3,4.(1)從袋中隨機(jī)抽取兩個(gè)球,求取出的球的編號之和為偶數(shù)的概率;(2)先從袋中隨機(jī)取一個(gè)球,該球的編號為m,將球放回袋中,然后再從袋中隨機(jī)取一個(gè)球,該球的編號為n,求n<m+1的概率.參考答案:【考點(diǎn)】列舉法計(jì)算基本事件數(shù)及事件發(fā)生的概率.【專題】計(jì)算題;整體思想;定義法;概率與統(tǒng)計(jì).【分析】(1)從袋中隨機(jī)抽取兩個(gè)球,可能的結(jié)果有6種,而取出取出的球的編號之和為偶數(shù)兩個(gè),1和3,2和4兩種情況,求比值得到結(jié)果.(2)有放回的取球,根據(jù)分步計(jì)數(shù)原理可知有16種結(jié)果,滿足條件的比較多不好列舉,可以從他的對立事件來做.【解答】解:(1)從袋中隨機(jī)取兩個(gè)球,其中所有可能的結(jié)果組成的基本事件有1和2,1和3,1和4,2和3,2和4,3和4共6個(gè),從袋中取出的球的編號之和為偶數(shù)的事件共有1和3,2和4兩個(gè),因此所求事件的概率,(2)先從袋中隨機(jī)取一個(gè)球,記下編號為m,放回后,再從袋中隨機(jī)取一個(gè)球,記下編號為n,(m,n)一切可能的結(jié)果有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)共16個(gè),其中滿足n<m+1的有:(1,1),(2,1),(2,2),(3,1),(3,2),(3,3),(4,1),(4,2),(4,3),(4,4)十個(gè),故滿足條件的概率為P==【點(diǎn)評】本小題主要考查古典概念、對立事件的概率計(jì)算,考查學(xué)生分析問題、解決問題的能力.能判斷一個(gè)試驗(yàn)是否是古典概型,分清在一個(gè)古典概型中某隨機(jī)事件包含的基本事件的個(gè)數(shù)和試驗(yàn)中基本事件的總數(shù).19.(本題12分)已知正方體,求:(1)異面直線與所成的角;(2)求與平面所成的角;(3)求二面角的大小。參考答案:(1)60度(2)45度(3)45度20.傳承傳統(tǒng)文化再掀熱潮,央視科教頻道以詩詞知識競賽為主的《中國詩詞大會(huì)》火爆熒屏.將中學(xué)組和大學(xué)組的參賽選手按成績分為優(yōu)秀、良好、一般三個(gè)等級,隨機(jī)從中抽取了100名選手進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的選手等級人數(shù)的條形圖.(Ⅰ)若將一般等級和良好等級合稱為合格等級,根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料你是否有95%的把握認(rèn)為選手成績“優(yōu)秀”與文化程度有關(guān)?

優(yōu)秀合格合計(jì)大學(xué)組

中學(xué)組

合計(jì)

注:,其中n=a+b+c+d.P(k2≥k0)0.100.050.005k02.7063.8417.879(Ⅱ)若參賽選手共6萬人,用頻率估計(jì)概率,試估計(jì)其中優(yōu)秀等級的選手人數(shù);(Ⅲ)在優(yōu)秀等級的選手中取6名,依次編號為1,2,3,4,5,6,在良好等級的選手中取6名,依次編號為1,2,3,4,5,6,在選出的6名優(yōu)秀等級的選手中任取一名,記其編號為a,在選出的6名良好等級的選手中任取一名,記其編號為b,求使得方程組有唯一一組實(shí)數(shù)解(x,y)的概率.參考答案:【考點(diǎn)】BO:獨(dú)立性檢驗(yàn)的應(yīng)用;B8:頻率分布直方圖.【分析】(Ⅰ)由條形圖可知2×2列聯(lián)表,計(jì)算k2,與臨界值比較,即可得出結(jié)論;(Ⅱ)由條形圖知,所抽取的100人中,優(yōu)秀等級有75人,故優(yōu)秀率為.可得其中優(yōu)秀等級的選手人數(shù);(Ⅲ)確定基本事件的個(gè)數(shù),即可求出使得方程組有唯一一組實(shí)數(shù)解(x,y)的概率.【解答】解:(Ⅰ)由條形圖可知2×2列聯(lián)表如下

優(yōu)秀合格合計(jì)大學(xué)組451055中學(xué)組301545合計(jì)7525100…∴沒有95%的把握認(rèn)為優(yōu)秀與文化程度有關(guān).…(Ⅱ)由條形圖知,所抽取的100人中,優(yōu)秀等級有75人,故優(yōu)秀率為.∴所有參賽選手中優(yōu)秀等級人數(shù)約為萬人.…(Ⅲ)a從1,2,3,4,5,6中取,b從1,2,3,4,5,6中取,故共有36種,要使方程組有唯一組實(shí)數(shù)解,則,共33種情形.故概率.…21.已知直線(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.(1)將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程;(2)設(shè)點(diǎn)M的直角坐標(biāo)為,直線l與曲線C的交點(diǎn)為A,B,求的值.參考答案:(1);(2).【詳解】試題分析:(1)在方程兩邊同乘以極徑可得,再根據(jù),代入整理即得曲線的直角坐標(biāo)方程;(2)把直線的參數(shù)方程代入圓的直角坐標(biāo)方程整理,根據(jù)韋達(dá)定理即可得到的值.試題解析:(1)等價(jià)于①將代入①既得曲線C的直角坐

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論